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14.

INTRODUCTION TO FACTORIAL DESIGNS

14.1 FACTORIAL DESIGNS

By a factor we mean a controllable input. We will denote factors by capital letters A, B,
C… Each factor can take a certain number of levels or values in an experiment.

We denote the levels

A: A1, A2,…, Aa
B: B1, B2,…, Bb

A combination of levels, one from each factor in the experiment is called a treatment and denoted

Ai1 Bi2 Ci3

An experiment in which each possible treatment is applied is called a completely crossed design
or simply a factorial design.

For example we have 3 factors A, B, C where: A takes a levels,
B takes b levels,
C takes c levels.

Then there are abc possible treatments. If treatment Ai1 Bi2 Ci3 is applied ni1 i2 i3 times then we
have a total of
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treatment applications.
Rather than running the full 3-factor design we could think of running 3 one factor designs.



Dr Robert Gebotys 2003                                                                                           14-2

For this we would require only a + b + c ≤ abc treatments. This would certainly be much
easier. We note, however, that if we did this we would have no way of assessing whether or not
the factors interacted. Thus the importance of factorial designs in general. Typically each
treatment is applied more than once. If each treatment is applied the same number of times we
have a balanced design. Balance greatly simplifies computations and interpretations and should
be arranged if possible.

Now suppose we have k factors and factor i takes mi levels. Then we have m1 m2…mk
treatments and suppose treatment (i1, i2,…, ik) is to be applied ni1 i2…ik times.

Then we require N = ∑ ∑
=
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elements in our population Π so that all treatments can be applied.

The elements of Π are usually referred to as experimental units in this context.

We then randomly assign units to treatments. This process is called complete
randomization and ensures that we have random samples from each of the m1 m2…mk frequency
distributions determined by the treatments.

We note that formally any inferences or conclusions we read apply only to the population
Π unless the elements of Π were themselves a random sample from some larger population. In
practical contexts, however, psychologists often make such an extrapolation whether justified or
not.

14.2 THE 1-FACTOR DESIGN

Suppose we have 1 factor A: A1,…, Aa that has a levels. This gives raise the linear model

E[y] = β1x1 + … + βaxa

where xi =1 if Ai is applied and is zero (0) otherwise.

If we apply Aini times we obtain a N = n1 + n2 + … + na dimensional data vector y, where
the first n1 components are from A1, etc.

Then the full model takes the form

E[y] = Xβ
        = (x1,…, xa)β

where xi has 1’s in the n1 + … + ni-1 +1 to n1 + … + ni positions and has 0’s elsewhere. The least-
squares estimator of β is given by



Dr Robert Gebotys 2003                                                                                           14-3
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where Ti = the total of all the observations from an application of Ai and 
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Note that the psychologist has defined the model and has collected data on the system.

The least squares estimator, b of β, is the mean of the treatment, y .

This gives the following ANOVA table:

Source DF SS MSE F
Model a
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Further the F test on a and N-a degrees of freedom tests H0: β = 0; i.e. all the means are
equal and they are equal to zero. This is a hypothesis that is seldom of interest to psychologists.
Typically psychologists are interested in testing if there are treatment differences, not that the
treatment means are equal to zero.

14.3 TEST FOR NO TREATMENT DIFFERENCES

A more common hypothesis that we wish to test is

H0: β1 = β2 = … = βa;

i.e. there are no treatment differences or equivalently no cause-effect relationship exists between
A and the response variable. Note that this is a different hypothesis than that tested in the
previous section.

This hypothesis corresponds to

H0: E[y] ∈  X2 β2 given that E[y] ∈  X1 β1
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where X2 = 



























1
.
.
.
1
1

 and X1 is the design matrix for the full model.

We obtain the following ANOVA table using the ANOVA technique previously
discussed in Chapter 11.

Source DF MSE F
Model X2 1
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where G is the grand total of all the observations.

We test H0 by comparing F with the F(a-1, N-a) distribution.

This table is usually presented as follows in introductory textbooks on statistics and
computer program output.

ANOVA (one way) DF MSE F
Between Groups a-1 MSB

MSW
MSB

Within Groups N-a MSW

Total (Removing the mean) N-1

The difference in models (Model X1 - Model X2) is referred to as Between Group
variation whereas the error or residual component of the model is referred to as Within Group
variation.
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14.4 CONTRASTS

Definition of an Orthogonal matrix

1) For any two rows, the sum of products of corresponding entries is zero.

2) For any row, the sum of the squares of the entries is 1.

Example 1 Consider the matrix A below.

A = 
















−
−
145
321

111

Multiply row 1 and row 2 of A, in order to verify rule 1 above.

r1 * r2’ = 1 * 1 + 1 * 2 + 1 * (–3)
            = 1 + 2 – 3
            = 0

Continue with row 2 and row 3.

r2 * r3’ = 1 * (–5) + 2 * 4 + (–3) * 1
            = –5 + 8 – 3
            = 0

for practice, verify the product of row 1 and 3 equals zero.

To satisfy this second requirement divide each row by the square root corresponding sum
of squares of each row.

i.e. r1 * r1’ = 1 * 1 + 1 * 1 + 1 * 1
                         = 1 + 1 + 1
                         = 3

thus the divisor is 3  for row 1.

For row 2 we obtain

r2 * r2’ = 12 +22 + (–3)2

            = 1 + 4 + 9
            = 14

thus the divisor is 14  for row 2 and similarly
the divisor is 42 for row 3.

Thus the matrix C below is an orthogonal matrix
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C = 
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For practice, check to see that C is an orthogonal matrix - it satisfies 1) and 2). You will soon see
that SPSS does not require the divisor we have introduced. We have introduced the divisor so that
our hand calculations are complete.

Now suppose C is orthogonal and C1 - the first row of C is (1 1 … 1) with divisor a  and we
wish to make inferences about the contrasts α = Cβ,

where our model is

E[y] = Xβ

Typically there is a natural ordering to these contrasts and we test sequentially.

H0: αa = 0
H0: αa-1 = 0 assuming αa = 0
etc.

and stop when we obtain a significant result. We obtain the following ANOVA table.

Source                                    DF
αa = 0 (contrast 1)                    1
αa - 1 = 0 (contrast 2)               1
                .
                .
                .
Residual (Error)                      N-a
Total                                         N

Note that the sums of squares (SS) for each contrast is nai
2 where
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ai = Ci 
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Orthogonal contrasts are important since the mathematical property of orthogonality
gives the set of orthogonal contrasts described in the matrix C mutual statistical independence.
The contrasts also partition the Treatment variation into independent components that when
summed give the Treatment variation. Research can be designed with a specific set of contrasts in
mind or as we will see in Chapter 19 psychologists can examine treatments without a set of
prescribed contrasts.

           Model (treatment)                                Contrasts                     Sums of Squares

                Total                                           a-1 contrasts                      Model (Treat) SS

Model has
β1 , β2 , …, βa

with a-1 df
in

ANOVA

Contrast 1 of β' s

Contrast of β' s

Contrast a-1
Of  β' s

.

.
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SS1

SS2

SSa−1
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.

.
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(d) Example

Gebotys and Roberts, Canadian Journal Behavioural Science (1987) 19, p 479, examined
the public’s attitude towards sentencing by giving each subject a short story describing a crime
and then asking the subject to sentence the offender. The data below are based on this study.
There are three treatment/crime conditions; break and enter (A1), robbery (A2) and manslaughter
(A3). Three subjects are randomly assigned to each treatment for a total of 9 subjects and a
sentence, in months, is recorded.

A reading of the literature indicates that there may be a difference between the mean sentence of
A2 and the mean sentence of A3 and then if the difference doesn’t exist, it seems reasonable to test
for a difference between the mean of A1 and the common value (average value) for A2 and A3.

The data, three observations per treatment, with totals and means is given below.

A1: 38.5,39.8,37.2 T1 = 115.5  1y  = 38.5
A2: 40.1,41.5,39.3 T2 = 120.9  2y  = 40.3
A3: 40.1,43.2,42.2 T3 = 125.5  3y  = 41.833

G = 361.9

The following calculations are necessary for the construction of the ANOVA table.

N
G 2

 = 14552.40111

∑
=

3

1

2

i

i

n
T

 = 14569.10111
n

G
n

Ti
22

−∑  = 16.7 y’y = 14579.97

To test if sentencing is equivalent for the three types of crime we obtain the following table.

Source DF SS MS F
Mean 1 14552.40111 14552.40111
Treatments 2 16.7 1.81 4.61
Error 6 10.87 8.35
Total 9 14579.97111

If we test at α = .05, the critical value for F(2, 6) = 5.79 therefore we cannot reject H0: β1 = β2 =
β3; that the three means are equal. The observed level of significance or p value is equal to about
.06.
In other words, we have marginal evidence against the hypothesis of no treatment differences.

The experiment was designed with the following two orthogonal contrasts in mind

1) the mean of A2 vs. the mean of A3
2) the mean of A1 vs. the mean of A2 and A3
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This leads to the contrast matrix

C = 
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and contrasts for the population
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Now since n1 = n2 = n3, let the sample size per treatment equal n. We calculate contrasts for the
sample using totals or averages.

a1 = 
















 ++

3
333
321 TTT

 = 
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321 TTT

a2 = 



 −−
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2 321 TTT

a3 = 




 −

23
32 TT

Remember that the SS for the contrast is nai
2 where n = 3 and ai is calculated above.
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Then the relevant ANOVA table is given by

Source DF MS F
Mean 1 14552.40111
A1 vs. A2 and A3 1 13.18 7.27
A2 vs. A3 1 3.53 1.95
Error 6 1.81
Total 9

Note that the SS for Treatment has been partitioned into two orthogonal components each with
one degree of freedom which, when added together, give the Treatment Sums of Squares. At α =
.05 (critical value for F(1,6) = 5.99) we have no evidence against the null hypothesis of no
difference between A2 vs. A3, however there is a significant difference between A1 vs. A2, A3. This
is the case since the overall F test is a pooling of the two contrasts. Since one contrast was
significant and the other not, the pooling gave results approaching significance in the overall test.
If an experiment has been designed with specific orthogonal contrasts in mind, then researchers
can proceed to test these hypothesis even though the overall pooled test may be non significant,
as is the case in our example.

A 95% C.I. for αi is given by

ai ± t.025(6) 
n
s

where s is the square root of the MS Error value (with 6 df) and n is the number of observations

per treatment (i.e. 3). Since α = .05 the t value we look up is 
2
α

 = .025 with 6 df which is equal to

2.44.

For example for a2 we have

a2 ± ( )44.2
3
81.1

= a2 ± 1.895
= -2.09 ± 1.895
= (-3.99, 0.195)

A 95% confidence interval for a2 the difference between the average of A2 and A3 vs. A1 is (-3.99,
-0.195).

14.5 SPSS COMMANDS

The following commands will implement the above one-way ANOVA analysis using the
MANOVA procedure in SPSS. The program is given below.
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You have two choices regarding how to enter in your data when running a syntax
program: 1) you may enter the data right into the syntax window, or 2) you may enter the data
into the data editor and type the syntax separately.

If you want to enter the data directly into the syntax window, please follow these steps:
a) Click File on the menu bar, then New, followed by Syntax. This series of clicks

will open a SPSS Syntax Editor window. Type the following commands into the
Syntax Editor. Be sure to type the Syntax exactly as you see it in the picture
provided below (i.e., use the appropriate case, spaces between words, etc.).

b) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

If you prefer to enter you data in separately from your syntax, please follow these steps:
a) Open up SPSS and enter your data into the Data Editor (the main data page).

Your data and a picture of the data editor have been provided below:
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b) Now you can enter your commands into the Syntax Window. Click File on the
menu bar, then New, followed by Syntax. This series of clicks will open a SPSS
Syntax Editor window. Type the following commands into the Syntax Editor. Be
sure to type the Syntax exactly as you see it in the picture provided below (i.e.,
use the appropriate case, spaces between words, etc.).
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c) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

The command statement is MANOVA. On the same line we have the dependent measure
(y), sentence followed by the factor, crime, with three levels coded as either 1, 2, or 3, where 1 is
the minimum value and 3 is the maximum value. The contrast statement is identical to the
contrast matrix in form however, note that in the computer implementation it is not necessary to
provide the divisor for the contrast. This is automatically calculated by the computer. The
partition statement includes (1,1) two ones since there are 2 degrees of freedom for the crime
factor (or two (2) orthogonal contrasts) denoted crime (1), and crime (2) in the Decision
statement.

The coarse ANOVA table is listed below which tests the hypothesis

H0: β1 = β2 = β3

Ha: β1 ≠ β2  ≠ β3

Note that the β’s refer to the population means, whereas the b’s refer to the sample means. Since
F(2, 6) = 4.61, p = .061, we are unable to reject the null hypothesis at α = .05.
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The means are given below for each of the three levels of the crime factor.

The fine analysis of variance table, including the two contrasts referred to as CRIME(1)
and CRIME(2) is given below. The contrast of A1 vs. A3 + A2 is significant, F(1, 6) = 7.27, p =
.036, whereas the A2 vs. A3 contrast is not, F(1, 6) = 1.95, p = .212. Note that the overall test given
in the coarse ANOVA was not significant however one of the orthogonal contrasts was
significant.

A casewise plot of residuals is given below. The standardized residual column does not
display any large (greater than 3) residuals.

Tests of Significance for SENTENCE using UNIQUE sums of squares 
 Source of Variation          SS      DF        MS         F  Sig of F 
 
 WITHIN+RESIDUAL           10.87       6      1.81 
 CRIME                     16.70       2      8.35      4.61      .061 
 
 (Model)                   16.70       2      8.35      4.61      .061 
 (Total)                   27.57       8      3.45 
 
 R-Squared =           .606 
 Adjusted R-Squared =  .474 

Adjusted and Estimated Means 
 Variable .. SENTENCE 
  CELL         Obs. Mean   Adj. Mean   Est. Mean  Raw Resid. Std. 
Resid. 
 
     1          38.500      38.500      38.500        .000        .000 
     2          40.300      40.300      40.300        .000        .000 
     3          41.833      41.833      41.833        .000        .000 

 Tests of Significance for SENTENCE using UNIQUE sums of squares 
 Source of Variation          SS      DF        MS         F  Sig of F 
 
 WITHIN+RESIDUAL           10.87       6      1.81 
 CRIME(1)                  13.18       1     13.18      7.27      .036 
 CRIME(2)                   3.53       1      3.53      1.95      .212 
 
 (Model)                   16.70       2      8.35      4.61      .061 
 (Total)                   27.57       8      3.45 
 
 R-Squared =           .606 
 Adjusted R-Squared =  .474 
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The plot of the case number vs. standardized ei has a band pattern that looks reasonable.
Remember a linear model is being fit to the data therefore the techniques used to assess normality
in this experimental design case are identical to what was learned in Part II (Chapters 7 through
13) the Linear Model.

The normal probability plot approximates a line which looks reasonable as well.

Observed and Predicted Values for Each Case 
 Dependent Variable.. SENTENCE 
 
 Case No.      Observed   Predicted  Raw Resid.  Std Resid. 
 
        1       38.500     38.500       .000       .000 
        2       39.800     38.500      1.300       .966 
        3       37.200     38.500     -1.300      -.966 
        4       40.100     40.300      -.200      -.149 
        5       41.500     40.300      1.200       .892 
        6       39.300     40.300     -1.000      -.743 
        7       40.100     41.833     -1.733     -1.288 
        8       43.200     41.833      1.367      1.016 
        9       42.200     41.833       .367       .272 

Dependent variable: SENTENCE

Case Number
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In summary, the one-way ANOVA design uses a linear model where the β’s of the model
represent the population means μ. The least squares estimators b are the sample means of the
treatments y . Contrasts of means are directly linked to the linear model. Residual analysis of the
design is identical to what was learned previously in the Linear Model.

 Click here for the SPSS windows method of analysis and output.

14.6 SAS COMPUTER IMPLEMENTATION

Listed below is the SAS program that would implement the one-way ANOVA analysis in section
14.4.

DATA OFFENCE;
INPUT CRIME SENTENCE;
CARDS;
1 3 8.5
...
3 4 2.2
PROC GLM;
CLASS CRIME;

Normal Q-Q Plot of Residuals of SENTENCE

Observed Value

1.51.0.50.0-.5-1.0-1.5

Ex
pe

ct
ed

 N
or

m
al

1.5

1.0

.5

0.0

-.5

-1.0

-1.5
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MODEL SENTENCE = CRIME;
MEANS CRIME / BON;
CONTRAST ’A2 VS A2’ CRIME 0 1 -1 ;
CONTRAST ’A 2 + A3 VS A1’ CRIME 2 -1 -1 ;
OUTPUT OUT = RESIDS P = YHAT R = RESID;
PROC PLOT;
PLOT RESID*(YHAT,CRIME);
PROC UNIVARIATE PLOT NORMAL;
VAR RESID;

The procedure is called GLM. The CLASS command identifies the independent factor
labeled CRIME in this case. The MODEL statement gives the dependent variable, SENTENCE
and the independent factor CRIME. The means for the CRIME factor are requested in the
MEANS statement as well as Bonferroni pair wise comparisons using the BON option (see
section 14.7 for more information). Contrasts are given and labeled in the CONTRAST statement.
The usual (previously discussed) residual analysis follows the CONTRAST statements.

14.7 PLANNED NON-ORTHOGONAL COMPARISONS

The Bonferroni method is an exact method that is applicable to a wide variety of contrasts.
Psychologists often are in the position in practice of performing non-orthogonal planned
comparisons (other non-planned comparisons are discussed in Chapter 19), including pair wise
comparisons. The basis of the Bonferroni method is that if ω comparisons are to be made each
with confidence

1 – 
ϖ
α

then the probability of making one or more Type I errors is at most α.

For pair wise comparisons of iy  vs. jy  with equal n for a treatments.

Calculate

Bonf = t 
ϖ
α
2

 s
n
2

where,

ω = number of pair wise comparisons

If all pairwise comparisons are to be examined then

ω = 






2
a

 = 
( )






 −

2
1aa
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where

s = MSE

If the mean difference is greater than Bonf then the means differ.

Example

In the previous example we have 3 means, a = 3, the number of total pair wise

comparisons is ω = 
( )

2
133 −

 = 3

then 2ω = 6

where s = 81.1
= 1.345

and DFE = 6

n = 3 since there are 3 observations per treatment.

if we use α =  .05 then

t 






ϖ2
a

 = t 






6
05.0

 = t0.0083

using tables, t0.0083 ≈ 3.372 with 6df.

Bonf = t0.0083 s 
n
2

= 3.372 81.1
3
2

= 3.703

In other words, a pair of sample means must differ by more than 3.703 to be declared
significantly different. The sample means for the treatments are given below.

           A1             A2              A3

y       38.4          40.3           41.8

Since the means do not differ by more than 3.703 there are no differences between the
treatments, using the Bonferroni procedure.
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14.8 Exercises

1. Filby, Y., Szara, S. and Saltzman, B. Magnesium Pemoline Effect on Acquisition and
Retention of Discriminated Avoidance Behavior, Psyconomic Science, 1967, 9, 131-133
examined how drugs improve learning in rats. Three groups were examined; Magnesium
Pemoline (MgPe), d-amphetamine and a placebo. The dependent measure was the speed
that rats learned to avoid shock. The data is given below.

MgPe                          d-amphetamine                    Placebo

7     10 11
8     10 55
8     15 55
9     22 59
10     26 80
27     8 80

a. Perform the ANOVA and state your conclusions clearly.

b. Compare the two drug groups in a contrast. Compare the average of the two drug
groups with the placebo. Report your results in an ANOVA table.

c. Are the residuals normal?

2. Grice, G. and Saltz, E. The Generalization of an Instrumental Response to Stimuli
Varying in the Size Dimension, J. Exp.Psychology, 1950, 40, 705. The psychologists
studied the relationship between test area and the number of responses. Four areas were
considered with 15 people within each group. The dependent variable was the number of
responses to 25 test trials.

Area
20                  32                    50                   79

9 22 8 12
19 13 11 4
10 17 2 1
21 20 3 8
10 8 4 14
18 22 6 14
11 12 10 5
18 8 13 8
23 14 15 4
10 9 10 11
10 8 4 3
10 14 10 5
9 13 4 5
10 16 8 4
8 4 1 0
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a. Perform the ANOVA and state your conclusions clearly.
b. Compare the 20 vs. 32 group in a contrast. Compare the 50 vs. 79 groups in a

contrast. Compare the average of the 20 and 32 vs. the average of the 50 and 79 in a
contrast. Write out the contrast matrix for the above. Report your results in an
ANOVA table.

c. Are the residuals normal?

d. Is there a linear, E(y|x) = β1 + β2x relationship between response and area? Display
your results for the design in an ANOVA table.

3. Lowe, R. (1935), in Cochran (1958), gives the amount of fat absorbed by doughnuts
when cooking. The type of fat had 4 levels (1, 2, 3, 4). The data is given below.

Grams of Fat Absorbed per Batch (minus 100 grams)

Fat 1 2 3 4

64 78 75 55
72 91 93 66
68 97 78 49
77 82 71 64
56 85 63 70
95 77 76 68

a. Perform the ANOVA analysis and state your conclusions clearly.

b. Compare F1 with F2, F1 and F2 with F3, and F1 and F2 and F3 with F4. Are the
contrasts orthogonal? Report your results in an ANOVA table and state your
conclusions.

c. Are the residuals reasonable?

4. Jackson, L.M. and Gorassini, D.R. (1989). Journal of General Psychology, 116(4), 333-
343 examined 4 treatments; the result of crossing 2 factors, Suggestibility and Condition
each at two levels. Participants were classified as high or low with respect to hypnotic
suggestibility. Participants also took a creativity test either under hypnosis or in a waking
state/condition. A number of dependent measures were examined and are given below.
Column A gives the four treatments where:

1 = low suggestibility with task motivation
2 = high suggestibility with task motivation
3 = low suggestibility with hypnosis
4 = high suggestibility with hypnosis

The data for the dependent variables is given below for Figural Fluency (H), Verbal
Fluency (E), Self Report Creativity (M) and Column Experience (O).
For each variable (E, H, M, O)

a. Perform a one-way analysis of variance on the four treatments.
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b. Compare via contrasts
i. Treatments 1 and 2 vs. 3 and 4
ii. Treatments 1 and 3 vs. 2 and 4
iii. Treatments 1 and 4 vs. 2 and 3

c. Interpret each of the above contrasts.

d. Comment on the residuals

e. State your conclusions clearly.

ID          A           E           H           M          O           ID          A           E           H           M          O

1 1 27 7 7 9 31 3 26 3 9 21
2 1 10 2 6 10 32 3 30 5 7 16
3 1 18 4 12 17 33 3 32 6 17 20
4 1 38 4 13 24 34 3 25 6 5 10
5 1 27 3 15 14 35 3 28 4 10 13
6 1 31 3 8 17 36 3 37 1 12 14
7 1 28 4 10 16 37 3 39 5 5 19
8 1 19 3 12 22 38 3 30 7 4 12
9 1 43 2 15 19 39 3 12 5 8 8
10 1 32 3 12 16 40 3 30 9 10 15
11 1 70 5 7 14 41 3 34 5 5 21
12 1 66 5 14 20 42 3 29 4 8 12
13 1 35 4 15 20 43 3 29 4 8 12
14 1 48 6 13 16 44 3 19 3 6 11
15 1 47 5 13 21 45 3 37 5 10 14
16 2 25 1 10 7 46 4 32 6 10 19
17 2 34 6 10 18 47 4 30 6 6 18
18 2 37 3 6 20 48 4 53 7 6 18
19 2 37 4 7 18 49 4 27 4 15 20
20 2 33 2 6 7 50 4 21 10 5 10
21 2 32 3 9 10 51 4 30 8 16 22
22 2 23 2 6 17 52 4 31 10 5 21
23 2 32 5 3 11 53 4 25 4 10 7
24 2 38 8 11 23 54 4 25 4 14 21
25 2 24 5 10 9 55 4 41 4 16 18
26 2 66 7 14 14 56 4 39 4 15 21
27 2 42 4 10 17 57 4 38 10 13 22
28 2 39 10 10 18 58 4 38 4 6 18
29 2 27 6 6 17 59 4 27 4 10 17
30 2 73 7 14 23 60 4 28 10 12 20

14.9 ORTHOGONAL POLYNOMIALS

We have learned how to fit models of the type

E (y|x) = β1 + β2x + β3x2 + … + βkxk–1
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which represent polynomials in chapter 8 where x and y were quantitative variables. In the
simplest situation of the single factor ANOVA; if the X values are quantitative and equally
spaced the polynomial curve fitting can be easily accomplished with the use of contrasts.

The polynomial model above can be rewritten as

y’ = A0ξ0 + A1ξ1 + … + Akξk

where each ξ j is a polynomial of degree j, and all polynomials such as ξr and ξs are orthogonal.
Fisher and Yates (1953) have shown that the advantage of writing the model this way is that
polynomials of higher degree can be added which are orthogonal (independent) of the ones
already considered. The highest order polynomial is tested first and the psychologist stops when
the corresponding contrast is significant. This procedure is very efficient and useful in finding the
degree of the polynomial model needed for the psychological system provided X is quantitative
and equally spaced.

Fisher and Yates (1953) have provided tables of contrasts for polynomial models. A brief
table of coefficients is given in table 14.1. Psychologists sometimes refer to this procedure of
curve fitting as a trend analysis.

The natural ordering of highest order contrast to lowest order is tested sequentially and
we stop when we obtain a significant result. Note that this sequence of nested hypothesis was
discussed in chapter 11 of the linear model. For k treatments in the one factor ANOVA we have
the following hypothesis.

Hk: ξ k = 0
Hk-1: ξ k-1 = 0 assuming ξ a = 0
.
.
.
etc.

The ANOVA table is given below

Source DF

ξ k (contrast 1) 1

ξ k-1 given ξ k = 0 1
   (contrast 2)
. .
. .
. .
Error N-k

Total N-1

The calculations of Sums of Squares, degrees of freedom etc. are identical to the previous
section describing the 1-Factor design.
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Table 14.1 Table of Coefficients of orthogonal polynomials

a Polynomial Coefficients

3 Linear -1        0         1
Quadratic  1       -2         1

4 Linear -3       -1         1         3
Quadratic  1       -1        -1         1
Cubic -1        3        -3         1

5 Linear -2       -1         0         1        2
Quadratic  2       -1        -2        -1        2
Cubic -1        2         0        -2        1
Quartic  1       -4         6        -4        1

Note that a refers to the number of treatments.

14.10 Example

Grant, D. and Schiller, J., Generalization of the Conditioned Galvanic Skin Response to
Visual Stimuli, J. Exp. Psychology, 1953, 46, 309-313 examined the conditioning of the Galvanic
Sking Response (GSR) to visual stimuli. The unconditioned stimulus was electric shock; the
conditioned stimulus was a rectangle of white light. Seven stimuli were employed at heights of 9,
10, 11, 12, 13, 14 and 15 inches. 14 people were conditioned in each of the 7 stimuli groups for a
total of 98 people. The people were then exinguished with a different stimulus and the
magnitudes of the GSR in log-conductance units was recorded. The data are given below.

Individual GSR Magnitudes in Log-Conductance Units
For the Various Lengths of the Test Light

9 10 11 12 13 14 15

1.57 8.00 3.83 1.02 11.24 3.48 4.61
.00 4.58 7.23 2.43 4.63 3.63 2.04
1.20 .00 .48 .00 3.20 8.79 3.90
.95 2.39 7.25 5.69 5.24 2.67 5.63
2.24 2.31 6.97 2.84 2.67 2.22 3.72
2.60 .54 4.22 1.58 1.61 .00 3.62
2.50 2.31 1.20 3.97 3.97 .00 .00
3.29 3.62 2.89 6.78 5.87 3.63 .95
1.15 1.61 1.80 3.72 3.72 .00 6.12
.00 1.89 6.11 7.84 3.08 3.28 9.01
.75 .37 4.65 1.22 1.54 1.29 1.61
.95 .00 1.74 7.15 1.13 3.72 3.72
1.03 1.53 1.60 4.49 2.89 2.69 6.78
3.11 7.91 10.35 5.26 3.31 3.63 .15

Totals 21.34 37.06 59.87 54.09 54.10 39.03 51.86
Means 1.52 2.65 4.28 3.71 3.86 2.86 3.70
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There are seven levels to the HEIGHT factor therefore 7-1 = 6 degrees of freedom
available for contrasts. The following table of orthogonal polynomials is obtained from Appendix
A.

Orthogonal Coefficients

Height 9 10 11 12 13 14 15 ∑ 2
iζ

Linear ξ1 -3 -2 -1  0  1  2 3  28
Quadratic ξ2  5  0 -3 -4 -3  0 5  84
Cubic ξ3 -1  1  1  0 -1 -1 1    6
Quartic ξ4  3 -7  1  6  1 -7 3 154
Quintic ξ5 -1  4 -5  0  5 -4 1   84
Sextic ξ6  1 -6 15 -20 15 -6 1 924

Performing the calculations described in the previous 1-Factor design section gives the
following ANOVA table.

Source DF SS MS F P

Between heights 6 74.80 12.47 2.14 .056
Linear 1 21.47 21.47 3.69 .06
Quadratic 1 28.75 28.75 4.94 .03
Cubic 1 13.22 13.22 2.27 .14
Quartic 1 5.20 5.20 .89 .35
Quintic 1 .09 .09 .02 .90
Sextic 1 6.08 6.08 1.04 .31

Error 91 529.41

Total 97

One sequentially tests from the highest order polynomial (in this example, sextic) and
continues to test lower orders of polynomial if the higher is not significant. The data in this
example clearly support a quadratic trend to the data. F(1,91) = 4.94, p < .05. A plot of the means
is given below
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The equation of the quadratic can now be obtained using formulas provided by Fisher and
Yates or using the polynomial regression techniques used previously.

14.11 COMPUTER IMPLEMENTATION

The following commands will implement the one way ANOVA analysis described above
using the MANOVA procedure in SPSS. Note that the only changes to the MANOVA procedure
learned previously in section 14.5 are the contrasts necessary for a trend analysis.

Like the examples outlined in 14.5, you have two choices regarding how to enter in your data
when running a syntax program:

1. If you want to enter the data directly into the syntax window, please follow these steps:
a) Click File on the menu bar, then New, followed by Syntax. This series of clicks

will open a SPSS Syntax Editor window. Type the following commands into the
Syntax Editor. Be sure to type the Syntax exactly as you see it in the picture
provided below (i.e., use the appropriate case, spaces between words, etc.).
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b) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

2.   If you prefer to enter you data in separately from your syntax, please follow these
steps:
a) Open up SPSS and enter your data into the Data Editor (the main data page).

Your data and a picture of the data editor have been provided below:
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b) Now you can enter your commands into the Syntax Window. Click File on the
menu bar, then New, followed by Syntax. This series of clicks will open a SPSS
Syntax Editor window. Type the following commands into the Syntax Editor. Be
sure to type the Syntax exactly as you see it in the picture provided below (i.e.,
use the appropriate case, spaces between words, etc.).
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c) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

The means are output for each height and given below.

Combined Observed Means for HEIGHT 
 Variable .. LGSR 
        HEIGHT 
             1        WGT.     1.52429 
                    UNWGT.     1.52429 
             2        WGT.     2.64714 
                    UNWGT.     2.64714 
             3        WGT.     4.27643 
                    UNWGT.     4.27643 
             4        WGT.     3.85643 
                    UNWGT.     3.85643 
             5        WGT.     3.86429 
                    UNWGT.     3.86429 
             6        WGT.     2.78786 
                    UNWGT.     2.78786 
             7        WGT.     3.70429 
                    UNWGT.     3.70429 
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The fine ANOVA table is given below. Begin testing with the highest order polynomial
(HEIGHT(6) F=.80, p=.372) and continue until a significant effect is detected. Stop testing at the
(HEIGHT(2)) term since it is the highest order significant term (at 〈=.05), F(1,91) = 5.37, p =
.023. The trend is therefore quadratic.

The crude ANOVA table is given below. Note that the HEIGHT variable is significant, F(6,91) =
2.22, p = .048.

The plot of case number vs. standardized ei looks reasonable displaying a band pattern.

Tests of Significance for LGSR using UNIQUE sums of squares 
 Source of Variation          SS      DF        MS         F  Sig of F 
 
 WITHIN+RESIDUAL          530.61      91      5.83 
 HEIGHT(1)                 20.54       1     20.54      3.52      .064 
 HEIGHT(2)                 31.30       1     31.30      5.37      .023 
 HEIGHT(3)                 14.02       1     14.02      2.40      .124 
 HEIGHT(4)                  7.23       1      7.23      1.24      .268 
 HEIGHT(5)                   .03       1       .03       .01      .940 
 HEIGHT(6)                  4.69       1      4.69       .80      .372 
 
 (Model)                   77.83       6     12.97      2.22      .048 
 (Total)                  608.44      97      6.27 
 
 R-Squared =           .128 
 Adjusted R-Squared =  .070 

Tests of Significance for LGSR using UNIQUE sums of squares 
 Source of Variation          SS      DF        MS         F  Sig of F 
 
 WITHIN+RESIDUAL          530.61      91      5.83 
 HEIGHT                    77.83       6     12.97      2.22      .048 
 
 (Model)                   77.83       6     12.97      2.22      .048 
 (Total)                  608.44      97      6.27 
 
 R-Squared =           .128 
 Adjusted R-Squared =  .070 
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The normal probability plot is reasonable, since it approximates a line, however there is a slight
bend in it.

Dependent variable: LGSR
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SPSS has built into its software some common contrasts which we will use in future chapters.
Click here for a summary of the types of contrasts associated with each SPSS command.

14.12 SAS COMPUTER IMPLEMENTATION

An SAS program to implement the above trend analysis is given below.

DATA TREND;
INPUT HEIGHT LGSR;
CARDS;
1 1.57
1 .00
1 1.20
..
..
..
7 .15
PROC GLM;
CLASS HEIGHT;
MODEL LGSR = HEIGHT;
MEANS HEIGHT/;

Normal Q-Q Plot of Residuals of LGSR
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CONTRAST ’LINEAR’ HEIGHT -3 -2 -1 0 1 2 3;
CONTRAST ’QUADRATIC’ HEIGHT 5 0 -3 4 -3 0 5;
CONTRAST ’CUBIC’ HEIGHT -1 1 1 0 -1 -1 1;
CONTRAST ’QUARTIC’ HEIGHT 3 -7 1 6 1 -7 3;
CONTRAST ’QUINTIC’ HEIGHT -1 4 -5 0 5 -4 1;
CONTRAST ’SEXTIC’ HEIGHT 1 -6 15 -20 15 -6 1;
OUTPUT OUT=RESIDS P=YHAT R=RESID;
PROC PLOT;
PLOT RESID*(YHAT,CRIME);
PLOC UNIVARIATE PLOT NORMAL;
VAR RESID;

14.13 Exercises

1. Kas, K. and Dember, W., Effects of Size of Ring on Backward Masking of a Disk by a
Ring, Psychonomic Science, 1973, 2, 15-17, studied backward masking. If a black disk
appears for a short time, followed by a ring where the inner edge corresponds to the
outside of the disk, you may never perceive the disk, only the ring. The authors
investigated ring thickness and how it affected perception. The data for 20 people is
based on the Kas study and are listed below.

Ring Thickness (mm)
 0                               .25                             .5                             1.0                             1.5

4.69 9.17 26.21 27.14 27.73
13.02 16.35 21.56 19.52 19.93
4.05 13.17 16.98 27.25 27.02
5.73 15.25 18.01 20.92 29.85

a. Perform the ANOVA analysis. Comment on the distribution of the residuals.

b. Use orthogonal polynomials to determine the type of trend exhibited by the data.
Omit the .25 results for this analysis. Report your results in an ANOVA table.

2. Sheffield, V., Extinction as a Function of Partial Reinforcement and Distribution of
Practice, J. Exp. Psychol. 1949, 39, 511-526, examined how learning was affected by
percentage of reward in rats. Four treatments, percentage of trials rewarded (25%, 50%,
75% and 100%) were considered. The dependent variable was the number of extinction
trials required under each. The data for 40 rats, 10 per treatment is based on Sheffield’s
study.
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       Reward
25%                50%              75%             100%

10 12 14 9
14 22 18 21
18 20 21 18
20 16 10 17
10 9 13 10
9 15 9 15
15 18 14 11
13 17 14 16
8 13 9 14
9 14 12 7

a. Perform the appropriate ANOVA analysis.

b. Determine the type of trend displayed by the data. Report your results in an ANOVA
table.
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