14,

INTRODUCTION TO FACTORIAL DESIGNS
14.1 FACTORIAL DESIGNS

By a factor we mean a controllable input. We will denote factors by capital letters A, B,
C... Each factor can take a certain number of levels or values in an experiment.

We denote the levels

A: Ay, Ay, LA,
B: Bl, Bz,..., Bb

A combination of levels, one from each factor in the experiment is called a treatment and denoted
Ai1 Biz Ciz

An experiment in which each possible treatment is applied is called a completely crossed design
or simply a factorial design.

For example we have 3 factors A, B, C where: A takes a levels,
B takes b levels,
C takes c levels.

Then there are abc possible treatments. If treatment A;j; Bi; Cis is applied nj; iz i3 times then we
have a total of

b c
z z r]i1i2i3
I, =1 1; =1

1 5=1 5

-\,

1

treatment applications.
Rather than running the full 3-factor design we could think of running 3 one factor designs.
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For this we would require only a + b + ¢ < abc treatments. This would certainly be much
easier. We note, however, that if we did this we would have no way of assessing whether or not
the factors interacted. Thus the importance of factorial designs in general. Typically each
treatment is applied more than once. If each treatment is applied the same number of times we
have a balanced design. Balance greatly simplifies computations and interpretations and should
be arranged if possible.

Now suppose we have k factors and factor i takes m; levels. Then we have m; m,...my
treatments and suppose treatment (iy, iy,..., Ix) is to be applied nj; ip.. i times.

m, my
Then we require N = Z z Niis ik
L= I

elements in our population IT so that all treatments can be applied.

The elements of IT are usually referred to as experimental units in this context.

We then randomly assign units to treatments. This process is called complete
randomization and ensures that we have random samples from each of the m; m,...my frequency
distributions determined by the treatments.

We note that formally any inferences or conclusions we read apply only to the population
IT unless the elements of [T were themselves a random sample from some larger population. In

practical contexts, however, psychologists often make such an extrapolation whether justified or
not.

14.2 THE 1-FACTOR DESIGN

Suppose we have 1 factor A: Ay,..., A, that has a levels. This gives raise the linear model

[E[y] =BiXi + ... + BaXd

where X; =1 if A; is applied and is zero (0) otherwise.

If we apply Ain; times we obtain a N =n; + n, + ... + n, dimensional data vector y, where
the first n; components are from A, etc.

Then the full model takes the form

E[y] = XB
= (X1,..+, Xa)P

where X; has 1’s in the n; + ... + ni; +1to ny + ... + n; positions and has 0’s elsewhere. The least-
squares estimator of B is given by
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b=(X"X)" X’y

1 na
= (7 7a)

T.
where T; = the total of all the observations from an application of Ajand Y, = —.
i

Note that the psychologist has defined the model and has collected data on the system.

¢ feast squares estimator, b of 3, 1S the mean of the treatment, V|

This gives the following ANOVA table:

Source DF SS MSE F
Model a a T2 2 MSM
>t > sz
1=1 nl ni
a
7
Error N-a , -|-i 2 S
yy- -
1=1 ni
Total N Y’y

Further the F test on a and N-a degrees of freedom tests Ho: p = 0; i.e. all the means are
equal and they are equal to zero. This is a hypothesis that is seldom of interest to psychologists.
Typically psychologists are interested in testing if there are treatment differences, not that the
treatment means are equal to zero.

14.3 TEST FOR NO TREATMENT DIFFERENCES

A more common hypothesis that we wish to test is

Ho: B1=Bo=... =B

i.e. there are no treatment differences or equivalently no cause-effect relationship exists between
A and the response variable. Note that this is a different hypothesis than that tested in the
previous section.

This hypothesis corresponds to

Ho: E[y] O X, B, given that E[y] O X; B;
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00

where X, = [J[Jand X is the design matrix for the full model.

We obtain the following ANOVA table using the ANOVA technique previously
discussed in Chapter 11.

Source DF MSE F
Model Xz 1 2
i
Model X, —Model X, a-1 T> G2 HMSDH
(difference) Z n _NH 0s> O
(a-1)
Error (Model X;) N-a s’
Total N

where G is the grand total of all the observations.
We test Hg by comparing F with the F(a-1, N-a) distribution.

This table is usually presented as follows in introductory textbooks on statistics and
computer program output.

ANOVA (one way) DF MSE F

Between Groups a-1 MSB MSB
MSW

Within Groups N-a MSW

Total (Removing the mean) N-1

The difference in models (Model X, - Model X5) is referred to as Between Group
variation whereas the error or residual component of the model is referred to as Within Group
variation.
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14.4 CONTRASTS

Definition of an Orthogonal matrix

1) For any two rows, the sum of products of corresponding entries is zero.

2) For any row, the sum of the squares of the entries is 1.

Example 1 Consider the matrix A below.

o1 1 10

_u _-U
A—Dl 2 3D

HS5 4 1H

Multiply row 1 and row 2 of A, in order to verify rule 1 above.
n*r’=1*%1+1*2+1%*(=3)

=1+2-3

=0
Continue with row 2 and row 3.
1'2*1'3’:1 *(—5)+2*4+(—3)* 1

=5+8-3

=0

for practice, verify the product of row 1 and 3 equals zero.

To satisfy this second requirement divide each row by the square root corresponding sum
of squares of each row.

i.e. n*r’=1*1+1*1+1%1

=1+1+1
=3

thus the divisor is \/5 for row 1.

For row 2 we obtain

¥ =17422+ (=3)°
=1+4+9
=14

thus the divisor is \/ﬁ for row 2 and similarly
the divisor is +/42 for row 3.

Thus the matrix C below is an orthogonal matrix
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01 1 10
SRR
c_nl 2 -3
0/14 14 140
E—s 4 1%
V42 V42 Jan

For practice, check to see that C is an orthogonal matrix - it satisfies 1) and 2). You will soon see
that SPSS does not require the divisor we have introduced. We have introduced the divisor so that
our hand calculations are complete.

Now suppose C is orthogonal and C; - the first row of Cis (1 1 ... 1) with divisor \/E and we
wish to make inferences about the contrasts o= Cp,
where our model is

Typically there is a natural ordering to these contrasts and we test sequentially.
Ho: 0,=0
Ho: a1 = 0 assuming a, = 0

etc.

and stop when we obtain a significant result. We obtain the following ANOVA table.

Source DF
o, = 0 (contrast 1) 1
o, - 1 =0 (contrast 2) 1
Residual (Error) N-a
Total N

Note that the sums of squares (SS) for each contrast is na;> where
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Orthogonal contrasts are important since the mathematical property of orthogonality
gives the set of orthogonal contrasts described in the matrix C mutual statistical independence.
The contrasts also partition the Treatment variation into independent components that when
summed give the Treatment variation. Research can be designed with a specific set of contrasts in
mind or as we will see in Chapter 19 psychologists can examine treatments without a set of

prescribed contrasts.

Model (treatment) Contrasts Sums of Squares
Contrast 1 of B's SS,
Model has Contrast of B's SS,
B,B, ... 5
with a-1 df
in
ANOVA
Contrast a-1

Of Bs Ssa—l

Total a-1 contrasts Model (Treat) SS
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(d) Example

Gebotys and Roberts, Canadian Journal Behavioural Science (1987) 19, p 479, examined
the public’s attitude towards sentencing by giving each subject a short story describing a crime
and then asking the subject to sentence the offender. The data below are based on this study.
There are three treatment/crime conditions; break and enter (A,), robbery (A;) and manslaughter
(A3). Three subjects are randomly assigned to each treatment for a total of 9 subjects and a
sentence, in months, is recorded.

A reading of the literature indicates that there may be a difference between the mean sentence of
A, and the mean sentence of A; and then if the difference doesn’t exist, it seems reasonable to test

for a difference between the mean of A, and the common value (average value) for A, and A;.

The data, three observations per treatment, with totals and means is given below.

A;: 38.5,39.8,37.2 T, =1155 y, =385

A;: 40.1,41.5,39.3 T,=120.9 y, =403

As:40.1,43.2,42.2 T3=1255 y, =41.833
G=361.9

The following calculations are necessary for the construction of the ANOVA table.

2
GW =14552.40111

3T T’ G2
Z— =14569.10111 z——— =16.7 v’y = 14579.97
&on

To test if sentencing is equivalent for the three types of crime we obtain the following table.

Source DF SS MS F
Mean 1 14552.40111 14552.40111
Treatments 2 16.7 1.81 4.61
Error 6 10.87 8.35

Total 9 1457997111

If we test at a = .05, the critical value for F(2, 6) = 5.79 therefore we cannot reject Ho: B = B, =
[3; that the three means are equal. The observed level of significance or p value is equal to about

.06.
In other words, we have marginal evidence against the hypothesis of no treatment differences.

The experiment was designed with the following two orthogonal contrasts in mind

1) the mean of A, vs. the mean of A;
2) the mean of A; vs. the mean of A; and A;
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This leads to the contrast matrix

g1 1 10

3 3 \BE

c-n02 -1 -lpg
EUE\/EJEE
1 -1

00 —— ——0O
0 2 20

and contrasts for the population

01 1 10
5 3 Bpmpo
a=CB=D2— __1 iﬂ%g
|:| 2
SRRk
O 2 20
0(B, + B, Ba)D
NE)
_ azﬁl _Bz _B3)B
0O Je O
5 (B.-B,) B
5 2 @

Now since N; = N, = N3, let the sample size per treatment equal n. We calculate contrasts for the
sample using totals or averages.

HT»+ 2+TH

. ET+T +T3E
1; ‘ﬁ ; 33
LT -T, T
*H 36

ELLH

032 O

Remember that the SS for the contrast is nai2 where n = 3 and a; is calculated above.
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Then the relevant ANOVA table is given by

Source DF MS F
Mean 1 14552.40111
Ajvs. Ay and A; 1 13.18 7.27
Ao vs. Az 1 3.53 1.95
Error 6 1.81
Total 9

Note that the SS for Treatment has been partitioned into two orthogonal components each with
one degree of freedom which, when added together, give the Treatment Sums of Squares. At a =
.05 (critical value for F(1,6) = 5.99) we have no evidence against the null hypothesis of no
difference between A, vs. A;, however there is a significant difference between A, vs. Ay, A;. This
is the case since the overall F test is a pooling of the two contrasts. Since one contrast was
significant and the other not, the pooling gave results approaching significance in the overall test.
If an experiment has been designed with specific orthogonal contrasts in mind, then researchers
can proceed to test these hypothesis even though the overall pooled test may be non significant,
as is the case in our example.

A 95% C.I. for g; is given by

S
ai tps(6) —

on

where s is the square root of the MS Error value (with 6 df) and n is the number of observations
a
per treatment (i.e. 3). Since a = .05 the t value we look up is £y =.025 with 6 df which is equal to

2.44.

For example for a, we have

JV1.81
Bt ——
V3

= a,+1.895
— .09+ 1.895
= (-3.99, 0.195)

(2.44)

A 95% confidence interval for a, the difference between the average of A, and A; vs. A, is (-3.99,
-0.195).

14.5 SPSS COMMANDS

The following commands will implement the above one-way ANOVA analysis using the
MANOVA procedure in SPSS. The program is given below.
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You have two choices regarding how to enter in your data when running a syntax
program: 1) you may enter the data right into the syntax window, or 2) you may enter the data
into the data editor and type the syntax separately.

If you want to enter the data directly into the syntax window, please follow these steps:
a) Click File on the menu bar, then New, followed by Syntax. This series of clicks
will open a SPSS Syntax Editor window. Type the following commands into the
Syntax Editor. Be sure to type the Syntax exactly as you see it in the picture
provided below (i.e., use the appropriate case, spaces between words, etc.).

B Ch14.Syntax1.5PS - SPSS Syntax Editor = |[T)(X]
File Edit W%iew #Analvze Graphs Utlties Run Window  Help

=|6|S| = o Die|b| M | 2fF ¢

data list/ crime 1| sentence 3-6

begin data

1384

139.8

137.2

2401

2415

23493

3401

3432

3427

end data

Pl AR,
sentence BY crime (1, 3)
FCOMTRAST (crimel=SPECIAL (1 11

2-141
a1-n

PARTITION (crime) = (1, 1)
fDESIGHN= crime (17 crime (2]
fPRINT HOMOGEMNEITY (BARTLETT COCHRARN)
MOPRINT FPARAMESTIM)
fPLOT CELLPLOTS
RESIDUALS CASEWISE PLOTS
FOMEANS TABLES [ crime )
PMEANS TABLES [ crime )
METHOD=UMIQUE /ERROR WITHIN+RESIDUAL.

? SP55 Processor s ready

b) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

If you prefer to enter you data in separately from your syntax, please follow these steps:

a) Open up SPSS and enter your data into the Data Editor (the main data page).
Your data and a picture of the data editor have been provided below:
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Ch14.data.sav - SPSS Data Editor M=1E3

File Edit WYiew Data Transform Analyze Graphs  Ukilities  Window  Help
=S| =] || 5 =k ol Flr= BEE v 2
1: crime 1
CHme sentence | war | war | war | "."EII':
1] 1.00 38.50
2 1.00 39.80
i 1.00 3720
4 2.00 4010 e
o 2.00 41.50
B 2.00 39.30
7 3.00 4010
a 3.00 43.20
9 3.00 4220
10
11
12
13
14 -
' Data View £ Variable View f IK 4»|_‘
SPS5 Processar is ready

b) Now you can enter your commands into the Syntax Window. Click File on the
menu bar, then New, followed by Syntax. This series of clicks will open a SPSS
Syntax Editor window. Type the following commands into the Syntax Editor. Be
sure to type the Syntax exactly as you see it in the picture provided below (i.e.,
use the appropriate case, spaces between words, etc.).
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B Ch14.Syntax1.5PS - SPSS Syntax Editer  [= |[B][]
File Edit Wiew Analvze Graphs Uklities Fun Window  Help

= W& = o O=|b| M | 2fF ¢

Pl AR,
sentence BY crime (1, 3)
[CONTRAST (crime)=SPECIAL (1

2
o

11

-1 -1

1-1)
PARTITION (crime) = (1, 1)

DESIGMN= crime (1) crime 2)

PRINT HOMOGENEITY (BARTLETT COCHRARM)
MOPRINT PARAMESTIM)

/PLOT CELLPLOTS

/RESIDUALS CASEWISE PLOTS

OMEANS TABLES [ crime )

PMEANS TABLES ( crime )
METHOD=UNIQUE /ERROR WTHIN+RESIDUAL.

? SPS5 Processor is ready

¢) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

The command statement is MANOVA. On the same line we have the dependent measure
(y), sentence followed by the factor, crime, with three levels coded as either 1, 2, or 3, where 1 is
the minimum value and 3 is the maximum value. The contrast statement is identical to the
contrast matrix in form however, note that in the computer implementation it is not necessary to
provide the divisor for the contrast. This is automatically calculated by the computer. The
partition statement includes (1,1) two ones since there are 2 degrees of freedom for the crime
factor (or two (2) orthogonal contrasts) denoted crime (1), and crime (2) in the Decision
statement.

The coarse ANOVA table is listed below which tests the hypothesis

Ho: [31 = [32:[33
Ha: Bi# B2 # B3

Note that the B’s refer to the population means, whereas the b’s refer to the sample means. Since
F(2,6)=4.61, p =.061, we are unable to reject the null hypothesis at a = .05.
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Tests of Significance for SENTENCE using UNI QUE suns of squares

Source of Variation SS DF VS F Sig of F
W THI N+RESI DUAL 10. 87 6 1.81

CRI ME 16.70 2 8.35 4.61 . 061
( Model ) 16.70 2 8.35 4.61 . 061
(Total) 27.57 8 3.45

R- Squared = . 606

Adj usted R-Squared = .474

The means are given below for each of the three levels of the crime factor.

Adj usted and Estinmated Means
Variabl e .. SENTENCE

CELL bs. Mean Adj . Mean Est. Mean Raw Resid. Std.
Resi d.
1 38. 500 38. 500 38. 500 . 000 . 000
2 40. 300 40. 300 40. 300 . 000 . 000
3 41. 833 41. 833 41. 833 . 000 . 000

The fine analysis of variance table, including the two contrasts referred to as CRIME(1)
and CRIME(2) is given below. The contrast of A; vs. A; + A, is significant, F(1, 6) =7.27, p=
.036, whereas the A, vs. A; contrast is not, F(1, 6) = 1.95, p =.212. Note that the overall test given
in the coarse ANOVA was not significant however one of the orthogonal contrasts was
significant.

Tests of Significance for SENTENCE usi ng UNI QUE suns of squares

Source of Variation SS DF VS F Sig of F
W THI N+RESI DUAL 10. 87 6 1.81

CRI ME( 1) 13.18 1 13.18 7.27 . 036
CRI ME( 2) 3.53 1 3.53 1.95 .212
( Model ) 16. 70 2 8.35 4.61 . 061
(Total) 27.57 8 3.45

R- Squared = . 606

Adj usted R-Squared = .474

A casewise plot of residuals is given below. The standardized residual column does not
display any large (greater than 3) residuals.
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Cbserved and Predi cted Val ues for Each Case
Dependent Vari abl e.. SENTENCE

Case No. Observed Predicted Raw Resid. Std Resid
1 38. 500 38. 500 . 000 . 000
2 39. 800 38. 500 1. 300 . 966
3 37. 200 38. 500 -1.300 -. 966
4 40. 100 40. 300 -.200 -. 149
5 41. 500 40. 300 1. 200 . 892
6 39. 300 40. 300 -1.000 -. 743
7 40. 100 41. 833 -1.733 -1.288
8 43. 200 41. 833 1. 367 1.016
9 42.200 41. 833 . 367 . 272

The plot of the case number vs. standardized e; has a band pattern that looks reasonable.
Remember a linear model is being fit to the data therefore the techniques used to assess normality
in this experimental design case are identical to what was learned in Part II (Chapters 7 through
13) the Linear Model.

Dependent variable: SENTENCE

15

1.0 1 o o

0.0 4 o

-1.0 1 o

Std Residual

Case Number

The normal probability plot approximates a line which looks reasonable as well.
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Normal Q-Q Plot of Residuals of SENTENCE

15

1.01

-1.0 1

Expected Normal

-15
-15 -1.0 -5 0.0 5 1.0 15

Observed Value

In summary, the one-way ANOVA design uses a linear model where the 8’s of the model
represent the population means . The least squares estimators b are the sample means of the
treatments Y . Contrasts of means are directly linked to the linear model. Residual analysis of the

design is identical to what was learned previously in the Linear Model.
|Click here for the SPSS windows method of analysis and output. |

14.6 SAS COMPUTER IMPLEMENTATION

Listed below is the SAS program that would implement the one-way ANOVA analysis in section
14.4.

DATA OFFENCE;
INPUT CRIME SENTENCE;
CARDS;

1385

3422

PROC GLM;
CLASS CRIME;
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MODEL SENTENCE = CRIME;

MEANS CRIME / BON;

CONTRAST ’A, VS A,’ CRIME 0 1 -1 ;
CONTRAST A, +A; VS A;” CRIME 2 -1 -1 ;
OUTPUT OUT = RESIDS P = YHAT R = RESID;
PROC PLOT;

PLOT RESID*(YHAT,CRIME);

PROC UNIVARIATE PLOT NORMAL;

VAR RESID;

The procedure is called GLM. The CLASS command identifies the independent factor
labeled CRIME in this case. The MODEL statement gives the dependent variable, SENTENCE
and the independent factor CRIME. The means for the CRIME factor are requested in the
MEANS statement as well as Bonferroni pair wise comparisons using the BON option (see
section 14.7 for more information). Contrasts are given and labeled in the CONTRAST statement.
The usual (previously discussed) residual analysis follows the CONTRAST statements.

14.7 PLANNED NON-ORTHOGONAL COMPARISONS

The Bonferroni method is an exact method that is applicable to a wide variety of contrasts.
Psychologists often are in the position in practice of performing non-orthogonal planned
comparisons (other non-planned comparisons are discussed in Chapter 19), including pair wise

comparisons. The basis of the Bonferroni method is that if ® comparisons are to be made each
with confidence

1- =
w

then the probability of making one or more Type I errors is at most a.

For pair wise comparisons of Y; vs. ¥; with equal n for a treatments.

Calculate

[o
Bonf =t i s./—]
200 VN

where,
® = number of pair wise comparisons

If all pairwise comparisons are to be examined then

o- B0 Fl-1p
20 O 2 @O
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where
s =+ MSE

If the mean difference is greater than Bonf then the means differ.

Example
In the previous example we have 3 means, a = 3, the number of total pair wise
o 3(3-1)
comparisons is ® = 2 =3
then 20 =6
where s = /1.81
=1.345
and DFE =6

n = 3 since there are 3 observations per treatment.

if we use o= .05 then
t BiH:t B@H:to‘oom
Rog 06 O

using tables, tgos3 =~ 3.372 with 6df.

2
Bonf  =tp00s3 s \/:
n

=3.372 J/1.81 \/g

=3.703

In other words, a pair of sample means must differ by more than 3.703 to be declared
significantly different. The sample means for the treatments are given below.

A A A;
y 384 40.3 41.8

Since the means do not differ by more than 3.703 there are no differences between the
treatments, using the Bonferroni procedure.
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14.8 Exercises

1. Filby, Y., Szara, S. and Saltzman, B. Magnesium Pemoline Effect on Acquisition and
Retention of Discriminated Avoidance Behavior, Psyconomic Science, 1967, 9, 131-133
examined how drugs improve learning in rats. Three groups were examined; Magnesium
Pemoline (MgPe), d-amphetamine and a placebo. The dependent measure was the speed
that rats learned to avoid shock. The data is given below.

MgPe d-amphetamine Placebo
7 10 11
8 10 55
8 15 55
9 22 59
10 26 80
27 8 80

a. Perform the ANOVA and state your conclusions clearly.

b. Compare the two drug groups in a contrast. Compare the average of the two drug
groups with the placebo. Report your results in an ANOVA table.

c. Are the residuals normal?

2. Grice, G. and Saltz, E. The Generalization of an Instrumental Response to Stimuli
Varying in the Size Dimension, J. Exp.Psychology, 1950, 40, 705. The psychologists
studied the relationship between test area and the number of responses. Four areas were
considered with 15 people within each group. The dependent variable was the number of
responses to 25 test trials.

Area
20 32 50 79
9 22 8 12
19 13 11 4
10 17 2 1
21 20 3 8
10 8 4 14
18 22 6 14
11 12 10 5
18 8 13 8
23 14 15 4
10 9 10 11
10 8 4 3
10 14 10 5
9 13 4 5
10 16 8 4
8 4 1 0
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a. Perform the ANOVA and state your conclusions clearly.

b. Compare the 20 vs. 32 group in a contrast. Compare the 50 vs. 79 groups in a
contrast. Compare the average of the 20 and 32 vs. the average of the 50 and 79 in a
contrast. Write out the contrast matrix for the above. Report your results in an
ANOVA table.

c. Are the residuals normal?

d. Is there a linear, E(y|x) = B; + X relationship between response and area? Display
your results for the design in an ANOVA table.

3. Lowe, R. (1935), in Cochran (1958), gives the amount of fat absorbed by doughnuts
when cooking. The type of fat had 4 levels (1, 2, 3, 4). The data is given below.

Grams of Fat Absorbed per Batch (minus 100 grams)

Fat 1 2 3 4
64 78 75 55
72 91 93 66
68 97 78 49
77 82 71 64
56 85 63 70
95 77 76 68

a. Perform the ANOVA analysis and state your conclusions clearly.

b. Compare F, with F,, F, and F, with F;, and F, and F, and F; with F,. Are the
contrasts orthogonal? Report your results in an ANOVA table and state your
conclusions.

c. Are the residuals reasonable?

4. Jackson, L.M. and Gorassini, D.R. (1989). Journal of General Psychology, 116(4), 333-
343 examined 4 treatments; the result of crossing 2 factors, Suggestibility and Condition
each at two levels. Participants were classified as high or low with respect to hypnotic
suggestibility. Participants also took a creativity test either under hypnosis or in a waking
state/condition. A number of dependent measures were examined and are given below.
Column A gives the four treatments where:

1 = low suggestibility with task motivation
2 = high suggestibility with task motivation
3 = low suggestibility with hypnosis
4 = high suggestibility with hypnosis

The data for the dependent variables is given below for Figural Fluency (H), Verbal
Fluency (E), Self Report Creativity (M) and Column Experience (O).
For each variable (E, H, M, O)

a. Perform a one-way analysis of variance on the four treatments.
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b. Compare via contrasts

1. Treatments 1 and 2 vs. 3 and 4
ii. Treatments 1 and 3 vs. 2 and 4
1ii. Treatments 1 and 4 vs. 2 and 3

c. Interpret each of the above contrasts.
d. Comment on the residuals

e. State your conclusions clearly.

ID A E H M 0] ID A E H M O
1 1 27 7 7 9 31 3 26 3 9 21
2 1 10 2 6 10 32 3 30 5 7 16
3 1 18 4 12 17 33 3 32 6 17 20
4 1 38 4 13 24 34 3 25 6 5 10
5 1 27 3 15 14 35 3 28 4 10 13
6 1 31 3 8 17 36 3 37 1 12 14
7 1 28 4 10 16 37 3 39 5 5 19
8 1 19 3 12 22 38 3 30 7 4 12
9 1 43 2 15 19 39 3 12 5 8 8

10 1 32 3 12 16 40 3 30 9 10 15
11 1 70 5 7 14 41 3 34 5 5 21
12 1 66 5 14 20 42 3 29 4 8 12
13 1 35 4 15 20 43 3 29 4 8 12
14 1 48 6 13 16 44 3 19 3 6 11
15 1 47 5 13 21 45 3 37 5 10 14
16 2 25 1 10 7 46 4 32 6 10 19
17 2 34 6 10 18 47 4 30 6 6 18
18 2 37 3 6 20 48 4 53 7 6 18
19 2 37 4 7 18 49 4 27 4 15 20
20 2 33 2 6 7 50 4 21 10 5 10
21 2 32 3 9 10 51 4 30 8 16 22
22 2 23 2 6 17 52 4 31 10 5 21
23 2 32 5 3 11 53 4 25 4 10 7

24 2 38 8 11 23 54 4 25 4 14 21
25 2 24 5 10 9 55 4 41 4 16 18
26 2 66 7 14 14 56 4 39 4 15 21
27 2 42 4 10 17 57 4 38 10 13 22
28 2 39 10 10 18 58 4 38 4 6 18
29 2 27 6 6 17 59 4 27 4 10 17
30 2 73 7 14 23 60 4 28 10 12 20

14.9 ORTHOGONAL POLYNOMIALS

We have learned how to fit models of the type

|E (y[x) =B1 + Box + B3x2 +...+ kak71|
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which represent polynomials in chapter 8§ where x and y were quantitative variables. In the
simplest situation of the single factor ANOVA; if the X values are quantitative and equally
spaced the polynomial curve fitting can be easily accomplished with the use of contrasts.

The polynomial model above can be rewritten as
y’ = Ao(ﬁo + AIE_,I + ...+ Ak{;k

where each & is a polynomial of degree j, and all polynomials such as & and & are orthogonal.
Fisher and Yates (1953) have shown that the advantage of writing the model this way is that
polynomials of higher degree can be added which are orthogonal (independent) of the ones
already considered. The highest order polynomial is tested first and the psychologist stops when
the corresponding contrast is significant. This procedure is very efficient and useful in finding the
degree of the polynomial model needed for the psychological system provided X is quantitative
and equally spaced.

Fisher and Yates (1953) have provided tables of contrasts for polynomial models. A brief
table of coefficients is given in table 14.1. Psychologists sometimes refer to this procedure of
curve fitting as a trend analysis.

The natural ordering of highest order contrast to lowest order is tested sequentially and
we stop when we obtain a significant result. Note that this sequence of nested hypothesis was
discussed in chapter 11 of the linear model. For k treatments in the one factor ANOVA we have
the following hypothesis.

HkI E_}k =0
Hy.1: &1 =0 assuming &, =0

etc.

The ANOVA table is given below

Source DF
& k (contrast 1) 1
Exagiven & =0 1

(contrast 2)

Error N-k

Total N-1

The calculations of Sums of Squares, degrees of freedom etc. are identical to the previous
section describing the 1-Factor design.
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Table 14.1 Table of Coefficients of orthogonal polynomials

a Polynomial Coefficients

3 Linear -1 0 1
Quadratic 1 -2 1

4 Linear -3 -1 1 3
Quadratic 1 -1 -1 1
Cubic -1 3 -3 1

5 Linear -2 -1 0 1 2
Quadratic 2 -1 -2 -1 2
Cubic -1 2 0 2 1
Quartic 1 -4 6 -4 1

Note that a refers to the number of treatments.
14.10 Example

Grant, D. and Schiller, J., Generalization of the Conditioned Galvanic Skin Response to
Visual Stimuli, J. Exp. Psychology, 1953, 46, 309-313 examined the conditioning of the Galvanic
Sking Response (GSR) to visual stimuli. The unconditioned stimulus was electric shock; the
conditioned stimulus was a rectangle of white light. Seven stimuli were employed at heights of 9,
10, 11, 12, 13, 14 and 15 inches. 14 people were conditioned in each of the 7 stimuli groups for a
total of 98 people. The people were then exinguished with a different stimulus and the
magnitudes of the GSR in log-conductance units was recorded. The data are given below.

Individual GSR Magnitudes in Log-Conductance Units
For the Various Lengths of the Test Light

9 10 11 12 13 14 15
1.57 8.00 3.83 1.02 11.24 3.48 4.61
.00 4.58 7.23 2.43 4.63 3.63 2.04
1.20 .00 48 .00 3.20 8.79 3.90
.95 2.39 7.25 5.69 5.24 2.67 5.63
2.24 2.31 6.97 2.84 2.67 222 3.72
2.60 .54 4.22 1.58 1.61 .00 3.62
2.50 2.31 1.20 3.97 3.97 .00 .00
3.29 3.62 2.89 6.78 5.87 3.63 .95
1.15 1.61 1.80 3.72 3.72 .00 6.12
.00 1.89 6.11 7.84 3.08 3.28 9.01
5 37 4.65 1.22 1.54 1.29 1.61
.95 .00 1.74 7.15 1.13 3.72 3.72
1.03 1.53 1.60 4.49 2.89 2.69 6.78
3.11 7.91 10.35 5.26 3.31 3.63 15
Totals 21.34 37.06 59.87 54.09 54.10 39.03 51.86
Means 1.52 2.65 4.28 3.71 3.86 2.86 3.70
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There are seven levels to the HEIGHT factor therefore 7-1 = 6 degrees of freedom
available for contrasts. The following table of orthogonal polynomials is obtained from Appendix

A.

Orthogonal Coefficients

Height 9 10 11 12 13 14 15 ZZiZ
Linear &, -3 -2 -1 0 1 2 3 28
Quadratic &, 5 0 -3 -4 -3 0 5 84
Cubic &; -1 1 1 0 -1 -1 1 6
Quartic & 3 -7 1 6 1 -7 3 154
Quintic &; -1 4 -5 0 5 -4 1 84
Sextic & 1 -6 15 -20 15 -6 1 924

Performing the calculations described in the previous 1-Factor design section gives the

following ANOVA table.

Source DF SS MS F P
Between heights 6 74.80 12.47 2.14 .056
Linear 1 21.47 21.47 3.69 .06
Quadratic 1 28.75 28.75 4.94 .03
Cubic 1 13.22 13.22 2.27 .14
Quartic 1 5.20 5.20 .89 .35
Quintic 1 .09 .09 .02 .90
Sextic 1 6.08 6.08 1.04 31
Error 91 529.41

Total 97

One sequentially tests from the highest order polynomial (in this example, sextic) and
continues to test lower orders of polynomial if the higher is not significant. The data in this
example clearly support a quadratic trend to the data. F(1,91) =4.94, p <.05. A plot of the means

is given below
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The equation of the quadratic can now be obtained using formulas provided by Fisher and
Yates or using the polynomial regression techniques used previously.

14.11 COMPUTER IMPLEMENTATION

The following commands will implement the one way ANOVA analysis described above
using the MANOVA procedure in SPSS. Note that the only changes to the MANOVA procedure
learned previously in section 14.5 are the contrasts necessary for a trend analysis.

Like the examples outlined in 14.5, you have two choices regarding how to enter in your data
when running a syntax program:

1. If you want to enter the data directly into the syntax window, please follow these steps:
a) Click File on the menu bar, then New, followed by Syntax. This series of clicks
will open a SPSS Syntax Editor window. Type the following commands into the
Syntax Editor. Be sure to type the Syntax exactly as you see it in the picture
provided below (i.e., use the appropriate case, spaces between words, etc.).
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B Ch14.part2.Syntax.SPS - SPSS Syntax Editor =13
File Edit wew #analyze Graphs Utlties Fun  Window  Help

=68 B o O=|b| o | 9 F ¢

data list/ height 1 lgsr 3-7
begin data

11.57

1.00

11.20

Fa72
7 B.73
7 .15
end data
BAAM DN A,
lgst BY height (1, 7)
CONTRAST (height)=SPECIAL (1111111
3210
50-3-

/PARTITION (heighti = (1,1,1,1,1, 1)
/DESIGN= height (1] height (2) height (3) height (4) height (5) height (&)
JPRINT HOMOGENEITY (BARTLETT COCHRARN)

/NOPRINT PARAM{ESTIM

/PLOT CELLPLOTS

/RESIDUALS CASEWISE PLOTS

JOMEANS TABLES ( height )

/PMEANS TABLES { height )

/METHOD=UNIQUE /ERROR WITHIN+RESIDUAL.

B SPSS Processor is ready

b) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

2. If you prefer to enter you data in separately from your syntax, please follow these
steps:
a) Open up SPSS and enter your data into the Data Editor (the main data page).
Your data and a picture of the data editor have been provided below:
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Ch14.part2.data.sav - SPSS Data Editor M=E3

File Edit WYiew Data Transform Analyze Graphs  Utilities  Window Help
QS| ®| || 5 =k Ml Flr= BEE s @
43 : height 4
height | ly=r | war | war | war | =
1 1.00 1.87
2 1.00 00
3 1.00 1.20 o
4 1.00 S5
5 1.00 224
B 1.00 260
7 1.00 2480
g 1.00 3.29
9 1.00 1.15
10 1.00 00
11 1.00 7h
12 1.00 S5
13 1.00 1.03
14 1.00 3.1
15 2.00 a.00
1B 2.00 458
17 2.00 00
18 2.00 239
19 2.00 2
20 2.00 Ad -
Y Data View £ Variable View /| 4 4»|_‘
SPS5 Processor is ready

b) Now you can enter your commands into the Syntax Window. Click File on the
menu bar, then New, followed by Syntax. This series of clicks will open a SPSS
Syntax Editor window. Type the following commands into the Syntax Editor. Be
sure to type the Syntax exactly as you see it in the picture provided below (i.e.,
use the appropriate case, spaces between words, etc.).
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B=1E

B Ch14.part2.5yntax.5PS - 5P55 Syntax Editor
File Edit W%iew #Analvze Graphs LUtilities

=68 B o Ok 4 | 2fFf

BAAM DA,
lgsr BY height (1, 7)

Run  ‘Window Help

11111

JCONTRAST (height)=SPECIAL (1

3
50-3-

/PARTITION (heighti = (1,1,1,1,1, 1)
/DESIGN= height (1] height (2) height (3) height (4] height (5) height (8)
/PRINT HOMOGENEITY (BARTLETT COCHRARN)
/NOPRINT PARAM{ESTIM

fPLOT CELLPLOTS

/RESIDUALS CASEWISE PLOTS
JOMEANS TABLES ( height )
/PMEANS TAELES { height )
/METHOD=UNIQUE /ERROR WITHIN+RESIDUAL.

? SPS5 Processar is ready

c) When you have completed typing the above commands into the Syntax window,
click on Run, and then All. Your output will then be available for you to view.

The means are output for each height and given below.

Conbi ned Cbserved Means for HElI GHT
Variable .. LGSR
HEI GHT
1 WGT, 1.52429
UNWGT. 1.52429
2 WGT. 2.64714
UNWGT. 2.64714
3 WGT, 4.27643
UNWGT. 4.27643
4 WGT. 3. 85643
UNWGT. 3. 85643
5 WGT. 3. 86429
UNWGT. 3. 86429
6 WGT, 2.78786
UNWGT. 2.78786
7 WGT. 3.70429
UNWGT. 3.70429
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The fine ANOVA table is given below. Begin testing with the highest order polynomial
(HEIGHT(6) F=.80, p=.372) and continue until a significant effect is detected. Stop testing at the
(HEIGHT(2)) term since it is the highest order significant term (at £.05), F(1,91)=5.37,p=
.023. The trend is therefore quadratic.

Tests of Significance for LGSR using UNI QJE suns of squares

Source of Variation SS DF VS F Sig of F
W THI N+RESI DUAL 530. 61 91 5.83

HEI GHT( 1) 20.54 1 20.54 3.52 . 064
HEI GHT( 2) 31. 30 1 31. 30 5.37 . 023
HEI GHT( 3) 14.02 1 14. 02 2. 40 . 124
HEI GHT( 4) 7.23 1 7.23 1.24 . 268
HEI GHT( 5) . 03 1 . 03 .01 . 940
HEI GHT( 6) 4.69 1 4.69 . 80 . 372
( Model ) 77.83 6 12.97 2.22 . 048
(Total) 608. 44 97 6. 27

R- Squared = . 128

Adj usted R-Squared = .070

The crude ANOVA table is given below. Note that the HEIGHT variable is significant, F(6,91) =
2.22,p=.048.

Tests of Significance for LGSR using UNI QJE suns of squares

Source of Variation SS DF VS F Sig of F
W THI N+RESI DUAL 530. 61 91 5.83

HEI GHT 77.83 6 12.97 2.22 . 048
( Model ) 77.83 6 12.97 2.22 . 048
(Total) 608. 44 97 6. 27

R- Squared = . 128

Adj usted R-Squared = .070

The plot of case number vs. standardized €; looks reasonable displaying a band pattern.
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Dependent variable: LGSR

Std Residual
O
O

Case Number

The normal probability plot is reasonable, since it approximates a line, however there is a slight

bend in it.
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Normal Q-Q Plot of Residuals of LGSR

o
oo

Expected Normal
NS
Og

Observed Value

SPSS has built into its software some common contrasts which we will use in future chapters.
[Click here for a summary of the types of contrasts associated with each SPSS command. |

14.12 SAS COMPUTER IMPLEMENTATION
An SAS program to implement the above trend analysis is given below.

DATA TREND:;

INPUT HEIGHT LGSR;
CARDS;

11.57

1.00

11.20

7.15

PROC GLM;

CLASS HEIGHT;

MODEL LGSR = HEIGHT;
MEANS HEIGHT/;
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CONTRAST "LINEAR’ HEIGHT -3-2-1012 3;
CONTRAST "QUADRATIC’ HEIGHT 50-34-30 5;
CONTRAST *CUBIC’ HEIGHT -1110-1-11;
CONTRAST *QUARTIC’ HEIGHT 3-716 1 -7 3;
CONTRAST *QUINTIC” HEIGHT -14-505 4 1;
CONTRAST *SEXTIC’ HEIGHT 1 -6 15 -20 15 -6 1;
OUTPUT OUT=RESIDS P=YHAT R=RESID;
PROC PLOT;

PLOT RESID*(YHAT,CRIME);

PLOC UNIVARIATE PLOT NORMAL;

VAR RESID;

14.13 Exercises

1. Kas, K. and Dember, W., Effects of Size of Ring on Backward Masking of a Disk by a
Ring, Psychonomic Science, 1973, 2, 15-17, studied backward masking. If a black disk
appears for a short time, followed by a ring where the inner edge corresponds to the
outside of the disk, you may never perceive the disk, only the ring. The authors
investigated ring thickness and how it affected perception. The data for 20 people is
based on the Kas study and are listed below.

Ring Thickness (mm)
0 .25 5 1.0 1.5
4.69 9.17 26.21 27.14 27.73
13.02 16.35 21.56 19.52 19.93
4.05 13.17 16.98 27.25 27.02
5.73 15.25 18.01 20.92 29.85

a. Perform the ANOVA analysis. Comment on the distribution of the residuals.

b. Use orthogonal polynomials to determine the type of trend exhibited by the data.
Omit the .25 results for this analysis. Report your results in an ANOVA table.

2. Sheffield, V., Extinction as a Function of Partial Reinforcement and Distribution of
Practice, J. Exp. Psychol. 1949, 39, 511-526, examined how learning was affected by
percentage of reward in rats. Four treatments, percentage of trials rewarded (25%, 50%,
75% and 100%) were considered. The dependent variable was the number of extinction
trials required under each. The data for 40 rats, 10 per treatment is based on Sheffield’s
study.
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Reward

25% 50% 75% 100%
10 12 14 9
14 22 18 21
18 20 21 18
20 16 10 17
10 9 13 10
9 15 9 15
15 18 14 11
13 17 14 16
8 13 9 14
9 14 12 7

a. Perform the appropriate ANOVA analysis.

b. Determine the type of trend displayed by the data. Report your results in an ANOVA
table.
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