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THE LINEAR MODEL WITH NORMAL ERROR 
 

7.1 THE SIMPLEST LINEAR MODEL - THE LINE 

Researchers attempt to summarize the relationship between y and x through equations as 

well as graphs. We have previously, in section 6.8, seen that an equation given by 
 

xy 10 ββ +=  
 

is a straight line. In order to predict y from x, we substitute into the equation. Suppose a 

researcher has a graph of y versus x and wishes to determine the best fitting line to this set of 

points. The best fitting line is called a regression line, for historical reasons. The method of least 

squares is a method of finding this best line. Basically, deviations of the point from the line in the 

vertical direction are used as criteria for selecting the line. Some of the deviations will be 

positive, and others negative; however, all of the squares of their deviations are positive. The line 

that makes this sum smallest is the “best” line. In other words, the line 
 

ii xbby 10ˆ +=  

(read y  as “y hat” -- predicted y by the fitted line) 
 

that minimizes the sum of the squared deviations in the vertical direction. 
 

ˆ2 2
i i iresidual = (observed.y - predicted.y )  

2
0 1i i= (y - b - b x )  

2
i= e  

 

is the best line. These deviations )ˆ( yye ii −= are called residuals or errors.  
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For example, see Figure 7.1 below: 
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Figure7.1 

 

The least squares regression line, ˆ 0 1y = b + b x , is given using the following formulas: 
 

( )( )
( )

∑
∑

1 2

x - x y - y
b =

x - x
 

 

10b = y - b x  
 

Note that the researcher would hypothesize a line would be an appropriate model for the 

data. If the line is an appropriate model, then the reasoning in the previous section would be used 

to select the best line given the data collected on the system.  

In other words, the model specified by the researcher is given by 
 

xy 10 ββ +=  
 

where β0 and β1 are population parameters that represent the y-intercept and slope of the line, but 

are unknown. Once the researcher has a sample or data from the population, s/he can use least 

squares to calculate the best fitting line. 

iii yye ˆ−=

xbby 10ˆ +=( )yx ˆ,

( )yx,
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xbby 10ˆ +=  

 

Here, b0 and b1 are the least squares estimators of β0 and β1 derived from the data, assuming the 

true model to be a line. Remember the data is composed of two parts: (1) that explained by the 

model and (2) that not accounted for by the model, called error. 

 

DATA = MODEL + ERROR 

exbby ++= 10  
 

 

We display the relationship graphically in Figure 7.2 below: 

 
 

Figure 7.2 
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If the model predicts the data exactly, then researchers call their type of model 

deterministic. Note that when the data is accounted for by a model part and an error part, 

researchers speak of probabilistic models, since the error part is assumed to be the product of 

other random, unexplainable effects. The population parameters in the model are unknown and 

are estimated using the sample data. Clearly, it is assumed that the model, in this case a line, is 

the correct one for this system. We will examine other models (i.e., polynomials) in Chapter 8. 

 

CLICK here for overview of Polynomials. 

 

7.2 Example  

This example was adopted from Gebotys and Roberts (Canadian Journal of Behavioral 

Science, 1987, vol. 19, p. 479-488). Gebotys and Roberts examined the effect of age on how a 

person viewed crimes’ seriousness. A measure of seriousness (0-100) was developed, where a 

score of 0 indicates a crime that is not serious and a score of 100 indicates a very serious crime. 

Ten people were asked to rate the seriousness of car theft and, among other things, their age was 

recorded. The data are given below: 
 

age seriousness

20 21 

25 28 

26 27 

25 26 

30 33 

34 36 

40 31 

40 35 

40 41 

80 95 

 

 

The researcher wants to predict seriousness from age, and a literature review suggests a line 

would be an appropriate model. S/he first plots the data. See figure 7.3 on the next page. 
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Figure 3.
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Figure 7.3 
 

The plot confirms the researcher’s suspicions that a line would be a reasonable model. Note that 

most of the ages are clustered between 20 and 40 years, with one elderly person at age 80 years. 

Using Table 7.1, and the formula defined previously, we can easily calculate the least 

squares estimators of β0 and β1. In this example, β0 and β1 represent the intercept and slope of a 

line that relates age to crime seriousness for all individuals in the country (the population). The 

data will enable the researcher to calculate least squares estimates of these values (b0 and b1) 

based on ten people (the sample). 
 

Table 7.1 

 xi yi )( xx −  )( yy −  2)( xx −  2)( yy −  ))(( yyxx −−

1 20 21 -16 -16.3 256 265.69 260.8 

2 25 28 -11 -9.3 121 86.49 102.3 

3 26 27 -10 -10.3 100 106.09 103.0 

4   25   26 -11     -11.3 121    127.69   124.3 

5 30 33 -6 -4.3 36 18.49 25.8 

6 34 36 -2 -1.3 4 1.69 2.6 

7 40 31 4 -6.3 16 39.69 -25.2 

8 40 35 4 -2.3 16 5.29 -9.2 

9 40 41 4 3.7 16 13.69 14.8 

10 80 95 44 57.7 1936 3329.29 2538.8 

Totals 360 373 0 0 2622 3994.1 3138.0 
 

x  = 36  y  = 37.3 



Robert Gebotys   2008  7 - 6 

The least squares estimate of β1, the slope of the line, is 
 

∑
∑

−

−−
= 21

)(
))((

xx
yyxx

b   

     
2622
3138

=    

     = 1.197 

 

The least squares estimate of β0, the y-intercept of the line, is 
 

0 1b = y - b x   

     = 37.3 − 1.197(36)  

     = −5.792 

 

The least squares line is given by  
 

y = −5.792 + 1.197x 

 

In other words, ratings of crime seriousness increase, on average, 1.197 units per year of age. The 

researcher can now predict seriousness for a given age by substituting into the above equation. 

Remember the model has been estimated on the basis of only 10 individuals. A larger sample 

with a larger range of ages (note the gap between x = 40 and x = 80 years) would improve the 

researcher’s confidence in the model. 

 

7.3 STATISTICAL INFERENCE FOR THE SIMPLE LINEAR MODEL 

For the model 0 1y = β + β x  the population of values for y is assumed to be normally 

distributed about a mean that depends on x. We write E(y|x) to read “the expected or average 

value of y given x” to represent these means. With this model, the researcher assumes all the 

means lie on a line when plotted against x. The line  
 

 

0 1E(y | x) = β + β x  

 

is given in Figure 7.4 on the next page. 
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Figure 7.4 

 

The residuals (ei) or errors are assumed to: 

 

1. Be independent; 

2. Follow a normal distribution with mean equal to 0; and, 

3. Have unknown variance equal to 2σ . 

 

Researchers usually check the normality assumption (Assumption 2) using a probability plot (see 

section 3.7). We have previously seen in 3.7 that if the distribution of observations is normal, the 

probability plot of residuals will reveal a straight line. Deviations from the line indicate non-

normality.  
 

CLICK here for overview of Probability Plots. 
 

We estimate 2σ  in the population of residuals using 2s , our estimate from the data. 
 

2

2
2

−
= ∑

n
e

s i  

2
)ˆ(

−

−
= ∑

n
yy ii  

 

 

 

 

( ) xxyE 10| ββ +=
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n-2 is called the degrees of freedom for 2s , an unbiased estimator of 2σ . We lose two degrees 

of freedom since we estimate two parameters ),( 10 ββ in the model. 2σ  is the spread or scaling 

of the observations about the line. This spread of the normal distribution is assumed constant 

across x (see Figure 7.4 above).   

 

7.4 Example (cont’d) 

For the Gebotys and Roberts (1987) data, calculate 2s , our estimate of 2σ , with the 

necessary information from Table 7.2. 
 

Table 7.2 

 xi yi ii xbby 10ˆ +=  yye ii ˆ−=  2
ie  

1 20 21 18.15 2.85 8.12 

2 25 28 24.13 3.87 14.98 

3 26 27 25.33 1.67 2.79 

4 25 26 24.13 1.87 3.50 

5 30 33 30.12 2.88 8.29 

6 34 36 34.91 1.09 1.19 

7 40 31 42.09 -11.09 122.99 

8 40 35 42.09 -7.09 50.27 

9 40 41 42.09 -1.09 1.19 

10 80 95 89.97 5.03 25.30 

Totals 360 373 373.01 -0.01 238.62 

 

2

2
2

−
= ∑

n
e

s i   

     
210

62.238
−

=  

     =  29.83 
 

In other words, the spread, or variance, of the residuals about the line is 29.83. Researchers often 

report the square root of 2s , since, given the assumption of normality, some quick 

calculations can be made about the residuals and their distribution. We know that +/- 1 

standard deviation for the normal gives approximately 68% of the data.  
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In our example,   
 

s = 5.46 
 

therefore, +/- 5.46 about the predicted mean from the model would give approximately 

68% of the data. It is also convenient to have s for future calculations. 

 

7.5 SIGNIFICANCE TESTS AND CONFIDENCE INTERVALS 

Previously, we reviewed significance tests and confidence intervals for means using the t 

distribution (see section 3.4). Similar procedures are applicable to the slope and intercept 

parameters of the simple linear model when the sample has been selected randomly, as described 

in Chapter 2.  

All tests of hypothesis, parameter equal to zero, have the following form, with the T 

statistic equal to 
 

   
estimateT =

standard.error.of.estimate
 

 

For the slope, we have, for example 

 

0: 1 =βoH  

0: 1 ≠βaH  

)( 1

1

bs
bT =  

 

where the T statistic has a student t distribution with n-2 degrees of freedom. 

 

Similarly, all of the confidence intervals are of the form  

 

estimate ± tα/2 standard error of the estimate 
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For example, a 1 – α confidence interval for the slope β1 is 

 

)( 12/1 bstb α±  

 

where t is the value from the t distribution with n-2 degrees of freedom. 

 

To estimate )( 1bs , we use the formula  
 

∑ −
=

21
)(

)(
xx

sbs
i

 

 

 

Similarly, we have the standard error )( 0bs   

 

∑ −
+= 2

2

0 )(
1)(

xx
x

n
sbs

i

 

 

The computer usually includes tests of 0: 0 =βoH  ; however, this information is usually not of 

interest to the researcher unless x = 0 exists or has practical importance. 

 

7.6 Example (cont’d) 

For the Gebotys and Roberts (1987) data, test the hypothesis that the slope is equal to 

zero. If the slope is zero, then we conclude as age changes, there is no effect on seriousness 

except for random variation. If we reject H0, then we conclude as age changes, seriousness 

changes.   
 

Perform the test at α = .05. 

0: 1 =βoH  

0: 1 ≠βaH  
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The standard error is easily calculated below. We know s is equal to 5.46 from section 7.4. 
 

∑ −
=

21
)(

)(
xx

sbs
i

 

         =
546
5121

.
.

 

  = .11 
 

The T statistic is calculated next using the formula below: 
 

 88.10
11.
197.1

)( 1

1 ===
bs
bT  

 

The degrees of freedom are df = (n – 2) = 10 - 2 = 8. 
 

The error critical value, tcritical = 2.306, is found in tables of the t distribution with 8 degrees of 

freedom and α /2 = .025. Since the value of the T statistic, 10.88, is greater than 2.306 (the 

critical value for a two tailed test when α  = .05), we reject 0: 1 =βoH , the slope is equal to 

zero, and say the result is significant at α  = .05. Age is important in predicting crime seriousness.  

Since the slope is positive, the greater the x value (age) the greater the y value (seriousness). 

 

A 95% confidence interval for the slope β1 is 
 

)( 12/1 bstb α±  

= 1.197 ± 2.306(.11)  

= (.943, 1.451) 

 

The slope of the line (β1) is between .943 and 1.451, with 95% confidence. Researchers often 

report confidence intervals to quantify their uncertainty with respect to the slope. Remember that 

the 10 individuals have given us an estimate ( 2b ) of the population’s slope ( 1β ). Replications 

of the above study would give different estimates. A confidence interval gives the 

researcher a degree of certainty where the true value of the slope ( 1β ) lies with a given 

probability. 
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7.7 CONFIDENCE INTERVALS FOR E(y|x) 
 

The model  

0 1E(y | x) = β + β x  

 

gives the mean value of y for a given x. In order to estimate the mean from the sample, we use the 

least squares estimators b0, b1 of β0 and β1. 

 

0 1E(y | x) = b + b x  

 

To construct a confidence interval for E(y|x0), for a particular value of x , say x0, we need the 

standard error of E(y|x0). 

 

∑
2

0
20

i

(x - s)1s[E(y | x )] = s +n (x - x)  

 

A 1 - α confidence interval for the mean when x = x0 is 

 

0 α / 2 0E(y | x )± t s[E(y | x )]  

 

where t α/2  is the α/2 critical value of the t distribution with n-2 degrees of freedom. 

 

Example 

Compute a 95% confidence interval for mean seriousness rating when age is 25 years.   

 

First, substitute into the estimated model x = 25.  
 

xbbxyE 10)|( +=  

               = −5.792 + 1.197(25)  

               = 24.13 
 

When x = 25, the mean seriousness rating is 24.13.   
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Next, calculate the standard error. 
 

(See Table 7.1 for the value of ( )x xi −∑ 2 ) 

 

∑ −
−+= 2

2
0

0 )(
)(1)]|([ xx

sx
nsxyEs

i
 

   2622
121

10
146.5 +=  

   = 2.09 

 

For a 95% confidence interval, α  = .05, α/2 = .025, the degrees of freedom are 10-2 = 8, 

and the upper critical value for the t distribution with 8 degrees of freedom is 2.306. Substituting 

into the following formula, we obtain 
 

)]|([)|( 02/0 xyEstxyE α±  

=  24.13 ± 2.306(2.09) 

=  (19.31, 28.95) 

 

For people with an average age of 25 years, the mean seriousness rating is between 19.31 and 

28.95 with 95% confidence. We will soon see how to easily calculate this using SPSS. 

 

7.8 PREDICTION INTERVALS FOR Y 
 

The predicted value for a future y can also be estimated using 

 

ˆ 0 1y = β + β x  

 

Note that the result is the same for predicting the average value E(y|x0) for a particular x, say x0. 

The different notation serves as a reminder of the two cases. The error, however, is larger when 

predicting a single observation than when a mean of a number of observations is considered. This 

is a result of the fact that the observation y will vary about a sample mean, as well as vary about 

the true model. The two sources of error (about a mean and the model) are reflected in the 

standard error for the prediction interval. 
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ˆ
∑

2
0

2
i

(x - x)1s(y) = 1+ +n (x - x)  

 

The 1 − α prediction interval for a future observation y when x = x0 is 

 

ˆ ˆα / 2y ± t s(y)  

 

where 2/αt  is the upper α/2 critical value for the t distribution with n - 2 degrees of freedom. 

 

Example 

Construct a 95% prediction interval for seriousness when the age of the particular person 

is 25. 
 

xbby 10ˆ +=  

   = 24.13 
 

∑ −
−++= 2

2
0

)(
)(11)ˆ( xx

xx
nys

i
 

       2622
121

10
11 ++=  

       = 5.85 
 

The 95% predicted interval is 

)ˆ(ˆ 2/ ysty α±  
 

Substituting ŷ and s( ŷ ) above, with tα /2  and 8 degrees of freedom, we obtain  

24.13 ± 2.306(5.85) 

= (10.64, 37.62) 

 

For a person who is 25 years old, we predict a crime seriousness score between 10.62 and 

37.62 with 95% confidence. Note that the interval is larger for an individual than the average 

prediction given in section 7.6, for reasons given at the beginning of this section concerning the 

variability of an observation versus a mean. We will use SPSS to calculate this interval shortly. 
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7.9 THE ANALYSIS OF VARIANCE (ANOVA) FOR SIMPLE REGRESSION 
 

The researcher summarizes the total amount of variation in the data into two components. 

The two components are: 
 

1. The amount of variation in the data accounted for by the model. 

2. The amount of variation in the data not accounted for by the model. 

 

In other words, 
 

Data = 1 + 2  

      Data = Model + Error 

 

or graphically, in Figure 7.5, the variation in the data is partitioned or analyzed as Model (a line 

in this case) and Error (that amount not accounted for by the line). 
 

 
 

Figure 7.5 

 

The total variation in the data is given by )( yyi − . Notice that if all these deviations 

were zero, all observations would be equal and there would be zero variance. The yi do not equal 

y since subpopulation means differ (i.e., )ˆ( yyi − ) and are estimated by iŷ . Also, within 

populations, individual observations will vary about their mean in a normal fashion.  

 

Mathematically, we have 
 

)ˆ()ˆ()( yyyyyy −+−=−  
 

If we square the terms  
222 )ˆ()ˆ()( yyyyyy −+−=−  
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We can also write this as sums of squares (SS) 

 

SST = SSM + SSE 

ˆ ˆ∑ ∑ ∑2 2 2(y - y) = (y - y) + (y - y)  

 

where we denote 

SST = Total sums of squares 

  SSM = Model sums of squares 

                                                       SSE = Error sum of squares 

 

The degrees of freedom associated with each SS are: 

• 1 for SSM, since we are only interested in testing H0: β1 = 0 (one parameter); 

• n-2 for SSE, since there are two parameters in the model (β0, β1); 

• n-1 for SST, since we are not interested in testing H0: β0 = 0, and therefore remove 

the effect of β0 (one parameter). 

 

Each component (1 = Model, 2 = Error) has a mean square. The mean square (MS) is 

 

sums.of.squaresMS =
degrees.of.freedom

 

 

For example, note that 
 

DFE
SSEMSE =  

                  
2

)ˆ(
−

−
= ∑

n
yy ii = s2   

 

In other words, 2sMSE = , an estimate of 2σ , the spread of the residuals about the model.   
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To test the hypothesis that 

 0: 1 =βoH  

 0: 1 ≠βaH  

 

use the mean square of the Model (MSM) and the MSE to construct an F statistic. 

 

MSMF =
MSE

 

 

where the p-value is calculated using a F(1, n-2) distribution. Note that in this simple case of a 

line, 2
2)2,1( −=− ntnF  and both the ANOVA and t test techniques give equivalent results in 

terms of hypotheses tested and p-value. In future chapters, when more complex models are 

considered, it will be shown that one cannot conduct a series of t test comparisons without 

compromisingα . The F test in the ANOVA table is the proper global test of hypothesis for these 

models. The line is a special case where both techniques give the same result. This is one reason 

why there is not a “t-table”. A more in depth discussion of the ANOVA technique will be given 

in Chapter 11. 

 

Researchers display the results of the above calculations in an ANOVA table. The table is given 

below: 
 

Source 
Sums of squares 

(SS) 

Degrees of 

freedom (DF) 

Mean square 

(MS) 
F 

Model ∑ − 2)ˆ( yyi  1  DFM
SSM

 
MSE
MSM

 

Error ∑ − 2)ˆ( ii yy  2n −  DFE
SSE

 
 

Total ∑ − 2)( yyi  1n −  
  

 

In the case of the simple line, the square of the correlation coefficient, R2 is the 

proportion of variation in y accounted for by x. An R2 = 0 indicates the model accounts for 0 

variance, whereas an R2 = 1 indicates a perfect fit for the model. It is interesting to note that R2 is 
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a ratio of SS. In other words, the degrees of freedom, or number of parameters in the model, are 

not incorporated directly into the calculation. 
 

2 SSMR =
SST

 

 

Values can be readily obtained from the ANOVA table. R2 is a popular summary statistic reported 

by researchers since it gives an indication of how well the model has accounted for the data. R2 

should be used in conjunction with the ANOVA table since one can have high R2 and a non-

significant model. This can arise when, for example, the sample size for a study is small.   
 

7.10 Example (cont’d) 

For the Gebotys and Roberts (1987) data, construct an ANOVA table. Indicate how well 

the model accounts for the data. 
 

Refer to table 7.1 for SST. 
 

∑ =−= 1.3994)( 2yySST  
 

See table 7.2 for SSE and SSM. 
 

SSE = Σei
2 = 238. 62 

 

SSM = SST – SSE  

         = 3994.1 - 238.62 = 3755.48 
 

Since n = 10 

DFM = 1 

DFE = n - 2 = 8 

DFT = n - 1 = 9 
 

48.3755
1

48.3775
===

DFM
SSMMSM  

 

83.29
8

62.238
===

DFE
SSEMSE  

 

     90.125
83.29
48.3755

===
MSE
MSMF  
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The results are summarized in an ANOVA table. 
 

Source SS DF MS F 

Model 3755.48 1 3755.48 125.90 

Error 238.62 8 29.83  

Total 3994.1 9   

 

Note that the F statistic is equal to 125.90. Since the OLS or p-value is < .0001 with 1, 8 degrees 

of freedom, we reject H0: β1 = 0 and conclude there is a significant linear relationship between 

age and seriousness. The ANOVA table is a standard method of communicating results across a 

wide variety of disciplines. The variance in y is partitioned into a model and an error part that are 

clearly displayed in the table. An estimate of 2σ , the spread about the line, can also be easily 

calculated from the table since MSEs =2 . 
 

94.
1.3994

48.37552 ===
SST
SSMR  

 

In other words, 94% of the variance in crime seriousness (y) is accounted for by the model      

(i.e., age). The model is adequate from an ANOVA and percent variance accounted for ( 2R ) 

point of view. An examination of the residuals is next. 

 

7.11 EXAMINATION OF RESIDUALS 
 

For the model  

0 1E(y | x) = β + β x  

 

we have assumed the residuals are normally distributed about a mean that depends on x. Three 

assumptions were made about the normally distributed residuals, ei. They are as follows: 
 

 

1. The mean or sum of the residuals is zero; 

2. The variance of the residuals σ2 was the same for all values of x. In other words, the 

spread of the residuals about the model was homogeneous; and, 

3. The residuals are independent. 
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The primary tool we will use for assessing normality is the probability plot, which was discussed 

in section 3.7. However, a number of other methods will be discussed here to assist the researcher 

in checking the properties of residuals. 

 

Homogeneous Variance 

In order to assess the validity of the assumption that 2σ of the residuals is constant across 

x, we examine plots of the predicted value, iŷ  versus the residual, ie . 

 

 
         

       Figure 1 

 

Figure 1 describes the pattern of residuals for binomial data. Notice the range 0 through 1 and the 

football shape. Residual patterns such as this are obtained when researchers analyze proportions 

or percentages.  
 

If we perform an arcsine transformation of y 
 

t -1y = sin y  

 

where the superscript t refers to the transformed data, the residuals will more accurately reflect 

the assumption of homogeneity. See figure 2 on next page. 
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Figure 2 

 

Clearly, the residuals form a symmetric band about 0, with a generally uniform scatter 

throughout the band. For standardized residuals, N(0,1), most observations fall within ±2 standard 

deviations, and almost all within ±3 standard deviations.  

 

If the residuals display a fan shape as in figure 3, this indicates the variance is increasing 

proportionally to the square of the mean.  

 

 
 

      Figure 3 
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The transformation 
 

ty = logy  
 

will stabilize this variance. 

 

When researchers study counts per unit time or area, the variance is typically proportional 

to E(y). This follows a Poisson distribution which has a cone shaped pattern, as displayed in 

Figure 4. 
 

 
           Figure 4 

 

If one takes the square root of y 
 

ty = y  
 

the variance is stabilized. 

 

Note that the choice of transformation used to stabilize variance has been selected on the 

basis of graphical displays. These displays are idealized patterns that with research experience 

will assist the researcher to properly analyze the data. The validity of the analysis is not 

compromised by using transformations since the relationship between the raw data and the 

transformed data is always reported. 

 

A simple test for Homogeneity of Variance 

A simple method to compare two variances is to use the F statistic, as described in 

section 3.5. The researcher divides the sample into two sub-samples on the basis of some criteria. 

For example, say in the Gebotys and Roberts (1987) data, we wanted to compare the seriousness 
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score variance of the over 40 year old group with the 40 and under group, since there is a 

suggestion older individuals will have more consistent seriousness ratings. Two groups are 

clearly defined on the basis of age and a test of equality of seriousness score variance can easily 

be conducted using 
 

2
2

2
1: σσ =oH  

2
2

2
1: σσ ≠aH  

with the test statistic 

2
2

2
1

s
s

F =  

 

See section 3.5 for an example of this calculation. H0 describes the homogenous case, whereas Ha 

describes a violation of the equal variance assumption. Checking the equality of variance 

assumption for several variances will be discussed in Chapter 14. Note that the previous section 

on transformations of the sample data may help stabilize the variances. 

 

Independence 

Another assumption of the linear model is independence of residuals ei or independence 

of y. If the values of ei at time t are correlated with ei+1 then this assumption is violated. The test 

of hypothesis that researchers typically wish to test is that there is zero correlation. The Durbin-

Watson d-statistic is commonly used for this test. 

 
0)(: =residualspH o  

0: ≠pH a  

∑

∑

=

=
−−

= n

t
t

n

t
tt

e

ee
d

1

2

2

2
1 )(

 

 

Where if the correlation is zero ρ = 0, then d ≈ 2 

if the residuals are positively correlated ρ+, then d < 2 

if the residuals are negatively correlated ρ−, then d > 2 
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The p-value and d-value are printed on the computer output. Notice that the test assumes 

the residuals are normally distributed. Chapter 24 and Chapter 10 discuss some Time series 

models that incorporate serial correlation. We will discuss some techniques that handle correlated 

errors at that time. For the moment, knowledge that the independence assumption may have been 

violated will be valuable information for the researcher. 

 

Residuals for Model Building 

The mathematical model of a line and the assumptions concerning the residuals clearly 

specify the form and shape the residuals should take in a variety of plots. Residuals are used not 

only to test assumptions about the distribution of ei, but also to test how appropriate the 

mathematical model is for the psychological system under study. For example, if the residual plot 

of x versus ei displays a curved pattern as shown in Figure 5 below, 
 

 
Figure 5 

 

this may indicate a non linear dependence of y on x. For example, it may indicate a quadratic 

model, as discussed in section 6.10. 

 

7.12 LINEAR MODEL USING SPSS 

The REGRESSION command fits linear models by least squares. The VARIABLES 

sub-command tells SPSS what variables are in the model. The DEPENDENT sub-command tells 

SPSS which is the y variable. The ENTER command defines the x variable. In this case, we have 

asked SPSS to fit the model, xxyE 10)|( ββ += . 

 

CLICK here for SPSS details.  
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The analysis of variance table above is important as a summary table. Note the 

degrees of freedom and F-statistic values. 
 

F = 125.944 
 

which has an F distribution with 1 and 8 degrees of freedom. We reject 
 

0: 1 =βoH  

0: 1 ≠βaH  
 

that the slope is equal to zero with p-value less than .0000 (.0000 is to 4 figures only), the SIG F 

value on the output. The REGRESSION row refers to the model and the RESIDUAL row refers 

to the error component. The mean square of the residual is equal to s2, our estimate of σ2. 
 

s2 = MSE = 29.819   

461.5== MSEs  

 



Robert Gebotys   2008  7 - 27 

Note s is also printed in the STANDARD ERROR column. In the same area, we also have R2, R 

SQUARE, printed where 
 

SST
SSMR =2  

100.3994
547.3755

=  

 = .94027 
 

In other words, 94.027% of the variance in seriousness is accounted for by age.  

 

The output is interpreted as follows:   
 

 In the Variables in the equation section, the column variable lists the variable age and 

constant. These refer to the variables associated with the parameters β0 and β1 in the model. The 

column labeled B gives the least squares (b0 = −5.785, b1 = 1.197) estimator for β0 and β1. The 

equation is therefore E(y|x) = -5.785 + 1.197x. The Std. Error column is the standard error for 

each of the parameters. For example 
 

s(b0) = 4.210 

s(b1) = .107 
 

The t column gives the corresponding t statistic for testing the hypothesis 
 

0: =ioH β  

0: ≠iaH β  
 

For β1, the t statistic has the value 11.222. The column SIG gives the OLS or p-value for 

the test above. In this case, we have at least p < .001 (note .000 value is given to 3 figures only) 

with 8 degrees of freedom. In other words, we reject H0 and conclude there is a relationship 

between seriousness and age, since the slope is not equal to zero. We conclude that a line 

adequately models the relationship between seriousness and age. The relationship is positive 

(since b1 is positive) with seriousness increasing 1.197 units per year of age. 

 

We examine a number of plots to assess the normality assumption. 
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The CASEWISE command gives the following output. The actual y (seriousness), 

predicted y ( ŷ ), and residual yyei ˆ−= . There is also a plot of the standardized residuals (mean 

= 0, σ = 1) that is produced by taking the residual and dividing it by the standard deviation of the 

sample. Given the normality assumption, these residuals should be within 3 standard deviations 

of their mean (0) and have a band pattern (see Figure 2 for an example), as is the case below. An 

observation that has a large residual is called an outlier. The casewise plot indicates there are no 

outliers since the standardized residuals fall within ±3. The Durbin Watson statistic indicates 

there may be some serial correlation since d = 1.03981; however, given there are only 10 

observations, this remains a suspicion. 
 

 
 

In order to check the normality assumption, we could also look at a histogram of the 

standardized residuals, which should display a normal pattern. Characteristics of the normal 

distribution include a bell shaped distribution, symmetry about zero, and 68% of the data within 

±1 standard deviation, 95% of the data within ±2 standard deviations and 99% of the data within 

±3 standard deviations. Although difficult to judge with 10 observations, the graph on the 

following page looks reasonable. 
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The probability plot for normal data should approximate a line (see section 3.7). The 

boxes in the figure below represent the data. The boxes fall a bit off of the line. This might 

suggest using a different model for the data; for example, a polynomial. 
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A scatterplot of the data suggests the line is a reasonable model, although there is one 

point isolated from the rest (x = 80, an elderly person). Note this plot is identical to the 

SCATTERGRAM output, except for the scale. 

 

 
 

A plot of standardized ŷ versus ei indicates the model is fitting reasonably since there is a 

band (see Figure 2 for an example) to the data, as is the situation in the casewise plot. 

 

 
 



Robert Gebotys   2008  7 - 31 

In summary, a line is a reasonable model for this problem; however, the probability plot 

suggests a different model might better satisfy the normality assumption. In other words, the 

researcher’s assumption that a line describes the relationship between age and seriousness in the 

population may be false. There are no outliers; however, the graph of age vs. seriousness reveals 

a clustering of points with one isolated point. Problem 1 of the exercises, which introduces the 

concept of an influential observation, should help in understanding the importance of this point. 

 

Since the data were collected without controlling the inputs, as previously discussed in 

Chapter 4, the researcher can make statements only concerning the association of age and 

seriousness. No cause-effect statements can be made concerning the variables.  

 

7.13 COMPUTER IMPLEMENTATION USING SAS 
 

Note that SAS commands end in a semicolon (;). The commands for this example are 

listed below. The output of SAS is similar to the SPSS package and will not be reproduced here; 

however, a brief explanation of the program commands is listed below. 
 

DATA JUSTICE; 

INPUT ID AGE SERIOUS; 

CARDS; 

1 20 21 

2 25 28 

… 

… 

… 

10 80 95 

PROC REG; 

MODEL SERIOUS = AGE / R DW; 

OUTPUT OUT=RESIDS P=YHAT R=RESID; 

PROC PLOT; 

PLOT RESID*(YHAT AGE); 

PROC UNIVARIATE PLOT NORMAL; 

VAR RESID; 
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The first line in the DATA statement that tells SAS to create a data set called justice. The 

PROC REG command tells the computer to perform a least squares fitting of the model specified 

in the MODEL statement. In this case, the model is E(y|x) = β0 + β1x, where y = seriousness and  

x = age. The R and DW subcommands give the residuals and Durbin-Watson statistic. The 

OUTPUT line stores the residuals. Residual plots are produced by the PLOT procedure. 

 

7.14 Exercises  

 

For the questions listed below, fit the model E(y|x) = β0 + β1x. From the computer output: 

a. Give the least squares estimates of β0 and β1. 

b. Test the H0: β1 = 0 vs. Ha: β1 ≠ 0 and state your conclusions clearly. 

c. State R2. What is s2? 

d. Give a 95% confidence interval for β1. 

e. Comment on how the residuals either satisfy or do not satisfy their assumptions. 

 

1. Omit the 10th observation (80, 95) from the above data set and redo the analysis. 

Compare the two different analyses. Note that the model, in this case a line, is heavily 

influenced by observations extreme in x. Since these observations shift the line towards 

them, and therefore have small residuals, looking for large residuals (outliers) is not 

adequate. These observations are called influential observations and researchers usually 

use the scatterplot of x vs. y and knowledge of the psychological system to guide their 

analysis. Influential observations will be discussed in section 8.3. 
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2. J.B. Stroud (Amer. J. Psychol., 1932, vol. 44, p. 721-731) had 18 subjects learn 12 pairs 

of monosyllabic nouns in serial order. Level of learning was measured (by the method of 

direct recall) after each presentation of the 12 pairs. P = successive tenths of the learning 

period; R = average number of pairs recalled. Fit E(R|P) = β0 + β1P. 
 

P R 

1 0.7 

2 1.9 

3 3.2 

4 4.5 

5 6.4 

6 7.6 

7 8.6 

8 9.9 

9 10.9 

10 12.0 

 
 

3. R.M. Bellows (J. exp. Psychol., 1936, vol. 19, p. 716-731) studied the relationship 

between critical fusion frequency for intermittent puffs of air, applied to the lower lip, 

and length of time the stimulus was applied. The values are averages for three observers.  

Fit E(F|T) = β0 + β1T. 
 

time (min.) critical fusion frequ. time (min.) critical fusion frequ. 

1 156.2 11 104.9 

2 152.7 12 97.5 

3 149.3 13 89.7 

4 147.8 14 87.7 

5 142.8 15 84.2 

6 137.9 16 80.8 

7 129.1 17 76.4 

8 120.2 18 73.9 

9 114.8 19 70.4 

10 110.3 20 64.0 
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4. J.A. Gilbert (Yale Psychol. Stud., 1894, vol. 2, p. 40-100) measured the heights of large 

groups of children (both boys and girls) ranging in age from 6 to 17 years. A = age; H = 

average height in inches. Fit E(H|A) = β0 + β1A. 
 

A H 

6 45.4 

7 47.3 

8 49.3 

9 51.2 

10 53.0 

11 55.9 

12 57.3 

13 59.9 

14 60.9 

15 62.7 

16 64.9 

17 65.6 

 

5. J.A. Gilbert (Yale Psychol. Stud., 1894, vol. 2, p. 40-100) measured the weights of large 

groups of girls ranging in age from 6 to 17 years. A = age; W = average weight in 

pounds. Fit E(W|A) = β0 + β1A. 
 

A W 

6 44.3 

7 50.4 

8 53.0 

9 58.8 

10 62.7 

11 70.0 

12 84.5 

13 92.0 

14 98.0 

15 104.0 

16 113.0 

17 113.7 
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6. H. Ebbinghaus (Memory. New York: Teachers College, Columbia University, 1913, p. 

56) ran a study of retention as a function of the number of repetitions. He used 70 double 

lists composed of 6 series of 16 nonsense syllables each, some of which he read 8 times, 

some 16 times, some 24 times, etc. Retention was determined by the method of 

relearning, 24 hours after original reading. Fit E(R|S) = β0 + β1S. The data are as follows: 
 

R(# of repetitions) S(% saved) 

8 8 

16 15 

24 23 

32 32 

42 45 

53 54 

64 64 

 





Polynomials 
 
1. POLYNOMIAL MODEL OF DEGREE 1 (Linear Model): 
 


Polynomial of Degree 1 is given by 
 
 y = β0 + β1x       
 
 The above equation is the equation of a straight line. β0 and β1 are the 
parameters of the line. β0 is the y-intercept, i.e., the value of y when x = 0 and β1    
is the slope of the line, that is, how much y changes per unit increase in x.  
 
For example in the equation:  y = -4 + 2x, 
 
β0  = -4 this means that when x = 0, y = -4; in other words, the y-intercept is -4.  
β1 = 2 meaning that when x is increased by one unit the value of y will increase by 
2 units. 
 
 It is easy to graph the line denoted by the above equation.  First plot the y-
intercept (0, -4) and then substitute x with an integer (1, 2, 3, …) and calculate the 
corresponding value of y for another point: for example, when x  = 3, y = 2.  
Given that a straight line is determined by two points, draw a line through these 
two points. This represents the line denoted by the equation above.  To make sure 
that the line is correct always calculate two or more points and plot them to see if 
they fall on the line. 
  
 The graph of the above equation is shown in figure 1.1 below. Table 1. 
gives the values of x from -4 to 4 and the corresponding y values calculated by 
substituting x into the equation y = -4 + 2x. 
 
Table 1.    
      


x y 
-4 -12 
-3 -10 
-2   -8 
-1   -6 
0   -4 
1   -2 
2    0 
3    2 
4    4 


 
 
 







Figure 1.1. The equation of the line y = -4 + 2x 
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The line cuts the y-axis at y = -4. Also, because the slope of the line is positive, 
the line “dips” toward the left-hand side of the graph (as x increases, y increases). 
 
 Changing the sign (i.e. from positive to negative) of β1 (or the slope), will 
result in a line which “dips” towards the right-hand side of the graph.  For 
example, for, y = -4 - 2x, the line still cuts the y-axis at y = -4, but the line “dips” 
in the opposite direction i.e. as x increases, y decreases (see line figure 1. 2). 
Changing the intercept will move the line either upwards or down wards along the 
y-axis, depending on the sign and magnitude of β1.  For example, for y = 4 + 2x 
(i.e.  the intercept is changed from  -4 to 4) the original line in figure 1.1 will be 
shifted upwards and cut y-axis at y = -4. See figure 2.  


 
 
 
 
 
 
 


 







Figure 1.2
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1. POLYNOMIAL MODEL OF DEGREE 2 (Quadratic Model): 
 


A polynomial of degree 2 is given by the following equation 
 
  y = β0 + β1x  +  β2x2       


 
 The graph of a polynomial model of degree 2 will curve once.  The graphs 
of polynomials of degree 2 or higher can be obtained by substituting x with 
several integers and computing the corresponding y values for the points (x, y) 
then plotting and joining these points with a smooth curve.   
 
 The above equation is the graph of a parabola.  If β2 > 0, the parabola 
opens upward (U); whereas if β2 < 0, the parabola opens downward (∩).  To 
illustrate the above, please see figure 2.1 and figure 2.2 below.  
 
Figure2.1. Graph of y = -4 +2x + 2x2 
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Figure 2.1 is the graph of the equation y = -4 +2x + 2x2 (that is β2 > 0), the 
parabola opens upward.   
 
 
 
 
 
 
 
 







Figure 2.2 Graph of y = -4 +2x - 2x2 
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Figure 2.2 is the graph of the equation y = -4 + 2x – 2x2 (that is β2 < 0), the 
parabola opens downward. 
 
 The lowest (or highest) point of the parabola when β2 > 0 (or β2 < 0) is called a 
verticie. The value of x at this point is given by x = -(β1/2 β2)  
 
For the example above x = -(2/2(-2)) = .5 (substitute x in the above equation and 
solve for y). 








Normal probability or normal quantile plots 


Normal probability plots help to determine the normality of data. In normalized data, the 


data points on SPSS normal probability plots trace the diagonal line for large samples. The 


following figure is a normal probability plot for a sample n = 1100 from a normal population.  


Normal P-P Plot of NORMAL
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In smaller samples, however the points may not be close to the line, although the 


population is normal. The following are four examples of plots from normal populations with 


samples with n = 8, n = 16, n = 32, n = 64 and n = 128. 







Normal probability plots for 4 samples of size n = 8 selected at random from a 


normal population.  


 


Normal P-P Plot of NORMAL


Observed Cum Prob


1.00.75.50.250.00


Ex
pe


ct
ed


 C
um


 P
ro


b


1.00


.75


.50


.25


0.00


  


Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal probability plots for 4 samples of size n = 16 selected at random 


from a normal population. 


 


Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL


Observed Cum Prob


1.00.75.50.250.00


Ex
pe


ct
ed


 C
um


 P
ro


b


1.00


.75


.50


.25


0.00


 


 







Normal probability plots for 4 samples of size n = 32 selected at random 


from a normal population. 


 


Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal probability plots for 4 samples of size n = 64 selected at random 


from a normal population. 


 


Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal probability plots for 4 samples of size n = 128 selected at random 


from a normal population. 


Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Normal P-P Plot of NORMAL
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Example: Linear Model with Normal Error 
 
Gebotys and Roberts (1989) were interested in 


examining the effects of one x variable (i.e. “age”) on 


the y variable (i.e. “seriousness rating of the crime”). 


Complete the following  steps in SPSS in order to fit the 


linear regression model [E(y|x)= B0  +  B1x], and to 


follow the output explanation of this module starting on 


page twelve. 


1. Pull up “Crime” data set.(or enter data below) 
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2. Click ‘Analyze’ on the main menu bar. 
 
3. Click ‘Regression’ on the Analyze menu.  
 
4. Select ‘Linear’ in the regression submenu.  This 


will open a Linear regression dialogue box similar 


to the one shown below. 
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5. The next step is to specify which is the independent 


variable and which is the dependent variable.  In 


this example, ‘age’ is the independent variable and 


‘crime seriousness’ is the dependent variable.  To 


specify ‘age’ as the independent variable, simply 


click the arrow button to the left of the 


‘Independent[s]’ text box.  ‘Age’ is the entered into 


that text box.  Finally, to specify ‘serious’ as the 


dependent variable, go to the variable source list 


and click ‘serious’ and then click the arrow button 


to the left of the ‘Dependent:’ text box.  


 


The commands for the basic regression 


procedure have been defined through the above-


mentioned five steps.  We now want to include 


other ‘Statistics’ like the Confidence Interval for  


the slope and the constant, as well as the Durbin-


Watson test results. To designate the ‘Statistics’ 


you want do the following (See next page): 
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1. Click the ‘Statistics’ pushbutton at the bottom of 


the Linear Regression dialogue box.  This will open 


a “Linear Regression: Statistics” dialogue box like 


the one shown below.  
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2. If you want to include the confidence intervals for 


the two parameters (that is, for the slope and the 


constant), click the check box to the left of 


‘Confidence Intervals’. 


 


3. If you also need the Durbin-Watson results, click 


the check box to the left of ‘Durbin-Watson’. 


 


4. To instruct SPSS for Windows to produce the table 


of Casewise diagnostics, click the check box 


adjacent to ‘Casewise diagnostics’.  This check box 


is found towards the bottom of the dialogue box.  


Click the radio button adjacent to ‘All cases’ until 


the center of the radio button is filled. 


 


5. After all these steps are completed, click the 


‘Continue’ command pushbutton to register these 


commands and to return to the Linear Regression 


dialogue box. 
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To instruct SPSS for Windows to produce the three 


charts (i.e. Histogram of Standardized Residual, 


Normal Probability Plot of Standardized Residual, and 


Plot of Standardized Predicted vs. Standardized 


Residual), you need to go to the “Linear Regression 


Plots” dialogue box.  The following steps will enable us 


to obtain the above mentioned plots: 
 


1. Click the ‘Plots’ pushbutton located at the bottom 


of the Linear Regression dialogue box.  This will 


open a “Linear Regression: Plots” dialogue box, as 


shown below: 
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2. To instruct SPSS for Windows to produce the 


Histogram and the Normal Probability Plot of the 


Standardized Residuals, click the two check boxes 


adjacent to ‘Histogram’ and ‘Normal probability 


plot’ within the ‘Standardized Residual Plots’ box 


at the bottom of the dialogue box. 


 


3. To produce the Plot of Standardized Predicted 


Value vs. Standardized Residual first click 


*ZRESID in the variable list box near the top left 


corner of the dialogue box, then click the arrow 


pushbutton to the left of Y (i.e. standardized 


residual is now on the Y-axis).  Next, click *ZPRED 


in the variable list box, then click the arrow 


pushbutton to the left of X (i.e. standardized 


predicted value should now be presented on the X-


axis). 


 


4. Click ‘Continue’ command pushbutton to register 


all these commands.   The “Linear Regression: 


Plots” dialogue box will then disappear and the 
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Linear Regression dialogue box will reappear on 


the screen. 
 


SPSS for Windows will not produce the Residuals 


Statistics by default.  The following steps outline how to 


instruct SPSS for Windows to produce summary 


statistics for the residuals: 
 


1. Click the ‘Save’ pushbutton located at the bottom 


of the Linear Regression dialogue box.  This will 


open a “Linear Regression: Save New Variables” 


dialogue box like the one shown below: 
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2. Click all the check boxes within all the following 


three boxes in the dialogue box (i.e. Predicted 


values, Distances and Residuals). 
 


3. Click the ‘Continue’ command pushbutton to 


register these choices to return to the Linear 


Regression dialogue box. 
 


4. The “Linear Regression” box should now look as 


follows.   To get SPSS to perform this analysis click 


‘OK’. 
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Alternate Method to Perform Linear Regression 
This is performed by utilizing the Run command in a SPSS 
Syntax window.  That is, the selections you have made in the 
Linear Regression dialogue boxes are actually commands for   
the regression procedure.  You can click the Paste command 
pushbutton in the Linear Regression dialogue box to paste this 
underlying command syntax into a Syntax window (i.e., a 
syntax window will be opened when the Paste command is 
clicked and the selections that you have made are reproduced in 
this window in the format of a command syntax or SPSS 
programming language).  
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 One of the advantages of pasting your dialogue box 


selections into a Syntax window is that you can then edit 


the resulting text and run the modified commands.  


Simply click the Run command on the Syntax window 


menu bar to open the Run submenu.  Four options will 


appear (i.e., All, Selection, Current, and To End) from 


which you select ‘All’ with a single click on that option.  


By selecting All, SPSS will execute the entire command 


syntax as listed in the SPSS Syntax window.  If no 


modifications have been made to the previously created 


regression command syntax, the outputs obtained from 


running the commands in the Syntax window will be 


exactly identical to those obtained from using Method 1 


(i.e., clicking the OK command pushbutton in the 


Linear Regression dialogue box). 
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Linear Model with Normal Error 


SPSS Output Explanation 


 


The analysis of variance table is important as a 


summary table. 


 


 


ANOVAb


3755.547 1 3755.547 125.944 .000a


238.553 8 29.819
3994.100 9


Regression
Residual
Total


Model
1


Sum of
Squares df


Mean
Square F Sig.


Predictors: (Constant), AGEa. 


Dependent Variable: SERIOUSb. 


Variables Entered/Removedb


AGEa . Enter
Model
1


Variables
Entered


Variables
Removed Method


All requested variables entered.a. 


Dependent Variable: SERIOUSb. 
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Note the degrees of freedom and F-statistic value, which 


has an F distribution with 1 and 8 degrees of freedom. 


 
 F = 125.944 
 
 
We reject with the slope that is equal to zero with p-


value less than .001 (.000 is to 3 figures only in chart) 


the SIG value on the output. 


 
Ho:  B2 = 0 


  Ha:    B2  ≠   0 
 


 
The REGRESSION row refers to the model and the 


RESIDUAL row refers to the error component.  The 


mean square of the residual is equal to s2, our estimate 


of SIGMA2. 


 


   s2  = MSE =  29.819   s =  5.46 
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Note s is also printed in the STANDARD ERROR OF 


THE ESTIMATE column.   


 


 
 
In the same area we also have R2, R SQUARE, printed 


where 
 


  R2 =ssm/sst 
 


        =  3755/3994 
 


       =    .940 
 
In other words 94.0% of the variance in seriousness is 


accounted for by age. 


 
 


Model Summaryb


.970a .940 .933 5.46 1.040
Model
1


R R Square
Adjusted R


Square


Std. Error
of the


Estimate Durbin-Watson


Predictors: (Constant), AGEa. 


Dependent Variable: SERIOUSb. 
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In the Coefficients section the column variable 


model lists the variable age and constant these refer to 


the variables associated with the parameters B0 and B1 in 


the model.  The column labeled B given the least 


squares (b0  =  -5.785, b1  = 1.197) estimator for B0 and B1.   


The equation is therefore E(y|x) = -5.785 + 1.197x. 


The STD ERROR column is the standard error column 


for each of the parameters for example 


s(b0)  =  4.21 
s(b1) =   .107 


the T column gives the corresponding t statistic for 


testing the hypothesis 


Ho:  Bi = 0 
Ha:  Bi ≠  0 


 


Coefficientsa


-5.785 4.210 -1.374 .207 -15.492 3.923
1.197 .107 .970 11.222 .000 .951 1.443 1.000 1.000


(Constant)
AGE


Model
1


B Std. Error


Unstandardized
Coefficients


Beta


Standardi
zed


Coefficien
ts


t Sig.
Lower
Bound


Upper
Bound


95% Confidence Interval
for B


Tolerance VIF


Collinearity Statistics


Dependent Variable: SERIOUSa. 
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For B1 the t statistic has the value 11.222.  The 


column SIG gives the OLS or p-value for the test above.  


In this case we have at least p < .0001 (Note SIG value of 


.000 is given to 3 figures only) with 8 degrees of 


freedom.  In other words, we reject Ho and conclude 


there is a relationship between seriousness and age since 


the slope is not equal to zero.   


We conclude that a line adequately models the 


relationship between seriousness and age.  The 


relationship is positive (since b1 is positive) with 


seriousness increasing 1.197 units per year of age. 


 


 


 


 


 


Awesome! 
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Examination of Plots For Assumption of “Normality” 


 
 The CASEWISE command gives the following 


output.  The actual y (serious), predicted y (yhat) and 


residual  


ei   =  y -  yhat.  There is also a plot of the standardized 


residuals (mean = 0, sigma= 1) which is produced by 


taking the residual and dividing by the standard 


deviation of the sample.  Given the normality 


Casewise Diagnosticsa


.522 21 18.15 2.85


.708 28 24.14 3.86


.305 27 25.33 1.67


.341 26 24.14 1.86


.528 33 30.12 2.88


.200 36 34.91 1.09
-2.030 31 42.09 -11.09
-1.298 35 42.09 -7.09
-.199 41 42.09 -1.09
.923 95 89.96 5.04


Case Number
1
2
3
4
5
6
7
8
9
10


Std.
Residual SERIOUS


Predicted
Value Residual


Dependent Variable: SERIOUSa. 
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assumption, these residuals should be within 3 standard 


deviations of their mean (0) and have a band pattern 


(see page 23 for an example) as is the case below.  An 


observation that has a large residual is called an outlier.  


The casewise diagnostics indicates that there are no 


outliers since the standardized residuals fall between ±  


3.   


 The Durbin Watson statistic indicates there may be 


some serial correlation since d = 1.040, however, given 


there are only 10 observations this remains a suspicion. 


 


Residuals Statisticsa


18.15 89.96 37.30 20.43 10
-.937 2.578 .000 1.000 10


1.74 5.00 2.25 .99 10


17.45 63.81 34.67 13.77 10
-11.09 5.04 2.84E-15 5.15 10
-2.030 .923 .000 .943 10
-2.147 2.296 .138 1.209 10
-12.40 31.19 2.63 11.43 10
-3.087 3.678 .162 1.713 10


.014 6.645 .900 2.036 10


.003 13.673 1.420 4.306 10


.002 .738 .100 .226 10


Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual
Mahal. Distance
Cook's Distance
Centered Leverage Value


Minimum Maximum Mean
Std.


Deviation N


Dependent Variable: SERIOUSa. 
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In order to check the normality assumption we could 


also look at a histogram of the standardized residuals 


which should display a normal pattern.   


 


 


Regression Standardized Residual


1.00.500.00-.50-1.00-1.50-2.00


Histogram


Dependent Variable: SERIOUS


Fr
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nc


y
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0


Std. Dev = .94  
Mean = 0.00


N = 10.00
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Characteristics of the normal include a bell shaped 


distribution, symmetry about zero and 68% of the data 


within ±  1 standard deviation, 95% of the data within  


±  2 standard deviations and 99% of the data within ±  3 


standard deviations.  Although difficult to judge with 10 


observations, the graph below looks reasonable. 


The probability plot for formal data should 


approximate a line.  The line in the figure below 


represents the ideal case whereas the stars (*) represent 


the data.  The *’s fall a bit of the line which might 


suggest using a different model for the data, for 


example, a polynomial. 


 


       


A linear model is a 
“reasonable” model 


for this example; 
however, a different 
model might better 


satisfy the normality 
assumption. 
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A standardized scatterplot (See previous graph) of the 


data suggests the line is a reasonable model, although  


Normal P-P Plot of Regression


Standardized Residual


Dependent Variable:  SERIOUS


Observed Cum Prob


1.00.75.50.250.00


E
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.50
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0.00
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there is one point isolated from the rest.  Note this plot 


is identical to the SCATTERGRAM output except for 


the scale. 


Scatterplot of Serious (Crime
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A plot of predicted vs. ei  indicates the model is fitting 


reasonably since there is a band to the data as is the 


situation in the casewise plot. 
 


 


In summary, a line is a reasonable model for this 


example; however, the probability plot suggests a 


different model might better satisfy the normality 


assumption.  There are no outliers however the graph of 


“age” vs. “seriousness” reveals a clustering of points 


with one isolated point.  Problem 1 of the exercises 


should help in understanding the importance of this 


point. 


Scatterplot


Dependent Variable: SERIOUS


Regression Standardized Predicted Value
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age serious pre_1 res_1 zpr_1 zre_1 coo_1 lev_1 lmci_1 umci_1 lic_1 uici_1
20 21 18.151 2.849 -0.937 0.522 0.042 0.098 12.553 23.749 4.371 31.932
25 28 24.135 3.865 -0.644 0.708 0.050 0.046 19.321 28.949 10.654 37.616
26 27 25.332 1.668 -0.586 0.305 0.009 0.038 20.652 30.012 11.898 38.766
25 26 24.135 1.865 -0.644 0.341 0.012 0.046 19.321 28.949 10.654 37.616
30 33 30.119 2.881 -0.352 0.528 0.020 0.014 25.873 34.366 16.830 43.408
34 36 34.906 1.094 -0.117 0.200 0.003 0.002 30.894 38.919 21.690 48.123
40 31 42.087 -11.087 0.234 -2.030 0.274 0.006 37.985 46.189 28.844 55.331
40 35 42.087 -7.087 0.234 -1.298 0.112 0.006 37.985 46.189 28.844 55.331
40 41 42.087 -1.087 0.234 -0.199 0.003 0.006 37.985 46.189 28.844 55.331
80 95 89.959 5.041 2.578 0.923 13.674 0.738 78.429 101.489 72.885 107.033





