CHAPTER 8: POLYNOMIAL MODELS AND MATRIX NOTATION

8.1 POLYNOMIAL MODELS

The methods we have used in the previous section can be easily extended to problems
where the functions form of the relationship is not described by a line. Polynomial relationships
(see section 6.12) are used by psychologists to model systems in a wide variety of areas. For
models of this type researchers assume that the means of the y variable depend on x according to

the model; which is called a polynomial of degree k-1.

E(y[x) = Bo+ Bixi' + Baxi® + ... + Bx”

From Chapter 7 we have seen that in the case of a line y changes by a constant amount
with x. There are no curves in this polynomial of degree one. We have seen in 6.12 that
polynomials of degree 2 will curve once; polynomial of degree 3 will curve twice, etc. A
polynomial of degree k will fit k data points perfectly. When y changes at a constant rate or
percentage with x researchers use exponential models (Chapter 13) to model the system under
study. When y changes with x at a non-constant rate, then the researcher can consider a

polynomial model. See the two examples in Figures 8.1 and 8.2.
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Figure 8.1

y increases with x at a decreasing non-constant rate

Figure 8.2

y decreases with x at a decreasing non-constant rate
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Polynomial models as we have seen previously in section 6.12 give the researcher a great
deal of flexibility in modeling the relationship between x and y. No longer is there a restriction
that a line models the system. Polynomial models that are quite common are quadratic (degree 2)
and cubic (degree 3) relationships. For the sake of parsimony researchers when in the situation
that a line does not adequately fit the data, usually try the highest polynomial. A graph of the

data is very helpful in determining the degree of polynomial the researcher may wish to consider.

The principle of least squares is used as previously where

bo, by, ..., bx
represent the least squares estimators of
B()a Bla ey Bk

the population parameters.

The predicted value of y is
p=b,+bx' +b,x* +..+bx"

where the residual is

A

e =Y =Y

once again, the variance of the residuals is given by

2
,_ e

S =
n—k

Since there are (k) parameters estimated the degrees of freedom of s” is n - k. Note that there must

be at least k+1 data points in order to estimate o>, the spread or scaling of the points about the

model.
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To test the hypothesis

H,:p=0
H, :p6i#0
use
__bi

s(b,)

1

where T has a t distribution with n - k degrees of freedom. A common misconception is that the
magnitude of the b indicates its importance in predicting y. This is clearly not the case as can be
seen in the T statistic. The standard error influences both the test of hypothesis and confidence

interval for the parameter.

The ANOVA table has the same structure as before

Source Sums of squares Degrees of Mean square F
freedom
Model Z( P —-y) k —1 SSM MSM
DFM MSE
Error Z(yi_j}i)z n —k SSE
DFE
Total —_7)?
2= n—1

Note that the F statistic now tests the hypothesis
H, :p=.05=0
H, :p#.#2p6, #0

and

Fe MSM
MSE

is distributed with F(k-1, n-k) degrees of freedom under Hy. The Total DF = n-1 and the Model

DF = k-1 since By, one parameter, is removed from the test of hypothesis. The reasoning for this
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is much the same as in the previous chapter, researchers wish to examine the effect of x on y and

Bo is usually not of interest.

The proportion of variance in y accounted for by the model using x is called R squared
(See Chapter 7).

, SSM _ SSM__ SSM
SST ~ SSM + SSE SSE

The F test can also be written in terms of R’

Fe MSM
MSE

Rz
k-1

Note that R’ is defined in terms of sums of squares not mean squares. Clearly R’ does not reflect
the number of parameters or degrees of freedom in the model. As the number of parameters
increases, R increases. In fact, a researcher could force R* close to one by fitting
polynomials of high degree. The question then would be; is the complex polynomial as
parsimonious and meaningful a solution for the problem as a lower order polynomial (is a

plynomial of degree 2 as reasonable as one of degree 10) and still be significant in the
ANOVA test. The adjusted R* or R,’ is used to take into account the number of

parameters in the model.

MSE
Rz =1-(n-1)22
P e e

In this case R, increases only is MSE decreases. It cannot be forced to 1 by adding more

parameters to the model.

For example, the researchers that are investigating the relationship between age and
seriousness (See Section 7.1) may suspect that a more complicated relationship exists between the
two variables. Using the knowledge acquired from a literature review and a plot of x vs. y, these
researchers wish to examine a polynomial of degree 2 which they suspect might be a better model

for this system.
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The model they fit to the data is
E(y[x) = Bo + Bix + Box’

All of the above calculations are performed on the computer. For example, in section 8.3 we will

see how to fit this model using SPSS.

8.2 INFLUENCIAL OBSERVATIONS

As noted before in Chapter 7, the model can be heavily influenced by extreme
observations on the predictor variable. Since these observations shift the model towards them and
have small residuals, looking for large residuals is not adequate. A number of techniques exist for

identifying influencial observations.

Leverage

¥, can be written as a combination of yy, ya, ..., ¥a.

Vi=hy +hy, +.+hy,

where h; measures the influence of y; on JA/,- .

The value #; is called the leverage of the i™ observation with respect to the values of the
x’s since h; = f{x).

The larger the leverage the more influence this observation has on the model. #4; is

compared to average leverage /1 = (k - % which can be calculated from the number of

parameters in the model.

If ;> 2h then this observation should be carefully examined within the context of the

study. This will be illustrated with an example shortly.

Cook’s Distance

A measure of overall influence an observation has on the estimation of B was proposed

by Cook (1979). Cook’s distance is defined as

e h.
D- — 1 1
l kMSE |:(1 - hi )2 }

Robert Gebotys 2008



A large value of D; indicates a strong influence. Values of D can be compared to the F
distribution with df; = k, df; =n - k degrees of freedom. Observations that fall above the 50"

percentile are considered influencial.

Studentized Deleted Residual
The researcher deletes observations one at a time refitting the model with n-1 observations. The

deleted residual
d R T y 0]
where )A/(l.) indicates the predicted value of y with the i™ observation deleted. Large d; indicate

high influence. The Studentized deleted residual (d;*) is

where s, is the standard error of the deleted residual d; . We compare d;* with a t distribution

with n-k degrees of freedom.

SUMMARY

There are no set solutions for handling influential observations. Researchers might elect
to collect more data to dampen the influence of these observations or remove these points and
treat them as special cases. The context and nature of the system under study will assist the

researcher in selecting a reasonable approach.

8.3 COMPUTER IMPLEMENTATION USING SPSS

The following output fits the model E(y|x) = Bo + Bi1x + Box” to the Gebotys and Roberts data in

section 7.1. A polynomial of degree 2 (quadratic) is used to describe the relationship between age

and seriousness.| Click here for the SPSS program details.|
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In this case we have asked SPSS to fit the model E(y|x) = Bo + Bix + Box

Descriptive Statistics

Mean Std. Deviation N

Crime Seriousness 37.30 21.07 10
Age (years) 36.00 17.07 10
Age Squared (years
squared) 1558.20 1760.83 10

Variables Entered/Removed

Variables Variables
Model Entered Removed Method
1 Age

Squared

(years

squared), Enter

Age

(years)

a. All requested variables entered.
b. Dependent Variable: Crime Seriousness
ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 3896.297 2 1948.149 139.434 .0002
Residual 97.803 7 13.972
Total 3994.100 9
a. Predictors: (Constant), Age Squared (years squared), Age (years)
b. Dependent Variable: Crime Seriousness
Model Summary’
Adjusted Std. Error of | Durbin-W
Model R R Square | R Square | the Estimate atson
1 .988% 976 .969 3.74 2.081

a. Predictors: (Constant), Age Squared (years squared), Age (years)
b. Dependent Variable: Crime Seriousness
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The output is interpreted as follows.
Model

In order to determine if the model is adequate we examine the ANOVA table. Note the
degrees of freedom and F-statistic values. F = 139.434 which has an F distribution with 2
(number of parameters [3] - intercept By [1] =3 - 1 = 2) and 7 (number of observations - number

of parameters = 10 -3 = 7) degrees of freedom. We reject

H()I B]ZBZZO
Ha: BI¢BZ¢O

with p-value less than .0001, the SIG F value on the output. The REGRESSION row refers to
the model and the RESIDUAL row refers to the error component. The mean square of the

residual is equal to s°, our estimate of ¢”.

s° = MSE =13.972

s=NMSE =3.74

note s is also printed in the STD ERROR column. In the same area we also have R>, R SQUARE

printed where

R — SSM _ 3896.297 _ 97551

SST 3994.1

In other words 97.551% of the variance in seriousness is accounted for by the model (age, agesq).
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Variables

Coefficients?

Standardi
zed

Unstandardized Coefficien
Coefficients ts 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 20.683 8.823 2.344 .052 -.180 41.545
Age (years) -8.49E-02 .410 -.069 -.207 .842 -1.055 .885

Age Squared

(years squared) 1.262E-02 .004 1.055 3.174 .016 .003 .022

a. Dependent Variable: Crime Seriousness

In the Variables in the equation section the column variable lists the variable age, agesq

and constant these refer to the variables associated with the parameters By, B1, and 3, in the model.
The column labeled B given the least squares (b = 20.683, b; =-.0849, b, =.01262) estimator for
Bo, B1 and B,. The equation is therefore E(y|x) = 20.683 - .0849x + .01262x>. The Std Error

column is the standard error for each of the parameters for example

the t column gives the corresponding t statistic for testing the hypothesis

s(bo) = 8.823
s(by) = 410
s(by) = .004

Ho:ﬂlzo
H, :pB#0

_ bl _
- s(by) -

H, :p5,=0
H,:5,#0

b,
s(b,)

T =

from the Constant row

from the Age row

from the Agesq row

-.207

3.174
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For f3; the t statistic has the value -.207, and for [3, the t statistic has the value 3.174. The
column SIG gives the OLS or p-value for the t test above. In this case we have p = .842 for f3

(not significant, therefore we cannot reject Hy), and p = .016 for B, (significant, therefore we

strong evidence against Hy). Both are with 8 degrees of freedom.

Residuals

Residuals Statistics?

Minimum | Maximum Mean Std. Deviation
Predicted Value 24.04 94.69 37.30 20.81 10
Std. Predicted Value -.638 2.758 .000 1.000 10
ﬁigfc"’t‘g '\E/r;‘l)JeOf 1.28 373 1.93 72 10
Adjusted Predicted Value -35.46 39.73 24.58 21.72 10
Residual -6.49 3.61 | -7.11E-16 3.30 10
Std. Residual -1.736 .965 .000 .882 10
Stud. Residual -2.013 1.690 127 1.156 10
Deleted Residual -8.73 130.46 12.72 41.60 10
Stud. Deleted Residual -2.872 2.034 .077 1.400 10
Mahal. Distance .148 8.079 1.800 2.357 10
Cook's Distance .000 405.070 40.618 128.055 10
Centered Leverage Value .016 .898 .200 .262 10
a. Dependent Variable: Crime Seriousness
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Crime Set Bob Gebotys working _sav - 5P55 Data Editor
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We examined the residuals of the model using a variety of plots and statistics. The
Casewise plot gives a band between £3 standard deviations that is reasonable. The Durbin-
Watson Statistic is about 2, which indicates zero correlation. The leverage (LEVER) and Cook’s

distance (COOK D) values for the 10™ observation are relatively large (hyo = .8977, D = 405.069)

indicating this is an influencial observation. If we compare hyq to 2 h where h =2 (found in the
summary statistics section or use our formula for leverage, (3-1)/10=.2) our suspicion that the 10"

observation (a person 80 year old with a high seriousness rating) is influencial is confirmed.

Notice that the residual for this observation is small and therefore not an outlier. The
researchers might elect to collect more data in the 40 through 80 year old range to increase their
confidence in the model and dampen the influence of this observation. Another option might be
to remove the point from the analysis and treat this as a special case that needs further
investigation. There are no set solutions for how to handle influential observations, however, the
knowledge that they exist is valuable and a logical approach in dealing with them is highly

recommended.

The histogram of residuals looks reasonable, although with 10 observations, this is difficult to
judge.
Histogram Dependent Variable:

Crime Seriousness

Frequency

Std. Dev = .88
Mean =0.00
N=10.00

-1.50 -1.00 -.50 0.00 .50 1.00

Regression Standardized Residual
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The probability plot (see section 3.7) has improved from the previous problem of fitting a
line discussed in Chapter 7 in the sense that the residuals more closely approximate a normal
distribution. The large bulge present in the normal probability plot of residuals in Chapter 7 is no

longer present in the polynomial of degree 2 model.

Normal P-P Plot of Regression
Standardized Residual

Dep. Variable: Crime Seriousness
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The plot of the standardized data indicates a quadratic model would be reasonable. Note
that a polynomial model of degree two is being suggested on the basis of one point that is far

from the major cluster of points.

Scatterplot of "Serious" vs "Age"

Quadratic Line Fit

100

40s

SERIOUS

20
10

90

AGE
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The plot of standardized ¥ vs. e; displays a reasonable band shape as well.

Standardized Residual

Standardized Residual vs

Standardized Predicted Value

1.0 ]
5
00+« L.
-5+
[ ]
-10+4
-1.54
[ ]
-2.0
[ L] L] L] L] L] L] L]
-1.0 -5 0.0 5 1.0 1.5 2.0 25 3.0

Standardized Predicted Value

In Chapter 11 we will learn how to compare the polynomial model presented here with the line
model in Chapter 7 using the ANOVA technique. Although the polynomial model has a higher R?
than the line we do not know whether this improvement is statistically significant. In Chapter 11

we will learn how to compare these types of nested models.
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8.4 COMPUTER IMPLEMENTATION USING SAS

The computer output of SAS is similar to the SPSS package and will not be reproduced here,

however, the commands are listed below to fit the model previously discussed.

DATA JUSTICE;
INPUT ID AGE SERIOUS;
AGESQ = AGE**2;
CARDS;

12021

22528

10 80 95

PROC REG;

MODEL SERIOUS = AGE AGESQ /R INFLUENCE DW;
OUTPUT OUT = RESIDS P = YHAT R = RESID;

PROC PLOT;

PLOT RESID*(YHAT, AGE);

PROC UNIVARIATE PLOT NORMAL;

VAR RESID;

Note that the lines are identical to the program discussed in Chapter 7 however the AGESQ
variable has been added in the MODEL statement and at the beginning of the program as a

transformation. The INFLUENCE option has also been added to the MODEL statement to give

influence statistics.
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8.5 Exercises

1. Neifeld, M. and Poffenberger, A., A Mathematical Analysis of Work Curves, J. General
Psychol. 1928, 1, 448-458 examined how fatigue was related to work. People were
required to lift a 241b. weight unit exhausted on a number of occasions. The results are
given below where x stands for segment of work and y stands for number of arbitrary

units of work.

X Y

1 25.1
2 252
3 24.8
4 243
5 23.8
6 233
7 22.2
8 20.9
9 18.5
10 15.8
11 12.1
12 9.7
13 5.7
14 34
15 2.1

Find the best polynomial model for this data. Give reasons for your choice. Consider

models up to degree 3.

2. loteyko, J., La Fatigue, Paris: Flammarion, 1920 examined fatigue in basically the same
manner as above. The data have been converted to 15 work segments (X) so that a
comparison can be made with Neifeld and Poffenberger (1928), Problem 1. Y again

denotes units of work. The data are listed on the next page.
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X Y

1 32.6
2 314
3 30.2
4 29.2
5 27.6
6 26.5
7 23.8
8 24.8
9 23.5
10 21.4
11 20.2
12 17.2
13 14.8
14 9.7
15 2.0

Find the best polynomial model for this data. State your reasons clearly. Consider models

up to degree 3.

a. Compare and contrast your results to problems 1 and 2.

b. Y =P+ piX+BX
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3. Chapanis (Psychometrika, 1953, 18, 327-336) utilized the following set of (X,Y) values

to illustrate the shortcomings of the reduction process for fitting a parabolic arc to

empirical data:
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X Y
1 25
5 39
1.5 42
2.0 43
3.0 54
3.8 53
4.6 58
4.9 51
6.7 51
7.8 50
8.2 40
9.0 34
10.0 33
11.0 16
11.2 24




8.6 MATRIX NOTATION FOR THE LINEAR MODEL

We briefly introduce matrix notation here to assist us in writing the linear model. The
use of matrix notation in the text is strictly to assist the student in writing linear models and
conceptualizing the fitting and evaluation of models. The computer (SPSS, SAS) will perform all
calculations. No matrix algebra will be performed by hand. Matrix notation however is an
invaluable tool in writing and conceptualizing model and aids significantly in understanding the
computer output. We will use it as a convenient shorthand notation and let the computer perform

the calculations. Matrix algebra is not necessary for an understanding of the material in this text.

As we discussed in the previous section we assume hereafter that the relationship
between the dependent variable y and the independent variables xj,..., Xy (perhaps re-expressions
of the original independent variables) is of the form, ignoring for the moment the possibility of
variation.

y = f(X1,...,Xx)
= Bixi + Baxa +. .+ Bk
=X 1 Brut
= X'B

In the statistical context i.e. when a particular value for (x;,...,x) specifies a frequency

distribution for y we assume that

Ely[x1,....xk] = Bix1 +...+ Pix

and that changes in (x;,...,Xy) affect at most the means of the frequency distributions. Read
E[y|xi,...,Xk] as the average value of y given xy,...,X,. [f we put e =y - B1X; -...- BiXk then the
frequency distribution of e is constant as (X,...,Xi) changes.

Thus we can write our model as

y=Bix; ...+ Bxg te

and e is referred to as the error term.
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If f is the frequency of e, then for a particular value of (xy,...,Xx) the frequency function

of'y is given by f(e - Bix; -...- Bixx). We will assume hereafter that f can be taken to be a density

function and that the variance of the frequency distribution for e exists and is equal to o”.

In a psychological investigation our primary purpose will be to make

inferences about the true value of the coefficients f;, B2..., P

To do this we will be required to make a number of observations at different values of (xj,.. .,Xk)‘.

Let y; denote the observation taken at

X i) = (Xils.- - - Xik)

and let e; denote the error. Then for n observations we have

yi| [ fxn+ + fxic+ e
V2 Lixai+ + [+ e2

Ynx1 = =
_yn_ _ﬁl.an + ...+ ﬂk.Xnk + én

= ank kal + Chx1

=Xp+e

where X is called the design matrix.
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We assume that the form of the frequency distribution for e is normal: i.e.

f@)=Groty 2o )

or ¢ ~ N(0, 6°)

The statistical model (See Section 2.4 for information on statistical models) we have constructed

here is

! [*L(J’y =Bix; == Bx, )2 )]

(R,27c?) 2e" 2 B, €R,0€R)

called the linear model with normal error.

For the normal linear model the least squares estimator of 3 is given by

b = (X'X)"X"y

The vector

Y-Xb=e

is called the residual vector. We can write

Iy[I* = [IXbIF* + [y - Xb|

where

IXbIf* = y"Xb

ly =Xb|[* =y'y — y'Xb
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This can be displayed in an ANOVA table

Source Degrees of freedom | Sum of squares
Model k y'Xb
Residual n-k y'y - y'Xb
Total n y'y

Computer packages usually remove the constant (;) automatically giving a corrected total i.e. (n-

1) and Model (k-1) degrees of freedom, sums of squares etc.

The ANOVA table removing the constant (J3;) looks like the following

Source Degrees of freedom | Sum of squares
Model k-1 2
y'Xb _ (Zyl)
n
Residual n-k y'y - y'Xb
Total n-1 ( )2
1 Vi

More information on the ANOVA procedure and computer implementation will be given in

Chapter 11. SPSS will perform all matrix calculations however matrix notation will be very

useful in writing and conceptualizing the linear model in succeeding chapters.
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