
CHAPTER 8:  POLYNOMIAL MODELS AND MATRIX NOTATION 
 

 

 

8.1 POLYNOMIAL MODELS 

 

The methods we have used in the previous section can be easily extended to problems 

where the functions form of the relationship is not described by a line. Polynomial relationships 

(see section 6.12) are used by psychologists to model systems in a wide variety of areas. For 

models of this type researchers assume that the means of the y variable depend on x according to 

the model; which is called a polynomial of degree k-1. 

 

 

E(y|x) = β0 + β1x1
1 + β2x1

2 + … + βkxk 

 

 

 From Chapter 7 we have seen that in the case of a line y changes by a constant amount 

with x.  There are no curves in this polynomial of degree one.  We have seen in 6.12 that 

polynomials of degree 2 will curve once; polynomial of degree 3 will curve twice, etc.  A 

polynomial of degree k will fit k data points perfectly.  When y changes at a constant rate or 

percentage with x researchers use exponential models (Chapter 13) to model the system under 

study.  When y changes with x at a non-constant rate, then the researcher can consider a 

polynomial model.  See the two examples in Figures 8.1 and 8.2. 
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Figure 8.1

x
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y increases with x at a decreasing non-constant rate 

Figure 8.2

x

y

y decreases with x at a decreasing non-constant rate 
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Polynomial models as we have seen previously in section 6.12 give the researcher a great 

deal of flexibility in modeling the relationship between x and y.  No longer is there a restriction 

that a line models the system.  Polynomial models that are quite common are quadratic (degree 2) 

and cubic (degree 3) relationships.  For the sake of parsimony researchers when in the situation 

that a line does not adequately fit the data, usually try the highest polynomial.  A graph of the 

data is very helpful in determining the degree of polynomial the researcher may wish to consider. 

 

 

The principle of least squares is used as previously where  

b0, b1, … , bk 

represent the least squares estimators of 

β0, β1, … , βk  

the population parameters. 

 

The predicted value of y is 
k

k xbxbxbby ++++= ...ˆ 2
2

1
10  

where the residual is 

iii yye ˆ==  

 

once again, the variance of the residuals is given by 

kn
e

s
−

= ∑ 2
2  

 

Since there are (k) parameters estimated the degrees of freedom of s2 is n - k. Note that there must 

be at least k+1 data points in order to estimate , the spread or scaling of the points about the 

model.   

2σ
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To test the hypothesis 

 

0: =ioH β  

0: ≠iH a β  

use 

)( ibs
biT =  

 

where T has a t distribution with n - k degrees of freedom. A common misconception is that the 

magnitude of the  b indicates its importance in predicting y.  This is clearly not the case as can be 

seen in the T statistic.  The standard error influences both the test of hypothesis and confidence 

interval for the parameter. 

 

The ANOVA table has the same structure as before 

 

Source Sums of squares Degrees of 

freedom 

Mean square F 

Model ∑ − 2)ˆ( yyi  1−k  
DFM
SSM

 
MSE
MSM

 

Error ∑ − 2)ˆ( ii yy  kn −  
DFE
SSE

 
 

Total ∑ − 2)( yyi  1−n  
  

 

 

Note that the F statistic now tests the hypothesis 

0...: 1 == koH ββ  

0...: 1 ≠≠≠ kaH ββ  

and  

MSE
MSMF =  

is distributed with F(k-1, n-k) degrees of freedom under H0. The Total DF = n-1 and the Model 

DF = k-1 since β0, one parameter, is removed from the test of hypothesis. The reasoning for this 

Robert Gebotys 2008                                                                                                



is much the same as in the previous chapter, researchers wish to examine the effect of x on y and 

β0 is usually not of interest. 

 

The proportion of variance in y accounted for by the model using x is called R squared 

(See Chapter 7). 

SSE
SSM

SSESSM
SSM

SST
SSMR −=

+
== 12  

The F test can also be written in terms of R2 

MSE
MSMF =  

     ( )
( )kn

R
k

R

−
−

−= 2

2

1
1  

 

Note that R2 is defined in terms of sums of squares not mean squares.  Clearly R2 does not reflect 

the number of parameters or degrees of freedom in the model.  As the number of parameters 

increases, 2R  increases.  In fact, a researcher could force 2R  close to one by fitting 

polynomials of high degree.  The question then would be; is the complex polynomial as 

parsimonious and meaningful a solution for the problem as a lower order polynomial (is a 

plynomial of degree 2 as reasonable as one of degree 10) and still be significant in the 

ANOVA test.  The adjusted 2R  or  is used to take into account the number of 

parameters in the model.    

2
AR

( )
SST
MSEnRA 112 −−=   

In this case  increases only is MSE decreases.  It cannot be forced to 1 by adding more 

parameters to the model. 

2
AR

 

For example, the researchers that are investigating the relationship between age and 

seriousness (See Section 7.1) may suspect that a more complicated relationship exists between the 

two variables. Using the knowledge acquired from a literature review and a plot of x vs. y, these 

researchers wish to examine a polynomial of degree 2 which they suspect might be a better model 

for this system.  
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The model they fit to the data is 

E(y|x) = β0 + β1x + β2x2 

All of the above calculations are performed on the computer. For example, in section 8.3 we will 

see how to fit this model using SPSS. 

 

 

8.2 INFLUENCIAL OBSERVATIONS 

 

As noted before in Chapter 7, the model can be heavily influenced by extreme 

observations on the predictor variable. Since these observations shift the model towards them and 

have small residuals, looking for large residuals is not adequate. A number of techniques exist for 

identifying influencial observations. 

 

Leverage 

iŷ can be written as a combination of y1, y2, …, yn. 

nni yhyhyhy +++= ...ˆ 2211  

where hi measures the influence of yi on .  iŷ

 

The value hi is called the leverage of the ith observation with respect to the values of the 

x’s since hi = f(x). 

 The larger the leverage the more influence this observation has on the model. hi is 

compared to average leverage ( )
n

kh 1−=  which can be calculated from the number of 

parameters in the model. 

 If hi > h2  then this observation should be carefully examined within the context of the 

study.  This will be illustrated with an example shortly. 

 

Cook’s Distance 

A measure of overall influence an observation has on the estimation of β was proposed 

by Cook (1979). Cook’s distance is defined as 

 

( ) ⎥
⎥
⎦
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⎢
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e
D  
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A large value of Di indicates a strong influence. Values of D can be compared to the F 

distribution with df1 = k, df2 =n - k degrees of freedom. Observations that fall above the 50th 

percentile are considered influencial. 

 

Studentized Deleted Residual 

The researcher deletes observations one at a time refitting the model with n-1 observations. The 

deleted residual 

)(ˆ ii yyd
i

−=  

where  indicates the predicted value of y with the ith observation deleted. Large di indicate 

high influence. The Studentized deleted residual (di*) is 

( )iŷ

 

id

i
i s

d
d =*  

 

 

where is the standard error of the deleted residual di . We compare di* with a t distribution 

with n-k degrees of freedom. 

ids

 

SUMMARY 

 There are no set solutions for handling influential observations.  Researchers might elect 

to collect more data to dampen the influence of these observations or remove these points and 

treat them as special cases.  The context and nature of the system under study will assist the 

researcher in selecting a reasonable approach. 

 

 

8.3 COMPUTER IMPLEMENTATION USING SPSS 

 

The following output fits the model E(y|x) = β0 + β1x + β2x2 to the Gebotys and Roberts data in 

section 7.1. A polynomial of degree 2 (quadratic) is used to describe the relationship between age 

and seriousness. Click here for the SPSS program details. 
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In this case we have asked SPSS to fit the model E(y|x) = β0 + β1x + β2x2 

Descriptive Statistics

37.30 21.07 10
36.00 17.07 10

1558.20 1760.83 10

Crime Seriousness
Age (years)
Age Squared (years
squared)

Mean Std. Deviation N

Variables Entered/Removedb

Age
Squared
(years
squared),
Age
(years)

a

. Enter

Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: Crime Seriousnessb. 

ANOVAb

3896.297 2 1948.149 139.434 .000a

97.803 7 13.972
3994.100 9

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Age Squared (years squared), Age (years)a. 

Dependent Variable: Crime Seriousnessb. 

Model Summaryb

.988a .976 .969 3.74 2.081
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Durbin-W
atson

Predictors: (Constant), Age Squared (years squared), Age (years)a. 

Dependent Variable: Crime Seriousnessb. 
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The output is interpreted as follows. 

Model 

In order to determine if the model is adequate we examine the ANOVA table. Note the 

degrees of freedom and F-statistic values. F = 139.434 which has an F distribution with 2 

(number of parameters [3] - intercept β0 [1] = 3 - 1 = 2) and 7 (number of observations - number 

of parameters = 10 -3 = 7) degrees of freedom. We reject 

 

H0: β1 = β2 = 0 

Ha: β1 ≠ β2 ≠ 0 

 

with p-value less than .0001, the SIG F value on the output. The REGRESSION row refers to 

the model and the RESIDUAL row refers to the error component. The mean square of the 

residual is equal to s2, our estimate of σ2. 

 

s2 = MSE = 13.972 

s = MSE  = 3.74 

 

note s is also printed in the STD ERROR column. In the same area we also have R2, R SQUARE 

printed where 

 

97551.
1.3994

297.38962 ===
SST
SSMR  

 

In other words 97.551% of the variance in seriousness is accounted for by the model (age, agesq).  
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Variables 

Coefficientsa

20.683 8.823 2.344 .052 -.180 41.545
-8.49E-02 .410 -.069 -.207 .842 -1.055 .885

1.262E-02 .004 1.055 3.174 .016 .003 .022

(Constant)
Age (years)
Age Squared
(years squared)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Crime Seriousnessa. 

 

 

In the Variables in the equation section the column variable lists the variable age, agesq 

and constant these refer to the variables associated with the parameters β0, β1, and β2 in the model. 

The column labeled B given the least squares (b0 = 20.683, b1 = -.0849, b2 = .01262) estimator for 

β0, β1 and β2. The equation is therefore E(y|x) = 20.683 - .0849x + .01262x2. The Std Error 

column is the standard error for each of the parameters for example 

 

s(b0) = 8.823 from the Constant row 

s(b1) = .410 from the Age row 

s(b2) = .004 from the Agesq row 

 

the t column gives the corresponding t statistic for testing the hypothesis 

0: 1 =βoH  

0: 1 ≠βaH  

207.
)( 1

1 −==
bs
bT  

 

0: 2 =βoH  

0: 2 ≠βaH  

174.3
)( 2

2 ==
bs
bT  
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For β1 the t statistic has the value -.207, and for β2 the t statistic has the value 3.174. The 

column SIG gives the OLS or p-value for the t test above. In this case we have p = .842 for β1 

(not significant, therefore we cannot reject H0), and p = .016 for β2 (significant, therefore we 

strong evidence against H0). Both are with 8 degrees of freedom. 

 

 

 

 

Residuals 

 

 

Residuals Statisticsa

24.04 94.69 37.30 20.81 10
-.638 2.758 .000 1.000 10

1.28 3.73 1.93 .72 10

-35.46 39.73 24.58 21.72 10
-6.49 3.61 -7.11E-16 3.30 10

-1.736 .965 .000 .882 10
-2.013 1.690 .127 1.156 10

-8.73 130.46 12.72 41.60 10
-2.872 2.034 .077 1.400 10

.148 8.079 1.800 2.357 10

.000 405.070 40.618 128.055 10

.016 .898 .200 .262 10

Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual

Centered Leverage Value
Cook's Distance
Mahal. Distance

Minimum Maximum Mean Std. Deviation N

Dependent Variable: Crime Seriousnessa. 
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We examined the residuals of the model using a variety of plots and statistics.  The 

Casewise plot gives a band between ±3 standard deviations that is reasonable. The Durbin-

Watson Statistic is about 2, which indicates zero correlation. The leverage (LEVER) and Cook’s 

distance (COOK D) values for the 10th observation are relatively large (h10 = .8977, D = 405.069) 

indicating this is an influencial observation. If we compare h10 to 2 h  where h = .2 (found in the 

summary statistics section or use our formula for leverage, (3-1)/10=.2) our suspicion that the 10th 

observation (a person 80 year old with a high seriousness rating) is influencial is confirmed. 

 

Notice that the residual for this observation is small and therefore not an outlier.  The 

researchers might elect to collect more data in the 40 through 80 year old range to increase their 

confidence in the model and dampen the influence of this observation.  Another option might be 

to remove the point from the analysis and treat this as a special case that needs further 

investigation.  There are no set solutions for how to handle influential observations, however, the 

knowledge that they exist is valuable and a logical approach in dealing with them is highly 

recommended. 

 

The histogram of residuals looks reasonable, although with 10 observations, this is difficult to 

judge. 

Regression Standardized Residual

1.00.500.00-.50-1.00-1.50

Histogram Dependent Variable: 

Crime Seriousness
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Std. Dev = .88  
Mean = 0.00

N = 10.00
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The probability plot (see section 3.7) has improved from the previous problem of fitting a 

line discussed in Chapter 7 in the sense that the residuals more closely approximate a normal 

distribution. The large bulge present in the normal probability plot of residuals in Chapter 7 is no 

longer present in the polynomial of degree 2 model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal P-P Plot of Regression
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Observed Cum Prob
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The plot of the standardized data indicates a quadratic model would be reasonable. Note 

that a polynomial model of degree two is being suggested on the basis of one point that is far 

from the major cluster of points. 

 

 

 

 

 

 Scatterplot of "Serious" vs "Age"

Quadratic Line Fit
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The plot of standardized ŷ vs. ei displays a reasonable band shape as well. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Standardized Residual vs

Standardized Predicted Value

Standardized Predicted Value

3.02.52.01.51.0.50.0-.5-1.0
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In Chapter 11 we will learn how to compare the polynomial model presented here with the line 

model in Chapter 7 using the ANOVA technique. Although the polynomial model has a higher R2 

than the line we do not know whether this improvement is statistically significant. In Chapter 11 

we will learn how to compare these types of nested models. 
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8.4 COMPUTER IMPLEMENTATION USING SAS 

 

The computer output of SAS is similar to the SPSS package and will not be reproduced here, 

however, the commands are listed below to fit the model previously discussed. 

 

DATA JUSTICE; 

INPUT ID AGE SERIOUS; 

AGESQ = AGE**2; 

CARDS; 

1 20 21 

2 25 28 

… 

… 

… 

10 80 95 

PROC REG; 

MODEL SERIOUS = AGE AGESQ / R INFLUENCE DW; 

OUTPUT OUT = RESIDS P = YHAT R = RESID; 

PROC PLOT; 

PLOT RESID*(YHAT, AGE); 

PROC UNIVARIATE PLOT NORMAL; 

VAR RESID; 

 

Note that the lines are identical to the program discussed in Chapter 7 however the AGESQ 

variable has been added in the MODEL statement and at the beginning of the program as a 

transformation. The INFLUENCE option has also been added to the MODEL statement to give 

influence statistics. 
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8.5 Exercises 

 

1. Neifeld, M. and Poffenberger, A., A Mathematical Analysis of Work Curves, J. General 

Psychol. 1928, 1, 448-458 examined how fatigue was related to work. People were 

required to lift a 24lb. weight unit exhausted on a number of occasions. The results are 

given below where x stands for segment of work and y stands for number of arbitrary 

units of work. 

 

X Y 

1 25.1 

2 25.2 

3 24.8 

4 24.3 

5 23.8 

6 23.3 

7 22.2 

8 20.9 

9 18.5 

10 15.8 

11 12.1 

12 9.7 

13 5.7 

14 3.4 

15 2.1 

 

Find the best polynomial model for this data. Give reasons for your choice. Consider 

models up to degree 3. 

 

2. Ioteyko, J., La Fatigue, Paris: Flammarion, 1920 examined fatigue in basically the same 

manner as above. The data have been converted to 15 work segments (x) so that a 

comparison can be made with Neifeld and Poffenberger (1928), Problem 1. Y again 

denotes units of work. The data are listed on the next page. 
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X Y 

1 32.6 

2 31.4 

3 30.2 

4 29.2 

5 27.6 

6 26.5 

7 23.8 

8 24.8 

9 23.5 

10 21.4 

11 20.2 

12 17.2 

13 14.8 

14 9.7 

15 2.0 

 

 

Find the best polynomial model for this data. State your reasons clearly. Consider models 

up to degree 3. 

 

a. Compare and contrast your results to problems 1 and 2. 

 

b. Y = β0 + β1X + β2X2 
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3. Chapanis (Psychometrika, 1953, 18, 327-336) utilized the following set of (X,Y) values 

to illustrate the shortcomings of the reduction process for fitting a parabolic arc to 

empirical data: 

 

 

X Y 

.1 25 

.5 39 

1.5 42 

2.0 43 

3.0 54 

3.8 53 

4.6 58 

4.9 51 

6.7 51 

7.8 50 

8.2 40 

9.0 34 

10.0 33 

11.0 16 

11.2 24 
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8.6 MATRIX NOTATION FOR THE LINEAR MODEL 

 

We briefly introduce matrix notation here to assist us in writing the linear model.  The 

use of matrix notation in the text is strictly to assist the student in writing linear models and 

conceptualizing the fitting and evaluation of models.  The computer (SPSS, SAS) will perform all 

calculations.  No matrix algebra will be performed by hand.  Matrix notation however is an 

invaluable tool in writing and conceptualizing model and aids significantly in understanding the 

computer output.  We will use it as a convenient shorthand notation and let the computer perform 

the calculations.  Matrix algebra is not necessary for an understanding of the material in this text. 

 

As we discussed in the previous section we assume hereafter that the relationship 

between the dependent variable y and the independent variables x1,…,xk (perhaps re-expressions 

of the original independent variables) is of the form, ignoring for the moment the possibility of 

variation. 

y = f(x1,…,xk)  

= β1x1 + β2x2 +…+ βkxk  

= X'
1xk βkx1  

= X'β 

 

In the statistical context i.e. when a particular value for (x1,…,xk)' specifies a frequency 

distribution for y we assume that 

 

E[y|x1,…,xk] = β1x1 +…+ βkxk 

 

and that changes in (x1,…,xk) affect at most the means of the frequency distributions. Read 

E[y|x1,…,xk] as the average value of y given x1,…,xk. If we put e = y - β1x1 -…- βkxk then the 

frequency distribution of e is constant as (x1,…,xk) changes. 

 

Thus we can write our model as 

 

y = β1x1 +…+ βkxk + e 

 

and e is referred to as the error term.  
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If f is the frequency of e, then for a particular value of (x1,…,xk) the frequency function 

of y is given by f(e - β1x1 -…- βkxk). We will assume hereafter that f can be taken to be a density 

function and that the variance of the frequency distribution for e exists and is equal to σ2. 

 

In a psychological investigation our primary purpose will be to make 

inferences about the true value of the coefficients β1, β2,…, βk. 

 

To do this we will be required to make a number of observations at different values of (x1,…,xk)'.  

 

Let yi denote the observation taken at 

 

X'
(i) = (xi1,…,xik) 

and let ei denote the error. Then for n observations we have 
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= Xnxk βkx1 + enx1 

 

= Xβ + e 

 

where X is called the design matrix.  
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We assume that the form of the frequency distribution for e is normal: i.e. 

 

⎟
⎠
⎞

⎜
⎝
⎛ −−

=
2

22
1

2
1

2 )()(
e

esef σπσ  

 

or e ∼ N(0, σ2) 

 

The statistical model (See Section 2.4 for information on statistical models) we have constructed 

here is  

 
( )

),)2(,(
2

,112
)...

2
1

2
1

2 +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−−−
∈∈ RReR k

xxy ki

σβπσ
ββ

σ  

 

called the linear model with normal error.  

 

For the normal linear model the least squares estimator of β is given by 

 

b = (X'X)-1X'y 

 

The vector 

 

Y – Xb = e 

 

is called the residual vector. We can write 

 

||y||2 = ||Xb||2 + ||y - Xb||2 

where 

 

||Xb||2 = y’Xb 

 

||y −Xb||2 = y'y – y'Xb 
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This can be displayed in an ANOVA table 

 

Source Degrees of freedom Sum of squares 

Model k y'Xb 

Residual n-k y'y - y'Xb 

Total n y'y 

 

Computer packages usually remove the constant (β1) automatically giving a corrected total i.e. (n-

1) and Model (k-1) degrees of freedom, sums of squares etc. 

 

The ANOVA table removing the constant (β1) looks like the following 

 

Source Degrees of freedom Sum of squares 

Model k-1 ( )
n
y

Xby i
2

' ∑−  

Residual n-k y'y - y'Xb 

Total n-1 ( )
n
y

yy i
2

' ∑−  

 

 

More information on the ANOVA procedure and computer implementation will be given in 

Chapter 11.  SPSS will perform all matrix calculations however matrix notation will be very 

useful in writing and conceptualizing the linear model in succeeding chapters. 
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