CHAPTER 9: LINEAR MODELS WITH SEVERAL VARIABLES

Suppose we have a single dependent variable y and m independent variables. Further, let y = f{x,
,..-,Xm) denote the functional relationship between (x; ,...,x,). Note that we are in a different
situation than the one discussed in the previous chapter. Previously with only one single
independent variable, one could graph the data (x vs. y) in order to help determine the type of
model or degree of polynomial necessary to model the system. With m independent variables the
graph is an m + 1 dimensional surface. The surface may be visualized when m is small (say 2),
but in cases of many x's the researcher may not be able to visualize the surface and must depend

on the techniques we will describe here to help determine the important independent variables.
9.1 QUANTITATIVE VARIABLES (CONTINUOUS)
Suppose m = 1 and x is a quantitative variable. Further suppose the relationship between

y and x can be approximated by a polynomial relationship (Chapter 8). y is a function of x as

described by

y=1x

=By + Pix' +...+ P

=X Bra

Example One
Now suppose we have 2 continuous quantitative variables, x; and x,. Assume that f'can be

approximated by a polynomial of degree 1 in x;, for example:

E[ylx] = Bo + Bixi

and a polynomial of degree 2 in x,, for example:

E[ylx] = Bo + Box2

Then we can write
y= f(xlaxz)
=B, + Bix, + Byx,

=X'12 Bon
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which gives the full model that describes the relationship between y and x; and x,. Note there is

no curvature (i.e. x%, x°) in this model.

The model of degree 1 can be written as

E(.V|x)=ﬂo +B,x,+ B,x,

whereas before the ['s represent the unknown population parameters that are estimated by the

b's using least squares.

P, represents the y intercept of this 3-dimensional surface.
P, is the change in E(y) for a one unit increase in x; when x; is held constant.

p, is the change in E(y) for a one unit increase in x, when x; is held constant.

The interpretation of £, is given in Figure 9.1 below. If x; is held constant, then the

model is E[y[x] = By + Bix1, a line for each value of x,. £, is the change in y per unit increase in x;.

The graph below gives the relationship for x,=4 and x,= 5.

B(dspe)

o
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Figure 9.1 No Interaction
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Note that the lines will be parallel, or using the notation in Chapter 5, for each value of x; the
same change in x, produces the same change in y. In case of an interaction of the variables x; and

X, , the change in y will depend on x; and x, .

Clearly there is no curvature in the surface (i.e. higher degree of polynomial terms) and
the x's effect y independent of one another. In other words, the variables do not interact. Exercise
one will show the parallelism of surfaces when the variables are independent. Another way of
saying this using the terminology in Chapter 5, is for each value of x, the same change in x;

produces the same change in y, or D; = D,.

Example One (continued)

Consider a related model where model one is as before

E[ylx] = Bo + Bix1

and model two is now a polynomial of degree 2 in x,,

E(y | x): By + Brx, +ﬂ3x22

This permits curvature in the model. We can then write the overall model as

E(y | x) =p,tBx,* pB,x, +ﬂ3x22

The model and interpretation is given in Figure 9.2. If we examine the plot on the next

page of y vs. x, for constant s; we clearly see the parallelism and curvature.
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Figure 9.2 No Interaction

The model is £ (y ] x) =f, + Box, + ,B3x22 , a quadratic for each vale of x;. Note that

once again the lines are parallel, or in the notation of Chapter 5, for each value of x, the same
change in x, produces the same change in y. In other words, D, , or difference one, is equal to

difference two, or D, for all values of x, (D; = D»).

Example One (Continued)

Suppose further that both x; and x, interact, for example:
Bixs,

Then we can write

y=fix;,x,)
=p,tpx,tp,x,+ ﬂ3x22 +p,x,x,

= X" 1P

as the full model describing the relationship between the dependent variable y and the

independent variables x; and x,.
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Note that the effect of y of a change in one variable will depend on the other. For

example, Figure 9.3 below describes an interaction.

Interaction

E(y)

X2

Figure 9.3 Interaction

Note that the lines are not parallel, and changes in E(y) depend both on x; and x,. In other

words, D, # D, in the case of an interaction.

SUMMARY

In summary, the introduction of the degree 2 term (x,) allows the surface curvature rather
than restricting it to straight planes. The introduction of the interaction term permits the planes to
be non parallel; in other words, the change in E(y) will depend on the values of both x; and x;.
The effect of a unit change in x; will depend on the level of x,. Exercise one will demonstrate this
effect. Using the terminology in Chapter 5, we say that for all x; the same change in x, does not

produce the same change in y.

Researchers combine quantitative variables using polynomial and interaction expressions

in order to have maximum flexibility when trying to model a system.
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Example 1

A researcher wishes to study the public’s satisfaction with some community organizations (y).

Two independent variables are considered: the amount of volunteer time at each organization in

hours (x;) and the amount of money spent on each organization in thousands of dollars (x,). The

psychologist suspects, from previous research, that satisfaction is related linearly with volunteer

time and in a quadratic fashion with dollars spent. There is also the possibility of an interaction

between volunteer time and dollars spent. The data are listed below.

y X1 X2
4.2 60 4.5
6.5 70 32
3.1 80 6.1

The linear model is given by

y=Xp

where an individual response is described by

2
y =B+ Bx + Byx, + Bix,” + Bixix,

The following columns are also calculated in order to fit the above model.

x22 X1X2
(4.5)* =20.25 60 x 4.5 =270.0
(3.2)° =10.24 70 x 3.2 =224.0

The model is therefore written as

y=4XB
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42] [1 60 4.5 2025 270.0]|[ B
6.5 |1 70 32 1024 224.0|| pu
3.1|=|1 80 6.1 48.61 480.8|| S

Clearly we can generalize this to the situation where we have m quantitative variables and obtain

an equation of the form

V=LX1,+.Xm)
=XB

9.2 GEOMETRY OF THE MODEL

A geometric interpretation of the parameters in the model E[y|x] = By + B1x1 + Box2 is given below.

X2

X1

e [ is the y-intercept (the value of E(y|x) when x; = x, = 0) of this three dimensional
surface.
e [, is the change in E(y|x) for 1 unit increase in x; when x;, is held fixed.

e [}, is the change in E(y|x) for 1 unit increase in x, when x; is held fixed.
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Exercises
1. Consider the model E(yjx) =2 + x; + 3x,.
a. Graph y for x,, x; = 1, 2, 3. Notice the shape of the surface.

b. Fix x; =1, and sketch a graph of x, vs. E(y|x) forx, =1, 2, 3.
Fix x; = 2, and sketch a graph of x, vs. E(yx) for x, =1, 2, 3.
Fix x; = 3, and sketch a graph of x, vs. E(y|x) for x, =1, 2, 3.

Plot all three on one graph and show that 3,; above is defined correctly.

2. Add the interaction term 2 x; x, to the model in 1. Redo a and b. Notice that B; of the
model E(y|x) = Bo + B1 x1 + B2 X2 + B3X; x; is the interaction term that controls the shape of

the surface.

9.3 QUALITATIVE VARIABLES

In contrast to the previous discussion of quantitative variables, consider the problem of
modeling a qualitative variable. The variable(s) in the linear model that represent qualitative
information are called dummy or indicator variables. Researchers usually use 1 and 0 as the
coding system for these variables since this makes parameter interpretation of the model easy.
The following method is introduced to help understand the experimental design sections of Part

III.

Suppose m = 1 and x is a qualitative variable taking k levels. Let x; = 1 if x takes i level

and x; = 0 otherwise.
The variables, x; , are called dummy variables.

We can write

y=flx)
= f(X150.5X1)

= |31x1 +...t ﬂkxk

= x'lkakxl

Dr. Robert Gebotys 2008 9-8



where

B =£0,...1,0,...0),
Xirl = (X102 0,%%),
Bt = (Brs---» Br)

then p; is the value of y when x is at its i" level.

In summary, we have:

E(y|x)=px, + B,x, +..+ B, x;

where x; is the dummy variable for the i level.

x;= 1 if x takes its i” level

= 0 otherwise

then
E(y) = p, forxatlevel 1(,)

E(y) = p,forx at level 2( 1, )

E(y) = p,forx at level k( 1, )

For a variable with k levels we have

k dummy variables.

This approach is sometimes called the cell means parameterization.
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Example 1

A researcher is interested in sex differences in performance on a cognitive task. The independent
variable is sex (x) with two levels (k = 2). The dependent measure is time in seconds to complete

the task (y). The data is given below.

sex y
M 20
F 10
M 16
F 14
F 22

The linear model which describes the functional relationship between x and y is given by

y=Ax) =Bix; + Boxs

where x; is a dummy variable having the value 1 if the subject is male and O if not male. The

variable x; is 1 if the subject is female and 0 if not female. In the above example,

Xi Xz
1 0
0 1
1 0
0 1
0 1

The design matrix X is written as

>

I
S O = O =
I N s T = S
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The linear model is given by y = XB

[20] [1 O]
10| lo 1
16]=|1 0 {ﬂl}
4| o 1|
22| [0 1)

where [ is the value of y when the subject is male and 3, is the value of y when the subject is

female.

Note the clear interpretation of the parameters in the model since B; represents the mean value of

y for men and [, represents the mean value of y for women.

In summary, suppose m = 2 and x, and x;, are qualitative variables taking k; and k; levels,
respectively. Let x; =1 if x; takes its i"™ level and x; takes its j" level and x; = 0 otherwise. Then

we can write

Y =fx1, x2)
= fX1150 - 0> X1 Xk2)
= Brxn +o.F BraoXiae
=x'B

where B; is the value of y when x, is at its i level and x; is at its j™ level.

Example 2

A social psychologist is interested in examining self-esteem in the handicapped. Two independent
variables are seen as important: sex (x;) with two levels (k; = 2) and person’s status (x;) of
whether they are handicapped or not — a control with two levels (k, = 2). An observation from the
above system can be denoted by x;; , where i = 1, 2 denotes the person’s sex, and j = 1, 2 denotes

the person’s status. The data are listed on the next page.
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Ll = 1 £ =
Ol o O & =
A N | O =

The linear model for an individual’s response is given by

y=PBuxn + Biaxiz+ Barxar + Parxan

where
e /[, is the mean value of y when the person is a man and handicapped.
e 3, is the value of y when the person is a man and not handicapped.
e f3,, is the value of y when the person is a woman and handicapped.

e [3,, is the value of y when the person is a woman and not handicapped.

The design matrix X is

0010
1000
X={0 0 0 1
000 1
01 0 0

The linear model for the system is therefore

y=Xp

(71 o 0 1 0]
ol [1 00 ofl”"
4l-lo 0 o 1]|7P"
ol oo o 1][P”
1 o 1 0 oftF”
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9.4 SUMMARY

We notice that in the above situations for both quantitative and qualitative variables we
can write the relationships between y and the independent variables x,..., x, (which are perhaps

functions of the original variables) in the form

y=Bux; T4 B

In the statistical context, we make the assumption that

Brxy +...+ Prxk

gives the relationship between the location of the frequency distribution for y and xy,..., xy, i.e.

E[)’|X1,---, xy] = lel + Bzxz +o..t Bka

Read E[y|xy,..., xi] as the average value of y given xi,..., xi , and the form of the frequency
distribution is otherwise fixed. Thus, changes in xy,..., x; change, at most, the location of the
frequency distribution. The form of the frequency distribution is assumed to be normal and the

location is given by the mean.

9.5 COMPARING A SEQUENCE OF VARIABLES

Suppose we have a single qualitative variable x; taking k; levels and a single quantitative
variable x, , such that for each level of x; the relationship between y and x, can be well

approximated by a polynomial in x, of degree at most k,. Then we can write

y=fx1, x2) = Brixn +...F PrroXuie

y=xp

* i * . . . . .
where x;; = x; X’ "and x;" = 1 if x, is at level i, and is zero otherwise.
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Example:
X1 = sex

X, = Income

y = satisfaction index

Model: E(y) = Brixi1i + Broxiz + Baixar + Baoxa

Observations:
1 4 0
0 0 1
Therefore, x =
0 0 1
1 9 0
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X7 X2 y
M 4 2
F 7 5
F 3 7
M 9 1
x; x5 x, X,
1 0 1 4
0 1 1 7
0 1 1 3
1 0 1 9
X11 X12 X21 X22
1 4 0 0
0 0 1 7
0 0 1 3
1 9 0 0
,y=xp



9.6 TESTS OF SIGNIFICANCE

To test the hypothesis

H()ZB:O
Hy: B#0

we use the ¢ statistic

AN2
where 52 :Z:(yi—_y)
(n—k)
= MSE

and (X'X) ' = (x'' x*... x*), the diagonal elements of this matrix, which is distributed student (n-

k) under Hy. Then we compute the observed level of significance (OLS or p-value), P(|student (#-

k)| > £), and assess accordingly.

To test the hypothesis

2 2
Hy: 0° =0

2 2
H,: 0" # 0

we compute the OLS or p-value

P (chi (n-k) > (n-k) s* / *

since (n-k) s* / 64" ~ chi (n-k) under H.
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9.7 DUMMY VARIABLES - ANOTHER PARAMETERIZATION

We have previously discussed, in Example 1, one parameterization of qualitative
variables, one that will give a clear interpretation to the parameters of the model () when applied

to experimental design examples that will be discussed in Part 3. In other words, the £ 's represent

the means of the treatment, but more on this later.

Another popular method of modeling qualitative variables is given below. In Example 1

of Section 8.2, we could have examined the model

E[ylx] = Bo + Pix

where x = 1 if male and x = 0 if female. Only one dummy variable is required in this model. The

interpretation of the parameters, however, is not as straight forward as before.

For Men, the model is E[y|x] = Bo + B
For Women, the model is E[y|x] = B

B; represents the mean value of y (seconds to complete the task) for women, whereas 3,

represents the difference in the mean of men and women.

B2=(Bo+B1)— P
= E[y|men] - E[y|women]

= lle _luw

Notice that the £'s in the model do not have the straightforward interpretation that was discussed

previously.

This type of modeling can be extended easily to three levels (A, A, Aj), for example:

E[ylx] = Bo + Bix1 + Poxa

where x;=11iflevel A;; 0 if not.

x, =1 iflevel A, ; 0 if not.
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Then B, is E(y| x) = By or the mean of A;
B2 is E(y| x) = Bo + By or the mean of A; minus mean Aj

B3 is E(y| x) = Bo + B, or the mean A, minus mean A;

Click here for SPSS program details.

In general, the number of dummy variables required is one less than the number of levels.

In summary, we have:

E(y|x)=p,+Bx +..+ Bix;

where x; = 1 if E(y) is mean for level i

= 0 otherwise

Note there are k-1 dummy variables or one less than the number of levels.

E(y)= f, when x is at level 1( 1,)

E(y) = p, + f,when x is at level 2( 1, )

E(y)= B, + p, whenx is at level k( z, )

The parameters are interpreted as:

By =1, — 1y
By =1y — 1
B =1, — 1,
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We have discussed two methods of parameterization of the model in the case of qualitative
variables. The first will be used extensively in Part III - Experimental Design of the text, whereas
the second will be used more frequently in Part II —Linear Models of the text, since most

software uses this type of parameterization for non-design situations.

9.8 MULTIPLE REGRESSION EXAMPLE USING SPSS

Gebotys and Roberts (1989) were interested in examining the effects of two more variables on the
seriousness rating of the crime. The following table provides the new information concerning the
amount of TV news watched in hours per week and whether the person had been a previous

victim of crime.

y X1 X, X3
serious age amount of TV news previous victim of
watched (hrs/wk) crime (1=yes, 0=no)
21 20 4 1
28 25 5 1
27 26 5 1
26 25 4.5 1
33 30 6 0
36 34 7 0
31 40 5.5 1
35 40 6 0
41 40 7 0
95 80 9 0

The calculations are again performed on the computer. It is hypothesized that there may be a
quadratic relationship between seriousness and age. The researchers’ hypothesize that the

following model is a reasonable one:

E(y|x)=p, + B x "‘/Ble2 + fix, + Byx;

The model includes age(x;, x;%), TV news (x,), and victimization(xs).
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In this case, we asked SPSS to fit the model

E(y|x)=pB, + Bx, +:B2x12 + fix, + Byx;

The SPSS output and interpretation is given below.

Click here for SPSS program details.

Model Summary?

Adjusted Std. Error of | Durbin-W
Model R R Square | R Square | the Estimate atson
1 .9982 .997 .994 1.63 1.712

a. Predictors: (Constant), Age Squared (years squared), Previous
Victim of Crime, Amount of TV News Watched (hrs/wk), Age (years)

b. Dependent Variable: Crime Seriousness

ANOVAP
Sum of
Model Squares df Mean Square F Sig.
1 Regression 3980.808 4 995.202 374.364 .0002
Residual 13.292 5 2.658
Total 3994.100 9

a. Predictors: (Constant), Age Squared (years squared), Previous Victim of Crime,
Amount of TV News Watched (hrs/wk), Age (years)

b. Dependent Variable: Crime Seriousness

In order to determine whether the model is adequate we examine the ANOVA table. Note the

degrees of freedom and F-statistic values.
F=374364

which has an F distribution with 4 (number of parameters - intercept = 5-1 =4) and 5 (number of
observations - number of parameters = 10-5 = 5) degrees of freedom (df). We reject the null

hypothesis

Ho: B1=PB2=B:=P4+=0
Ha:Bi#P2# B3 #Pa#0
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with a p-value equal to .001, the SIG F value on the output. The REGRESSION row refers to

the model and the RESIDUAL row refers to the error component. The mean square of the

residual is equal to s°, our estimate of ¢’

s = MSE =2.658

s =+ MSE =1.63

Note s is also printed in the STANDARD ERROR column. In the same area, we also have R, R
SQUARE printed, where

., SSM
SST

~3980.808
3994.100

=.99667

In other words, 99.667% of the variance in seriousness is accounted for by the model (age, agesq,

tvnews, victim).

Coefficients?

Standardi
zed

Unstandardized Coefficien
Coefficients ts 95% Confidence Interval for B
Model B Std. Error Beta t Sig. Lower Bound | Upper Bound
1 (Constant) 15.923 7.923 2.010 101 -4.443 36.289
Age (years) -.939 234 -.760 -4.003 .010 -1.541 -.336
Cvrgscuhr:dozr;l;\s//v’\\/jlgws 4.834 1.397 337 3.460 018 1.243 8.425
Previous Victim of Crime -.567 2.158 -.014 -.263 .803 -6.115 4.981
ggjaf;‘(;’)ared (years 1.728E-02 002 1.444 8.709 .000 012 022

a. Dependent Variable: Crime Seriousness

In the Variables in the equation section, the column variable lists the variables victim,

agesq, tvnews, age, and constant, which refer to the variables associated with the parameters [,

B1, B2, Bs, and B4 in the model. The column labeled B gives the least squares (by = 15.923, b, = -
939, b, =.01728, b; = 4.834, by = -.567) estimator for Bo, B1, B2, B3, and P4. The equation is

therefore
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The Std. Error column is the standard error for each of the parameters, for example:

s(bg) = 7.923
s(by) =.234
s(by) =.002
s(bs) = 1.397
s(by) =2.158

The t column gives the corresponding ¢ statistic for testing the hypotheses

HoI B] =0
Hy: B #0

b =939 a0037- b, / s(by) = -.938544 / 234448 = -4.003
s(b,) 234

HoI |32:0
Hy: B #0

T=28.709

H()Z B3 =0
Ha: 63750

T'=3.460

H()Z B4:O
Ha: 64750

T'=-263

The column SIG gives the OLS or p-values for the tests above. In this case, we have p = .010 for
B (significant, therefore we reject Hy), p = .001 for B, (significant, therefore we reject Ho), p =
.018 for B; (significant, therefore we reject Hy), and p = .803 for B4 (not significant, therefore we
cannot reject Hp). All are with 5 df. These statistics indicate age, agesq, and tvnews are all
important in predicting seriousness of the crime, but victim (whether or not the participant had

been a victim of crime) is not important.
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The casewise plot of residuals looks reasonable in that it displays a band pattern over the
range of values. The leverage (LEVER) and Cook’s distance (COOK D) values for the 10™
observation are large (leverage = .8985, Cook D = 104.14), indicating this is an influencial

observation.

Casewise Plot of Residuals
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The summary statistics for a number of measures are given below. The average leverage is .4,
which indicates the 10™ observation is clearly influential. The Dubin Watson test indicates no

serial correlation.

Residuals Statistics?

Minimum | Maximum Mean Std. Deviation N
Predicted Value 22.83 94.94 37.30 21.03 10
Std. Predicted Value -.688 2.741 .000 1.000 10
ﬁﬁg?c"’t‘;% '\E/r;’ljec’f 79 1.63 1.12 28 10
Adjusted Predicted Value 23.98 57.77 34.14 10.15 10
Residual -1.83 1.55 2.49E-15 1.22 10
Std. Residual -1.125 .953 .000 .745 10
Stud. Residual -1.666 1.088 -.034 1.096 10
Deleted Residual -4.24 37.23 3.16 12.24 10
Stud. Deleted Residual -2.233 1.113 -.168 1.291 10
Mahal. Distance 1.189 8.087 3.600 2.271 10
Cook's Distance .001 104.149 10.669 32.848 10
Centered Leverage Value 132 .899 .400 .252 10

a. Dependent Variable: Crime Seriousness

The residual plots look reasonable. The normal probability plot approximates a line.

Normal P-P Plot of Regression Standard.
Residual Dependent Variable:

Crime Seriousness
1.00

75« |
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The Standardized Scatterplot of residuals displays a reasonable band shaped pattern.

Scatterplot Dependent Variable:

Crime Seriousness
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Regression Standardized Residual
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Regression Standardized Predicted Value

In summary, from our analysis we conclude that age (x, x,°) influences crime seriousness
(y) in a quadratic manner; the more tvnews (x;) a person is exposed to the more serious the crime
rating (v), and victimization (x3) has no impact on seriousness ratings (). There is one influential
observation, which is an 80 year old person that deserves further study. The residual plots

indicate the normality assumption is reasonable.

9.10 COMPUTER IMPLEMENTATION USING SAS

DATA JUSTICE;

INPUT ID AGE SERIOUS TVNEWS VICTIM;
AGESQ = AGE**2;

CARDS;

12021401

22528501
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1080959.00

PROC REG;

MODEL SERIOUS = AGE AGESQ TVNEWS VICTIM/R INFLUENCE DW;
OUTPUT OUT = RESIDS P = YHAT R = RESID;

PROC PLOT;

PLOT RESID*(YHAT,AGE);

PROC UNIVARIATE PLOT NORMAL;

VAR RESID;

9.11 Exercises

1. Fit the model E[y|x] = o + B1x; + B2xz + Bsx; to the above data.

What is the equation for the model?
Test the hypothesis B; = B, = ;3 = 0 in an ANOVA table.

ISH

o

Test the hypothesis B; = 0. Give a 95% confidence interval for f3;.
What is R*?

i

Are the residual plots reasonable?

=

State your conclusions concerning the model clearly.

2. Problem Clinical Psychology

Success of a counseling session (Y) is recorded along with the amount of paraphrasing (X;) and

amount of empathy (X;) for 14 subjects in the following clinical study. Data are presented on the

next page.
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Subject Y X, X,
1 14.7 8.9 315
2 48.0 36.6 27.0
3 25.6 26.8 25.9
4 10.0 6.1 39.1
5 16.0 6.9 39.2
6 16.8 6.9 383
7 20.7 7.3 339
8 38.8 28.4 33.8
9 16.9 6.5 27.9
10 27.0 18.0 33.1
11 16.0 45 263
12 24.9 19.9 37.8
13 73 2.9 34.6
14 12.8 2.0 36.4

Use SPSS to fit the following model:

E[yx] = Bo + BiXi + BoXa + BsXi” + BaXa” + BsXiXa

You will need several COMPUTE statements to compute values of X2 X2 and X X

For example, we compute X%

COMPUTE X1X2 =X1 * X1

which creates the new variable for which I have chosen (arbitrarily) the variable name

X1X2.

a. What is the estimated regression equation? Do the residual plots suggest that the full

model should be modified? Explain.

b. Test at a =.05 the null hypothesis that there is no relationship between the dependent

variable and the model in an ANOVA table. Test the five hypotheses that 3; where |
=1, 2,3, 4, 51is equal to zero. What is R*?
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c. Assume the simpler model is adequate. It has been observed that the first 7 subjects

were advised by clinician A, and the second set of 7 subjects was advised by clinician

B. This qualitative variable may be entered into the model by including a variable X;,

which is set equal to O for the first 7 observations and equal to 1 for the next 7. Fit the

model

and test whether the clinician makes a difference, i.e. does f; = 0? (Qualitative

E[ylx] = Bo + BiX1 + BoXo + B3X;

variables with more than 2 levels can also be entered into the regression models.)

3. Tucher (1987) and Darlington (1990) examined homelessness in the United States for 50

cities. The data for 30 cities is reported below. The dependent measure (Y) is the

homelessness rate.

City Y Xi X X; X4 Xs Xs X7
Miami 15.9 24.5 7.5 29.8 372 7.0 0 67
St.Louis 11.6 21.8 8.4 14.0 429 8.5 0 29
San 11.5 13.7 6.0 10.2 712 1.6 1 49
Francisco
Worcester, 10.6 14.4 3.7 14.1 160 3.0 0 25
Mass
Los Angeles 10.5 16.4 7.9 2.8 3097 2.2 1 57
Santa 10.2 9.9 7.0 0.8 88 1.8 1 57
Monica
Newark, 9.5 32.8 5.9 41.7 314 2.3 1 31
N.J.
Hartford 8.8 25.2 7.1 20.0 136 2.6 1 25
Washington, 7.5 18.6 8.4 19.8 623 2.0 1 31
D.C.
Detroit 6.8 21.9 9.1 9.7 1088 54 0 23
Yonkers 6.8 9.8 4.9 10.7 191 2.1 1 32
Chicago 6.6 20.3 8.3 13.0 2992 6.0 0 21
Seattle 6.5 11.2 6.6 14.6 488 5.5 0 39
Dr. Robert Gebotys 2008 9-28




City Y Xi X, X; Xy Xs Xs X7
Las Vegas 6.0 10.5 8.9 14.2 183 9.0 0 44
Boston 5.6 20.2 4.6 25.3 571 2.6 1 30
Richmond 53 19.3 53 20.5 219 5.5 0 37
New York 5.0 20.0 7.4 21.5 7165 2.2 1 32
Dallas-Fort 5.0 14.1 4.7 5.9 1388 6.0 0 44
Worth
Denver 4.9 13.7 5.0 9.0 504 4.0 0 30
Charleston, 4.7 12.6 10.7 22.9 63 5.9 0 29
W. Va.
Atlanta 4.6 27.5 5.0 355 426 9.0 0 42
Fort Wayne 4.3 11.0 6.3 5.0 165 9.2 0 21
Portland 4.2 13.0 7.4 5.0 366 5.5 0 39
Houston 3.7 12.7 8.4 1.9 1706 7.0 0 51
San Diego 3.1 12.4 53 1.1 960 53 0 57
Salt Lake 3.1 14.2 6.3 6.5 165 4.5 0 29
City
Little Rock 2.9 14.1 5.8 16.8 170 6.5 0 40
New 2.8 26.4 11.0 25.2 559 8.0 0 52
Orleans
Charleston, 2.8 14.1 44 30.6 69 9.0 0 49
S.C.
Albuquerque 2.8 12.4 6.3 3.1 351 9.7 0 35

Y = homelessness rate; X; = poverty rate; X, = unemployment rate; X; = public housing rate; X, =

population (thousands); X5 = vacancy rate; X = rent control (1 = rent control exists); X7 = winter

temperature.

a. Fit the model

E(ylx) = Bo + B1X1 + BoXo + B3 X5 + ... + B2X7

b. Is the model adequate?

Test Hp: p1=P2=... =PB7=01in an ANOVA table.
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c. What variables are important in the model?

TestHy: B;=0,1=2,..., 7.

d. Are the residuals reasonable?

e. Add 3 two-way interaction terms to the model.
Explain the reasoning behind inclusion of each interaction term and test for their

importance.
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Dummy Variables

Problem: As a researcher you are interested in determining if where you live in

Canada makes a difference in predicting crime seriousness.

After opening the file, the data appear in the SPSS Data Editor window just like
to following:

Filz Edit Wiew Data Transform  Stabistics  Graphs  Utilites  Window  Help
=|Q|s8| =] = 1] =k &l FH= BlEE 3o
1:crime 2! ﬂ
crime area var var var var
1 2 1
2 o 1
3 4 3
4 7 2
5 3 4
b 1 2
7 b 4
8 ) 3
9 4 2 o
* 5
|SPSS Processor is ready | | | L

Note that for the area variable: 1 = west, 2 = east, 3 = ontario, 4 = quebec.

Thus, we need to create three dummy variables:
1) 1=west, 0=celse

2) 1=-east, 0=celse

3) 1 =ontario, 0 =else
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To create the dummy variables, following these steps:

1) Click on the Transform button. Click on the Compute button. The following
window will appear:

+ Compute Yanable Ed |

T arget W aniable: Mumeric E xpression:

petliate! |

=

Crime ll
j:garea - + LILI ililﬂ Funchions: E

_'I Elﬁl ilili' ABS[numespr] i’

=

_xl ;IEI llili' AMY[tezt, valie value,.. ]

ARSIM[rumexpr]
_;’I t] 1] n|. ARTAMnumespr]

e COFMNORM[zvalue)
i) _Delete | CpE pERNOULLIGA)

Ll area = 1
]yt I Eastel EEEEtl Ear‘u::ell Help |

2) Enter the variable name in the Target Variable box (e.g., west).

3) Type the number “1” in the Numeric Expression box.

4) Click on “if” button at the bottom of the window.

5) Select the “include if satisfies condition” circle by Clicking on it.

6) Select “area” from list and Click on the arrow to move it into the other box.

7) Type “=1" beside “area”. Your window should now look like the following:
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Compute Yanable: If Cazes

m i Inciude jgll CaEEE

@ . % |nclude if caze satisfies condition:

;I ;I;I ililil Funchionz: E

] <=1>=] 4]5]6] AB S [Rumespr]

H =| ~= AMYtest value value,...)

_I _I_I Llilil ARSIM[ruMmexpr]

R R | AT TR
Zvalue

o = 10] [ Delete | EoF BERNAULL .0l

Continue I Cancel | Help

i

8) Click Continue. Click OK.

9) The process is repeated to assign the “0” (i.e., “else”) condition. Click on
the Transform button.

10) Click on the Compute button.
11) Type “0” in the Numeric Expression box.
12) Click on the “if” button.

13) Choose the “not equals” button and type “1”. The window will appear like
the following:
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Compute Yanable: If Cazes

A orime " Include all cases
> area & |nchude if case satisfies condition:

G west area ~=| 1

;I ;I;I ililil Funchionz: E

] <=1>=] 4]5]6] AB S [Rumespr]
H = AMY et value value,...]
RS = PR TR it i

_#I il_ll 0 |_| AR TaAMN[mumexpr]
o COFMORM[zvalue]
o 0] [ Delete | EoF BERNAULL .0l

Continue | Cancel | Help

i

14) Click Continue. Click OK.
(SPSS will ask you if it is ok to change the existing variable —Click OK.)

15) To create the other dummy variables follow the same steps substituting “2”

and “3” in your “if” statements. When you have entered all the dummy
variables, your Data Editor will look like the following:
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Filz Edit Wiew Data Transform  Stabistice  Graphs  Utlites  Window  Help
E|S| =] | 1] =]k @l Fl| BlEE %9
1:west i ﬂ
crime area west east ontario var
1 2 1 1.00 0o 0o
2 & 1 1.00 0o 0o
3 9 3 .00 0o 1.00
4 7 2 .00 1.00 0o
5 3 4 0o 0o 0o
6 1 2 0o 1.00 0o
7 b 4 .00 0o 0o
8 5 3 .00 0o 1.00
9 4 2 0o 1.00 0o ~|
* 3]
|SPSS Processor is ready | | | v
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Example: Multiple Linear Reqgression

Gebotys and Roberts (1989) were interested in examining the
effects of several variables on the “seriousness rating of the
crime”. The variables to be examined within this example are
“age” (i.e., ‘age’, ‘agesq’), the “amount of television news
watched in hours per week” (i.e., ‘tvnews’) and “whether the
person had been a previous victim of crime” (‘victim’).
Complete the following steps in the multiple regression in

order to follow the example in this module.

1.  Pull up “Serious2” (crime) data set.(or enter data)

serious2 - SPSS Data Editor | _ [& ] x]

File Edit “iew Data Transform  Statistice Graphe  Utlites  Window Help

R3] = o] D] =k &l e ElEE
1:serious ii
serious age tvnews victim wvar var war var wvar
1 21 20 4.0 1
2 28 25 5.0 1
3 27 26 5.0 1
4 2B 26 4.5 1
9 33 a0 g.0 ]
[ 3B 34 7.0 ]
¥ a1 40 5.6 1
] 35 40 E.0 0
9 41 40 7.0 0
10 95 a0 2.0 ]
1
12
13
14
15
K| L

|SP55 Processor iz ready [ | | [
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senious2 - SPS5 Data Editor

2 0f 20

Before proceeding to any analysis, the new variable

‘agesq’ needs to be created. See “Example:

Quadratic Linear Model (page 2)”” for complete

steps in utilizing transformation function in SPSS

to create ‘agesq’. Before proceeding to the next

step, ensure that your data set ‘serious2’ now

includes five variables (i.e., ‘serious’, ‘age’, ‘agesq’,

‘tvnews’, “victim’),

File Edt View Data Transform Stahistice Graphe  Ubltiez Window Help

-2 ]x]

Z(R|8| B| »| 5 =|k| & FHre EEE 52

1:serious | ﬂ
serious age tynews victim agesy var var var var
1 21 20 40 1 400
2 2 2 50 1 B25
3 2 26 50 1 B76
4 26 25 45 1 B25
5 33 30 6.0 D 800
6 36 34 7.0 0 1156
1 ) 40 ] 1 1600
8 34 40 6.0 0 1600
9 41 40 7.0 0 1600
10 95 80 90 D B400
b
12
13
14
15
1|1E| ﬂj
|5PSS Processor is ready | | | |
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With the assumption that there is a quadratic
relationship between “seriousness” and “age’, perform

a multiple linear regression.

1. Click ‘Analyze’ on the main menu bar.
2. Click “‘Regression’ on the Analyze menu.

3. Select ‘Linear’ in the regression submenu.

4.  Specify the independent and dependent variables.
To specify ‘age’, ‘agesq’, ‘tvnews’, and ‘victim’ as
the independent variables, simply click the arrow
button to the left of the ‘Independent[s]’ text box.
‘Age’, ‘agesq’, ‘tvnews’ and ‘victim’ are then
entered into that text box. (Note: These four
independent variables can be selected in one step
by clicking all four variables while holding down
the “Control” key. This will allow all four
variables to be shifted into the independent text
box with one click of the arrow button.). Finally, to
specify “serious’ as the dependent variable, go to

the variable source list and click ‘serious’ and then
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click the arrow button to the left of the

‘Dependent:’ text box.

5. Select the “Statistics™, “plots” and “Save”
selections for this analysis (See “Example: Linear
Model with Normal Error” more detailed
directions.) For purposes of this example the three

SPSS windows are provided.

Linear Regression: Stahistics

Regiession Coethicients— |V Model fi Contirue

v Estimates B R squared change
= Cancel

[V Corfidenceintervals | | Descriptives

| Covariance matrix [ Part and partial conelations Help

Residuals

v Durbinew/atsan

v Casewise diagnostics

(™ Outliers outside r standard deviations

v Al cases
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Linear Regression: Plots
DEPENDNT Cartinue
““PRED | Scatter 1 of 1 M et | —_—
ZRESID Cancel
*DRESID
“4[JPRED m T Help
*SRESID
*sDRESID D & |*ZPRED

Standardized Rezidual Plots [ Produce all partial plots
v Histogram
v Mormal probability plot
Linear Regreszion: Save
Predicted W aluesz Reziduals Coarlfs
v Unstandardized v Unstandardized
et e ) Cancel
¥ Standardized v Standardized E—
[ Adjusted [ Studentized Help
[ 5.E. of mean predictions [ Deleted
[ Studentized deleted
Diztances
[ Mahalanobis Influence Statistics
v Cook's [ DiBetals)
v Lewverage values [ Standardized DfEeta(z]
— [ DiFit
Prediction Intervals B S BYET
b Mean I Individual [ Cowariance ratio
Confidence lnterval: | 95 =
Save to Mew File
[ Coefficient statistics |
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6. Click the ‘OK’ command pushbutton in the Linear
Regression dialogue box. This will instruct SPSS to
produce a set of output similar to that to be

discussed in the next section.
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Example: Multiple Regression

SPSS Output Explanation

Gebotys and Roberts (1989) were interested in

examining the effects of two more variables on the

seriousness rating of the crime. The following table

provides the new information concerning the “amount

of television (tv) news watched in hours per week’ and

“whether the person had been a previous victim of

crime”.
Y X4 X5 X3
Serious | Age Amount of TV | Previous victim
News watched of
(hrs/wk) Crime (1=yes,
0=no)
21 20 4 1
28 25 5 1
27 26 5 1
26 25 4.5 1
33 30 6 0
36 34 7 0
31 40 5.5 1
35 40 6 0
41 40 7 0
95 80 9 0
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The calculations are again performed on the computer.

It is hypothesized that there may be a quadratic

relationship between “seriousness” and “age”. The

researchers’ hypothesize that the following model is a

reasonable one.

E(y|X) = Bo + Bxq + BzXlz + Bng + B4X3

The model includes age (x; X:°), television news (x,) and

victimization (Xs).

In this case we have asked SPSS to fit the model.

E(y|X) =Bo + Bix; + ByX;” + BaXp + ByXs

Variables Entered/RemovedP

Variables
Model Entered

Variables
Removed

Method

1 VICTIM,
AGESQ,
TVNEWS,
AGE

Enter

a. All requested variables entered.
b. Dependent Variable: SERIOUS
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Model Summary
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Std. Error
Adjusted R of the
Model R R Square | Square Estimate |Durbin-Watson
1 .9984 997 .994 1.63 1.712
a. Predictors: (Constant), VICTIM, AGESQ, TVNEWS, AGE
b. Dependent Variable; SERIOUS
ANOVA
Sum of Mean
Model Squares df Square F Sig.
1 Regression | 3980.808 4 995.202 | 374.364 .0002
Residual 13.292 5 2.658
Total 3994.100 9

a. Predictors: (Constant), VICTIM, AGESQ, TVNEWS, AGE
b. Dependent Variable: SERIOUS

Coefficient8

Standardi
zed
Unstandardized |Coefficien 05% Confidence Interval
Coefficients ts for B

Lower Upper

Model B Std. Error Beta t Sig. Bound Bound
(Constant)] 15.923 7.923 2.010 101 -4.443 36.289
AGE -.939 234 -.760 -4.003 .010 -1.541 -.336
AGESQ |.728E-02 .002 1.444 8.709 .000 .012 .022
TVNEWS 4.834 1.397 .337 3.460 .018 1.243 8.425
VICTIM -.567 2.158 -.014 -.263 .803 -6.115 4,981

a. Dependent Variable: SERIOUS

September 2008

Dr. Robert Gebotys





10 of 20

In order to determine whether the model is
adequate, we examine the ANOVA table. Note the

degrees of freedom and F-statistic values.

F =374.364

Which has an F distribution with 4 (number of
parameters — intercept =5 -1 =4) and 5 (hnumber of
observations — number of parameters =10 -5 =15)

degrees freedom. We reject

Ho-B; =B, =B3 = B,=0
H.,B; - Bz B3z Bs=0

With p-value less than .0001, the SIG value on the
output. The REGRESSION row refers to the model
and the RESIDUAL row refers to the error component.
The mean square of the residual is equal to s%, our

estimate of the population variance.

s’ = MSE = 2.658
s = JMSE = 1.63
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Note s is also printed in the STD ERROR OF THE
ESTIMATE column. In the same area we also have R?,
R SQUARE printed where

R® =ssm/sst

= 3980/3994

997

In other words, 99.7% of the variance in seriousness is

accounted for by the model (age, agesq, tvnews, victim).

In the Coefficients section the column variable lists
the * victim’, ‘agesq’, ‘tvnews’, ‘age’ and ‘constant’ ,
which refer to the variables associated with the
parameters By, B; B, B3 and B, in the model. The
column labeled B given the least squares (b, = 15.923,
B, = -.939, b, =.017, b; =4.834, by = -.567) estimator

for By, B, B, B3 and B4. The equation is therefore

E(y|x) = 15.923 - .939x; + .017x;2 + 4.834X, - .567Xs

The STD ERROR column is the standard error column

for each of the parameters, for example
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s(by) =7.923
s(by) = .234
s(by) = .002
s(bs) = 1.397
s(b,) = 2.158

the T column gives the corresponding t statistic for

testing the hypotheses

H,: B; =0
Ha: Bl * O

T= = .934/-.234 = -4.003

Ho: Bg: 0
Ha: 82¢ 0

T=28.709

H.: B; = 0

T =3.460

Ho: B4:O
H,: B4+ 0

T=-263
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The column SIG gives the OLS or p-values for
the tests above. In this case we have p=.01 for B;
(significant, therefore we reject H,), p=.0003 for B,
(significant, therefore we reject H,), p=.018 for Bs
(significant, therefore we reject H,), and p=.803 for
B4 (not significant, therefore we cannot reject H,).
All are with 5 degrees of freedom. These statistics
Indicate that ‘age’, ‘agesq’, and ‘tvnews’ are all
Important in predicting seriousness of the crime but
that ‘victim’ (whether or not the participant had

been a victim of crime) is not important.

The casewise diagnostics of the residuals looks
reasonable in that it indicates no problems over the
range of values. The leverage (LEVER) and Cook’s
distance (COOK D) values for the 10" observation
are large (leverage = .8985, Cook D = 104.14)

Indicating this is an influential observation.
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Casewise Diagnostics
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Std. Predicted
Case Number| Residual |SERIOUS Value Residual
1 -1.125 21 22.83 -1.83
2 .697 28 26.86 1.14
3 119 27 26.81 .19
4 953 26 24.45 1.55
5 415 33 32.32 .68
6 -1.121 36 37.83 -1.83
7 -.645 31 32.05 -1.05
8 -.021 35 35.04 |-3.50E-02
9 .694 41 39.87 1.13
10 .034 95 94.94 | 5.51E-02

a. Dependent Variable: SERIOUS

The summary statistics for a number of measures

are given on the next page.
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The average leverage is .4 which indicates the 10"
observation is clearly influential. The Durbin Watson

test indicates no serial correlation.

Residuals Statistic$

Std.
Minimum [ Maximum Mean Deviation
Predicted Value 22.83 94.94 37.30 21.03 10
Std. Predicted Value -.688 2.741 .000 1.000 10
Iizg?cat;% 'f/r;(l)ljeo'c 79 1.63 1.12 28 10
Adjusted Predicted Valug 23.98 57.77 34.14 10.15 10
Residual -1.83 1.55 | 7.46E-15 1.22 10
Std. Residual -1.125 .953 .000 745 10
Stud. Residual -1.666 1.088 -.034 1.096 10
Deleted Residual -4.24 37.23 3.16 12.24 10
Stud. Deleted Residual -2.233 1.113 -.168 1.291 10
Mahal. Distance 1.189 8.087 3.600 2.271 10
Cook's Distance .001 | 104.149 10.669 32.848 10
Centered Leverage Valug 132 .899 400 252 10

a. Dependent Variable: SERIOUS
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The residual plots look reasonable.
Histogram

Dependent Variable: SERIOUS

35

Std. Dev =.75
Mean = 0.00
N =10.00

Frequency

.00 -75 -50 -25 000 25 50 .75 1.00

Regression Standardized Residual

Normal P-P Plot of Regression
Standardized Residual

Dependent Variable: SERIOUS

1.00

75+ "

.25 4

Expected Cum Prob

0.00
0.00 .25 .50 .75 1.00

Observed Cum Prob
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Scatterplot
Re Dependent Variable: SERIOUS

gre
ssi 1.0 =
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dar
diz n

ed 0.0 - L]
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ual

-1.0 «

-15
-1.0 -5 0.0 5 1.0 15 2.0 2.5 3.0

Regression Standardized Predicted Value

Congratulations!
You’ve just completed
the multiple regression
module.
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serious| age | tvnews | victim| agesq| pre 1 [ res 1 |zpr 1| zre 1| coo 1 |lev 1|Imci 1{umci_ 1| lici_ 1 | uici_ 1
21 [ 20| 4.0 1 400 | 22.834| -1.834| -0.688| -1.125| 0.662| 0.444| 19.742| 25.925| 17.625| 28.042
28 | 25| 5.0 1 625 | 26.863| 1.137| -0.496| 0.697| 0.056| 0.192| 24.600[ 29.126| 22.100| 31.626
27 | 26| 50 1 676 | 26.806| 0.194| -0.499| 0.119] 0.001| 0.155| 24.691| 28.921| 22.111| 31.501
26 | 25| 45 1 625 | 24.446| 1.554| -0.611| 0.953| 0.071| 0.132| 22.427| 26.465| 19.794| 29.098
33 30| 6.0 0 900 | 32.324| 0.676| -0.237| 0.415| 0.032| 0.271| 29.772| 34.875| 27.417| 37.231
36 (34| 70 0 | 1156 | 37.827| -1.827| 0.025| -1.121| 0.630| 0.437| 34.755| 40.900| 32.631| 43.024
31 |40| 55 1 | 1600 | 32.051| -1.051| -0.250| -0.645| 1.017| 0.652| 28.417| 35.686| 26.503| 37.599
35 (40| 6.0 0 | 1600 | 35.035| -0.035| -0.108| -0.021| 0.001| 0.590| 31.553| 38.517| 29.586| 40.484
41 (40| 70 0 | 1600 | 39.869| 1.131| 0.122| 0.694| 0.070| 0.229| 37.465| 42.273| 35.037| 44.701
95 80| 90 0 | 6400 | 94.945| 0.055| 2.741| 0.034| 104.149| 0.899| 90.757 99.133| 89.020| 100.870
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