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CHAPTER 9:  LINEAR MODELS WITH SEVERAL VARIABLES 

 

Suppose we have a single dependent variable y and m independent variables. Further, let y = f(x1 

,…,xm) denote the functional relationship between (x1 ,…,xm). Note that we are in a different 

situation than the one discussed in the previous chapter. Previously with only one single 

independent variable, one could graph the data (x vs. y) in order to help determine the type of 

model or degree of polynomial necessary to model the system. With m independent variables the 

graph is an m + 1 dimensional surface. The surface may be visualized when m is small (say 2), 

but in cases of many x's the researcher may not be able to visualize the surface and must depend 

on the techniques we will describe here to help determine the important independent variables.   

 

9.1 QUANTITATIVE VARIABLES (CONTINUOUS) 

 

Suppose m = 1 and x is a quantitative variable. Further suppose the relationship between 

y and x can be approximated by a polynomial relationship (Chapter 8). y is a function of x as 

described by 
 

y = f (x) 

   = β0 + β1x1 +…+ βkxk 

   11 ' kxxkx β=  

 

Example One 

Now suppose we have 2 continuous quantitative variables, x1 and x2. Assume that f can be 

approximated by a polynomial of degree 1 in x1, for example: 
 

E[y|x] = β0 + β1x1 
 

and a polynomial of degree 2 in x2, for example: 
 

E[y|x] = β0 + β2x2  

 

Then we can write 

),( 21 xxfy =  

22110 xx βββ ++=  

1221' xxx β=  
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which gives the full model that describes the relationship between y and x1 and x2. Note there is 

no curvature (i.e. x2, x3) in this model. 
 

The model of degree 1 can be written as 
 

( ) 0 1 1 2 2E y | x = β + β x + β x  

 

whereas before the β 's represent the unknown population parameters that are estimated by the 

b's using least squares. 

 

0β  represents the y intercept of this 3-dimensional surface. 

1β  is the change in E(y) for a one unit increase in x1 when x2 is held constant. 

2β  is the change in E(y) for a one unit increase in x2 when x1 is held constant. 

 

 The interpretation of 1β is given in Figure 9.1 below. If x2 is held constant, then the 

model is E[y|x] = β0 + β1x1 , a line for each value of x2. 1β is the change in y per unit increase in x1.  

The graph below gives the relationship for x2 = 4 and x2 = 5. 

 
Figure 9.1  No Interaction 
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Note that the lines will be parallel, or using the notation in Chapter 5, for each value of x1 the 

same change in x2 produces the same change in y. In case of an interaction of the variables x1 and 

x2  , the change in y will depend on x1 and x2 . 

 

 Clearly there is no curvature in the surface (i.e. higher degree of polynomial terms) and 

the x's effect y independent of one another. In other words, the variables do not interact. Exercise 

one will show the parallelism of surfaces when the variables are independent. Another way of 

saying this using the terminology in Chapter 5, is for each value of x2 the same change in x1 

produces the same change in y, or D1 = D2. 

 

Example One (continued) 

 Consider a related model where model one is as before 
 

E[y|x] = β0 + β1x1  

 

and model two is now a polynomial of degree 2 in x2,  
 

( ) 2
23220| xxxyE βββ ++=  

 

This permits curvature in the model. We can then write the overall model as 
 

( ) 2
0 1 1 2 2 3 2E y | x = β + β x + β x + β x  

 

 The model and interpretation is given in Figure 9.2. If we examine the plot on the next 

page of y vs. x2 for constant s1 we clearly see the parallelism and curvature. 
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Figure 9.2  No Interaction 

 

 The model is ( ) 2
23220| xxxyE βββ ++= , a quadratic for each vale of x1. Note that 

once again the lines are parallel, or in the notation of Chapter 5, for each value of x1 the same 

change in x2 produces the same change in y. In other words, D1 , or difference one, is equal to 

difference two, or D2, for all values of x2 (D1 = D2).  

 

Example One (Continued) 
 

Suppose further that both x1 and x2 interact, for example: 
 

214 sxβ  

 

Then we can write 
 

1 2y = f(x , x )  

2
0 1 1 2 2 3 2 4 1 2= β + β x + β x + β x + β x x  

1x4 4x1= x' β  

 

as the full model describing the relationship between the dependent variable y and the 

independent variables x1 and x2. 
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 Note that the effect of y of a change in one variable will depend on the other. For 

example, Figure 9.3 below describes an interaction. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3  Interaction 

 

 Note that the lines are not parallel, and changes in E(y) depend both on x1 and x2. In other 

words, 21 DD ≠  in the case of an interaction. 

 

SUMMARY 

 In summary, the introduction of the degree 2 term (x2) allows the surface curvature rather 

than restricting it to straight planes. The introduction of the interaction term permits the planes to 

be non parallel; in other words, the change in E(y) will depend on the values of both x1 and x2.  

The effect of a unit change in x1 will depend on the level of x2. Exercise one will demonstrate this 

effect. Using the terminology in Chapter 5, we say that for all x1 the same change in x2 does not 

produce the same change in y. 

 

 Researchers combine quantitative variables using polynomial and interaction expressions 

in order to have maximum flexibility when trying to model a system. 

Interaction
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Example 1 
 

A researcher wishes to study the public’s satisfaction with some community organizations (y). 

Two independent variables are considered: the amount of volunteer time at each organization in 

hours (x1) and the amount of money spent on each organization in thousands of dollars (x2). The 

psychologist suspects, from previous research, that satisfaction is related linearly with volunteer 

time and in a quadratic fashion with dollars spent. There is also the possibility of an interaction 

between volunteer time and dollars spent. The data are listed below. 
 

y x1 x2 

4.2 60 4.5 

6.5 70 3.2 

3.1 80 6.1 

. . . 

. . . 

. . . 
 

The linear model is given by 
 

y = Xβ 
 

where an individual response is described by 
 

214
2

2322110 xxxxxy βββββ ++++=  

 

The following columns are also calculated in order to fit the above model. 
 

x2
2 x1x2 

(4.5)2 = 20.25 60 x 4.5 = 270.0 

(3.2)2 = 10.24 70 x 3.2 = 224.0 

 

The model is therefore written as 
 

y = Xβ 
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Clearly we can generalize this to the situation where we have m quantitative variables and obtain 

an equation of the form 
 

y = f(x1,…,xm)  

= Xβ 

 

9.2 GEOMETRY OF THE MODEL 
 

A geometric interpretation of the parameters in the model E[y|x] = β0 + β1x1 + β2x2 is given below.  

 

  

 4  

  x2 

 3     
 E(y) 
 
 2 
 
 1   

 
 
  
 
 0  1  2  3 
  
 x1 

 

• β0 is the y-intercept (the value of E(y|x) when x1 = x2 = 0) of this three dimensional 

surface. 

• β1 is the change in E(y|x) for 1 unit increase in x1 when x2 is held fixed. 

• β2 is the change in E(y|x) for 1 unit increase in x2 when x1 is held fixed. 
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Exercises 
 

1. Consider the model E(y|x) = 2 + x1 + 3x2. 
 

a. Graph y for x2, x1 = 1, 2, 3. Notice the shape of the surface. 
 

b. Fix x1 = 1, and sketch a graph of x2 vs. E(y|x) for x2 = 1, 2, 3. 

Fix x1 = 2, and sketch a graph of x2 vs. E(y|x) for x2 = 1, 2, 3. 

Fix x1 = 3, and sketch a graph of x2 vs. E(y|x) for x2 = 1, 2, 3. 

Plot all three on one graph and show that β21 above is defined correctly. 
 

2. Add the interaction term 2 x1 x2 to the model in 1. Redo a and b. Notice that β3 of the 

model E(y|x) = β0 + β1 x1 + β2 x2 + β3x1 x2 is the interaction term that controls the shape of 

the surface. 

 

9.3 QUALITATIVE VARIABLES 
 

 In contrast to the previous discussion of quantitative variables, consider the problem of 

modeling a qualitative variable. The variable(s) in the linear model that represent qualitative 

information are called dummy or indicator variables. Researchers usually use 1 and 0 as the 

coding system for these variables since this makes parameter interpretation of the model easy.  

The following method is introduced to help understand the experimental design sections of Part 

III. 
 

Suppose m = 1 and x is a qualitative variable taking k levels. Let xi = 1 if x takes ith level 

and xi = 0 otherwise.  
 

The variables, xi , are called dummy variables.  
 

We can write 

 

y = f(x)  

= f(x1,…,xk)  

= β1x1 +…+ βkxk  

= x'1xkβkx1 
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where 

βi    = f(0,…1, 0,…0),  

xkx1 = (x1,…,xk),  

βkx1 = (β1,…, βk) 

 

then βi is the value of y when x is at its ith level. 

 
 

In summary, we have: 
 

 
kk xxxxyE βββ +++= ...)|( 2211  

 

where xi is the dummy variable for the ith level. 
 

xi = 1 if x takes its ith  level 

   = 0 otherwise 
 

then  

1)( β=yE  for x at level 1( 1μ ) 

2)( β=yE for x at level 2( 2μ ) 

. 

. 

. 

kyE β=)( for x at level k( kμ ) 

 

For a variable with k levels we have  

k dummy variables. 

 
 

This approach is sometimes called the cell means parameterization. 
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Example 1 
 

A researcher is interested in sex differences in performance on a cognitive task. The independent 

variable is sex (x) with two levels (k = 2). The dependent measure is time in seconds to complete 

the task (y). The data is given below. 
 

sex y 

M 20 

F 10 

M 16 

F 14 

F 22 

 

The linear model which describes the functional relationship between x and y is given by  
 

y = f(x) = β1x1 + β2x2 

 

where x1 is a dummy variable having the value 1 if the subject is male and 0 if not male. The 

variable x2 is 1 if the subject is female and 0 if not female. In the above example, 
 

X1 X2 

1 0 

0 1 

1 0 

0 1 

0 1 

 

The design matrix X is written as 
 

X = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10
10
01
10
01
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The linear model is given by y = Xβ  
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

22
14
16
10
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 = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

10
10
01
10
01

⎥
⎦

⎤
⎢
⎣

⎡
2

1

β
β

 

 

where β1 is the value of y when the subject is male and β2 is the value of y when the subject is 

female.   
 

Note the clear interpretation of the parameters in the model since β1 represents the mean value of 

y for men and β2 represents the mean value of y for women. 
 

In summary, suppose m = 2 and x1 and x2 are qualitative variables taking k1 and k2 levels, 

respectively. Let xij  = 1 if x1 takes its ith level and x2 takes its jth level and xij = 0 otherwise. Then 

we can write 
 

 

y = f(x1, x2)  

= f(x11,…, xk1xk2)  

= β11x11 +…+ βk1k2xk1k2  

= x'β 
 

 

where βij is the value of y when x1 is at its ith level and x2 is at its jth level. 

 

Example 2 
 

A social psychologist is interested in examining self-esteem in the handicapped. Two independent 

variables are seen as important: sex (x1) with two levels (k1 = 2) and person’s status (x2) of 

whether they are handicapped or not – a control with two levels (k2 = 2). An observation from the 

above system can be denoted by xij , where i = 1, 2 denotes the person’s sex, and j = 1, 2 denotes 

the person’s status. The data are listed on the next page. 
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x1 x2 y 

F H 7 

M H 9 

F C 4 

F C 2 

M C 6 

 

The linear model for an individual’s response is given by 
 

y = β11x11 + β12x12 + β21x21 + β22x22 

 

where 

• 11β  is the mean value of y when the person is a man and handicapped. 

• 12β  is the value of y when the person is a man and not handicapped. 

• 21β  is the value of y when the person is a woman and handicapped. 

• 22β  is the value of y when the person is a woman and not handicapped. 

 

The design matrix X is  
 

X = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0010
1000
1000
0001
0100

 

 

The linear model for the system is therefore  
 

y = Xβ 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1
2
4
9
7

 = 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0010
1000
1000
0001
0100

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

22

21

12

11

β
β
β
β
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9.4 SUMMARY 

 

We notice that in the above situations for both quantitative and qualitative variables we 

can write the relationships between y and the independent variables x1,…, xk (which are perhaps 

functions of the original variables) in the form  
 

y = β1x1 +…+ βkxk 
 

In the statistical context, we make the assumption that  
 

β1x1 +…+ βkxk  

 

gives the relationship between the location of the frequency distribution for y and x1,…, xk, i.e. 

 

E[y|x1,…, xk] = β1x1 + β2x2 +…+ βkxk 

 

Read E[y|x1,…, xk] as the average value of y given x1,…, xk , and the form of the frequency 

distribution is otherwise fixed. Thus, changes in x1,…, xk change, at most, the location of the 

frequency distribution. The form of the frequency distribution is assumed to be normal and the 

location is given by the mean. 

 

9.5 COMPARING A SEQUENCE OF VARIABLES 
 

Suppose we have a single qualitative variable x1 taking k1 levels and a single quantitative 

variable x2 , such that for each level of x1 the relationship between y and x2 can be well 

approximated by a polynomial in x2 of degree at most k2. Then we can write 
 

y = f(x1, x2) = β11x11 +…+ βk1k2xk1k2 

y = xβ 
 

where xij = xi
*x2

j–1 and xi
* = 1 if x1 is at level i, and is zero otherwise. 
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Example: 

x1 = sex 

x2 = income 

y = satisfaction index 
 

Model: E(y) = β11x11 + β12x12 + β21x21 + β22x22 

 

Observations: 
 

x1 x2 y 

M 4 2 

F 7 5 

F 3 7 

M 9 1 

 

x1
* x2

* x2
0 x2

1 

1 0 1 4 

0 1 1 7 

0 1 1 3 

1 0 1 9 

 

x11 x12 x21 x22 

1 4 0 0 

0 0 1 7 

0 0 1 3 

1 9 0 0 

 
 

Therefore, x = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0091
3100
7100
0041

, y = xβ 
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where y = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

9
3
7
4

, β = 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

22

21

12

11

β
β
β
β

 

 

9.6 TESTS OF SIGNIFICANCE 
 

To test the hypothesis 
 

H0: β = 0 

Ha: β ≠ 0 
 

we use the t statistic 
 

( )∑ −
−=− 2

1

2

)(
xx

sbT kn β  

                     iixs
b

*
)(

2

β−
=  

 

where 
)(

)ˆ( 2
2

kn
yy

s i

−

−
= ∑  

= MSE 

 

and (X'X)–1 = (x11 x22… xkk), the diagonal elements of this matrix, which is distributed student (n-

k) under H0. Then we compute the observed level of significance (OLS or p-value), P(|student (n-

k)| ≥ t), and assess accordingly. 
 

To test the hypothesis 
 

H0: σ2 = σ0
2 

Ha: σ2 ≠ σ0
2 

 

we compute the OLS or p-value 
 

P (chi (n–k) ≥ (n-k) s2 / σ0
2 

 

since (n-k) s2 / σ0
2 ~ chi (n-k) under H0. 
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9.7 DUMMY VARIABLES - ANOTHER PARAMETERIZATION 
 

We have previously discussed, in Example 1, one parameterization of qualitative 

variables, one that will give a clear interpretation to the parameters of the model (β) when applied 

to experimental design examples that will be discussed in Part 3. In other words, the β 's represent 

the means of the treatment, but more on this later. 
 

Another popular method of modeling qualitative variables is given below. In Example 1 

of Section 8.2, we could have examined the model 
 

E[y|x] = β0 + β1x 
 

where x = 1 if male and x = 0 if female. Only one dummy variable is required in this model. The 

interpretation of the parameters, however, is not as straight forward as before. 
 

For Men, the model is E[y|x] = β0 + β1 

For Women, the model is E[y|x] = β0  
 

β1 represents the mean value of y (seconds to complete the task) for women, whereas β2 

represents the difference in the mean of men and women. 
 

β2 = (β0 + β1) – β1  

 = E[y|men] - E[y|women] 

 wm μμ −=  

 

Notice that the β 's in the model do not have the straightforward interpretation that was discussed 

previously. 
 

This type of modeling can be extended easily to three levels (A1, A2, A3), for example: 
 

E[y|x] = β0 + β1x1 + β2x2 
 

where  x1 = 1 if level A1 ; 0 if not. 

x2 = 1 if level A2 ; 0 if not. 
 

 

 



 

Dr. Robert Gebotys 2008  9 - 17 

Then  β1 is E(y| x) = β0 or the mean of A3 

β2 is E(y| x) = β0 + β1 or the mean of A1 minus mean A3 

β3 is E(y| x) = β0 + β2 or the mean A2 minus mean A3 
 

Click here for SPSS program details. 
 

In general, the number of dummy variables required is one less than the number of levels.  

In summary, we have: 

 
kk xxxyE βββ +++= ...)|( 110  

 

where   xi  = 1 if E(y) is mean for level i  

      = 0 otherwise 
 

Note there are k-1 dummy variables or one less than the number of levels. 
 

0)( β=yE  when x is at level 1( 1μ ) 

10)( ββ +=yE when x is at level 2( 2μ ) 

. 

. 

. 

kyE ββ += 0)( when x is at level k( kμ ) 

 

The parameters are interpreted as: 
 

122 μμβ −=  

133 μμβ −=  

. 

. 

. 

1μμβ −= kk  
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We have discussed two methods of parameterization of the model in the case of qualitative 

variables. The first will be used extensively in Part III - Experimental Design of the text, whereas 

the second will be used more frequently in Part II –Linear Models  of the text, since most 

software uses this type of parameterization for non-design situations. 

 

9.8 MULTIPLE REGRESSION EXAMPLE USING SPSS 

 

Gebotys and Roberts (1989) were interested in examining the effects of two more variables on the 

seriousness rating of the crime. The following table provides the new information concerning the 

amount of TV news watched in hours per week and whether the person had been a previous 

victim of crime. 
 

y  

serious 

x1  

age 

x2  

amount of TV news 

watched (hrs/wk) 

x3  

previous victim of 

crime (1=yes, 0=no) 

21 20 4 1 

28 25 5 1 

27 26 5 1 

26 25 4.5 1 

33 30 6 0 

36 34 7 0 

31 40 5.5 1 

35 40 6 0 

41 40 7 0 

95 80 9 0 

 

The calculations are again performed on the computer. It is hypothesized that there may be a 

quadratic relationship between seriousness and age. The researchers’ hypothesize that the 

following model is a reasonable one: 
 

3423
2

12110)|( xxxxxyE βββββ ++++=  

 

The model includes age(x1, x1
2), TV news (x2), and victimization(x3). 
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In this case, we asked SPSS to fit the model 
 

3423
2

12110)|( xxxxxyE βββββ ++++=  

 

The SPSS output and interpretation is given below.  
 

Click here for SPSS program details. 
 

Model Summaryb

.998a .997 .994 1.63 1.712
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Durbin-W
atson

Predictors: (Constant), Age Squared (years squared), Previous
Victim of Crime, Amount of TV News Watched (hrs/wk), Age (years)

a. 

Dependent Variable: Crime Seriousnessb. 

 

ANOVAb

3980.808 4 995.202 374.364 .000a

13.292 5 2.658
3994.100 9

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), Age Squared (years squared), Previous Victim of Crime,
Amount of TV News Watched (hrs/wk), Age (years)

a. 

Dependent Variable: Crime Seriousnessb. 

 
 

In order to determine whether the model is adequate we examine the ANOVA table. Note the 

degrees of freedom and F-statistic values. 
 

F = 374.364 
 

which has an F distribution with 4 (number of parameters - intercept = 5-1 = 4) and 5 (number of 

observations - number of parameters = 10-5 = 5) degrees of freedom (df). We reject the null 

hypothesis 
 

H0: β1 = β2 = β3 = β4 = 0 

Ha: β1 ≠ β2 ≠ β3 ≠ β4 ≠ 0 
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with a p-value equal to .001, the SIG F value on the output. The REGRESSION row refers to 

the model and the RESIDUAL row refers to the error component. The mean square of the 

residual is equal to s2, our estimate of σ2. 
 

s2 = MSE = 2.658 

63.1== MSEs  
 

Note s is also printed in the STANDARD ERROR column. In the same area, we also have R2, R 

SQUARE printed, where 
 

SST
SSMR =2  

100.3994
808.3980

=  

99667.=  
 

In other words, 99.667% of the variance in seriousness is accounted for by the model (age, agesq, 

tvnews, victim).  

Coefficientsa

15.923 7.923 2.010 .101 -4.443 36.289
-.939 .234 -.760 -4.003 .010 -1.541 -.336

4.834 1.397 .337 3.460 .018 1.243 8.425

-.567 2.158 -.014 -.263 .803 -6.115 4.981

1.728E-02 .002 1.444 8.709 .000 .012 .022

(Constant)
Age (years)
Amount of TV News
Watched (hrs/wk)
Previous Victim of Crime
Age Squared (years
squared)

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig. Lower Bound Upper Bound
95% Confidence Interval for B

Dependent Variable: Crime Seriousnessa. 

 
In the Variables in the equation section, the column variable lists the variables victim, 

agesq, tvnews, age, and constant, which refer to the variables associated with the parameters β0, 

β1, β2, β3, and β4 in the model. The column labeled B gives the least squares (b0 = 15.923, b1 = -

.939, b2 = .01728, b3 = 4.834, b4 = -.567) estimator for β0, β1, β2, β3, and β4. The equation is 

therefore 
 

E(y|x) = 15.923 - .939x1 + .01728x1
2 + 4.834x2 - .567x3 
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The Std. Error column is the standard error for each of the parameters, for example: 
 

s(b0) = 7.923 

s(b1) = .234 

s(b2) = .002 

s(b3) = 1.397 

s(b4) = 2.158 
 

The t column gives the corresponding t statistic for testing the hypotheses 
 

H0: β1 = 0 

Ha: β1 ≠ 0 
 

4003.
234.
939.

)( 2

2 −=
−

==
bs
bT T = b2 / s(b2) = -.938544 / .234448 = -4.003 

 

H0: β2 = 0 

Ha: β2 ≠ 0 
 

T = 8.709 
 

H0: β3 = 0 

Ha: β3 ≠ 0 
 

T = 3.460 
 

H0: β4 = 0 

Ha: β4 ≠ 0 
 

T = -.263 

 

The column SIG gives the OLS or p-values for the tests above. In this case, we have p = .010 for 

β1 (significant, therefore we reject H0), p = .001 for β2 (significant, therefore we reject H0), p = 

.018 for β3 (significant, therefore we reject H0), and p = .803 for β4 (not significant, therefore we 

cannot reject H0). All are with 5 df. These statistics indicate age, agesq, and tvnews are all 

important in predicting seriousness of the crime, but victim (whether or not the participant had 

been a victim of crime) is not important.  
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The casewise plot of residuals looks reasonable in that it displays a band pattern over the 

range of values. The leverage (LEVER) and Cook’s distance (COOK D) values for the 10th 

observation are large (leverage = .8985, Cook D = 104.14), indicating this is an influencial 

observation. 

Casewise Plot of Residuals
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The summary statistics for a number of measures are given below. The average leverage is .4, 

which indicates the 10th observation is clearly influential. The Dubin Watson test indicates no 

serial correlation. 

Residuals Statisticsa

22.83 94.94 37.30 21.03 10
-.688 2.741 .000 1.000 10

.79 1.63 1.12 .28 10

23.98 57.77 34.14 10.15 10
-1.83 1.55 2.49E-15 1.22 10

-1.125 .953 .000 .745 10
-1.666 1.088 -.034 1.096 10

-4.24 37.23 3.16 12.24 10
-2.233 1.113 -.168 1.291 10
1.189 8.087 3.600 2.271 10

.001 104.149 10.669 32.848 10

.132 .899 .400 .252 10

Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual
Mahal. Distance
Cook's Distance
Centered Leverage Value

Minimum Maximum Mean Std. Deviation N

Dependent Variable: Crime Seriousnessa. 

 
The residual plots look reasonable. The normal probability plot approximates a line. 
 

Normal P-P Plot of Regression Standard.

Residual Dependent Variable: 

Crime Seriousness
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The Standardized Scatterplot of residuals displays a reasonable band shaped pattern. 
 

Scatterplot Dependent Variable: 

Crime Seriousness

Regression Standardized Predicted Value
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In summary, from our analysis we conclude that age (x1, x1
2) influences crime seriousness 

(y) in a quadratic manner; the more tvnews (x2) a person is exposed to the more serious the crime 

rating (y), and victimization (x3) has no impact on seriousness ratings (y). There is one influential 

observation, which is an 80 year old person that deserves further study. The residual plots 

indicate the normality assumption is reasonable. 

 

9.10 COMPUTER IMPLEMENTATION USING SAS 

 

DATA JUSTICE; 

INPUT ID AGE SERIOUS TVNEWS VICTIM; 

AGESQ = AGE**2; 

CARDS; 

1 20 21 4.0 1 

2 25 28 5.0 1 

…. 
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….. 

….. 

10 80 95 9.0 0 

PROC REG; 

MODEL SERIOUS = AGE AGESQ TVNEWS VICTIM/R INFLUENCE DW; 

OUTPUT OUT = RESIDS P = YHAT R = RESID; 

PROC PLOT; 

PLOT RESID*(YHAT,AGE); 

PROC UNIVARIATE PLOT NORMAL; 

VAR RESID; 

 

9.11 Exercises 
 

1. Fit the model E[y|x] = β0 + β1x1 + β2x2 + β3x3 to the above data. 
 

a. What is the equation for the model? 

b. Test the hypothesis β1 = β2 = β3 = 0 in an ANOVA table. 

c. Test the hypothesis βi = 0. Give a 95% confidence interval for β1. 

d. What is R2? 

e. Are the residual plots reasonable? 

f. State your conclusions concerning the model clearly. 

 

2. Problem Clinical Psychology 
  
Success of a counseling session (Y) is recorded along with the amount of paraphrasing (X1) and 

amount of empathy (X2) for 14 subjects in the following clinical study. Data are presented on the 

next page.
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Subject Y X1 X2 

1 14.7 8.9 31.5 

2 48.0 36.6 27.0 

3 25.6 26.8 25.9 

4 10.0 6.1 39.1 

5 16.0 6.9 39.2 

6 16.8 6.9 38.3 

7 20.7 7.3 33.9 

8 38.8 28.4 33.8 

9 16.9 6.5 27.9 

10 27.0 18.0 33.1 

11 16.0 4.5 26.3 

12 24.9 19.9 37.8 

13 7.3 2.9 34.6 

14 12.8 2.0 36.4 

 

Use SPSS to fit the following model: 
 

E[y|x] = β0 + β1X1 + β2X2 + β3X1
2 + β4X2

2 + β5X1X2 

 

You will need several COMPUTE statements to compute values of X1
2, X2

2, and X1X2. 

For example, we compute X1
2: 

 

COMPUTE X1X2 = X1 * X1 
 

which creates the new variable for which I have chosen (arbitrarily) the variable name 

X1X2.  
 

a. What is the estimated regression equation? Do the residual plots suggest that the full 

model should be modified? Explain. 
 

b. Test at α = .05 the null hypothesis that there is no relationship between the dependent 

variable and the model in an ANOVA table. Test the five hypotheses that βi where I 

= 1, 2, 3, 4, 5 is equal to zero. What is R2? 
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c. Assume the simpler model is adequate. It has been observed that the first 7 subjects 

were advised by clinician A, and the second set of 7 subjects was advised by clinician 

B. This qualitative variable may be entered into the model by including a variable X3, 

which is set equal to 0 for the first 7 observations and equal to 1 for the next 7. Fit the 

model 
 

E[y|x] = β0 + β1X1 + β2X2 + β3X3 

 

and test whether the clinician makes a difference, i.e. does β3 = 0? (Qualitative 

variables with more than 2 levels can also be entered into the regression models.) 
 

3. Tucher (1987) and Darlington (1990) examined homelessness in the United States for 50 

cities. The data for 30 cities is reported below. The dependent measure (Y) is the 

homelessness rate. 
 

City Y X1 X2 X3 X4 X5 X6 X7 

Miami 15.9 24.5 7.5 29.8 372 7.0 0 67 

St.Louis 11.6 21.8 8.4 14.0 429 8.5 0 29 

San 

Francisco 

11.5 13.7 6.0 10.2 712 1.6 1 49 

Worcester, 

Mass 

10.6 14.4 3.7 14.1 160 3.0 0 25 

Los Angeles 10.5 16.4 7.9 2.8 3097 2.2 1 57 

Santa 

Monica 

10.2 9.9 7.0 0.8 88 1.8 1 57 

Newark, 

N.J. 

9.5 32.8 5.9 41.7 314 2.3 1 31 

Hartford 8.8 25.2 7.1 20.0 136 2.6 1 25 

Washington, 

D.C. 

7.5 18.6 8.4 19.8 623 2.0 1 31 

Detroit 6.8 21.9 9.1 9.7 1088 5.4 0 23 

Yonkers 6.8 9.8 4.9 10.7 191 2.1 1 32 

Chicago 6.6 20.3 8.3 13.0 2992 6.0 0 21 

Seattle 6.5 11.2 6.6 14.6 488 5.5 0 39 
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City Y X1 X2 X3 X4 X5 X6 X7 

Las Vegas 6.0 10.5 8.9 14.2 183 9.0 0 44 

Boston 5.6 20.2 4.6 25.3 571 2.6 1 30 

Richmond 5.3 19.3 5.3 20.5 219 5.5 0 37 

New York 5.0 20.0 7.4 21.5 7165 2.2 1 32 

Dallas-Fort 

Worth 

5.0 14.1 4.7 5.9 1388 6.0 0 44 

Denver 4.9 13.7 5.0 9.0 504 4.0 0 30 

Charleston, 

W. Va. 

4.7 12.6 10.7 22.9 63 5.9 0 29 

Atlanta 4.6 27.5 5.0 35.5 426 9.0 0 42 

Fort Wayne 4.3 11.0 6.3 5.0 165 9.2 0 21 

Portland 4.2 13.0 7.4 5.0 366 5.5 0 39 

Houston 3.7 12.7 8.4 1.9 1706 7.0 0 51 

San Diego 3.1 12.4 5.3 1.1 960 5.3 0 57 

Salt Lake 

City 

3.1 14.2 6.3 6.5 165 4.5 0 29 

Little Rock 2.9 14.1 5.8 16.8 170 6.5 0 40 

New 

Orleans 

2.8 26.4 11.0 25.2 559 8.0 0 52 

Charleston, 

S.C. 

2.8 14.1 4.4 30.6 69 9.0 0 49 

Albuquerque 2.8 12.4 6.3 3.1 351 9.7 0 35 

 

Y = homelessness rate; X1 = poverty rate; X2 = unemployment rate; X3 = public housing rate; X4 = 

population (thousands); X5 = vacancy rate; X6 = rent control (1 = rent control exists); X7 = winter 

temperature. 
 

a. Fit the model  
 

E(y|x) = β0 + β1X1 + β2X2 + β3X3 + … + β7X7 
 

b. Is the model adequate?  

Test H0: β1 = β2 = … = β7 = 0 in an ANOVA table. 
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c. What variables are important in the model?  

Test H0: βi = 0, i = 2,…, 7. 
 

d. Are the residuals reasonable? 
 

e. Add 3 two-way interaction terms to the model.  

Explain the reasoning behind inclusion of each interaction term and test for their 

importance. 
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Dummy Variables


Problem:  As a researcher you are interested in determining if where you live in
Canada makes a difference in predicting crime seriousness.


After opening the file, the data appear in the SPSS Data Editor window just like
to following:


Note that for the area variable:  1 = west, 2 = east, 3 = ontario, 4 = quebec.


Thus, we need to create three dummy variables:
1) 1 = west, 0 = else
2) 1 = east, 0 = else
3) 1 = ontario, 0 = else
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To create the dummy variables, following these steps:


1) Click on the Transform button.  Click on the Compute button.  The following
window will appear:


2) Enter the variable name in the Target Variable box (e.g., west).


3) Type the number “1” in the Numeric Expression box.


4) Click on “if” button at the bottom of the window.


5) Select the “include if satisfies condition”  circle by Clicking on it.


6) Select “area” from list and Click on the arrow to move it into the other box.


7) Type “= 1”  beside “area”.  Your window should now look like the following:
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8)     Click Continue.  Click OK.


9)      The process is repeated to assign the “0” (i.e., “else”) condition.  Click on
the Transform button.


10)    Click on the Compute button.


11)    Type “0” in the Numeric Expression box.


12)     Click on the “if” button.


13)    Choose the “not equals” button and type “1”.  The window will appear like
the following:
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14)  Click Continue.  Click OK.
(SPSS will ask you if it is ok to change the existing variable –Click OK.)


15) To create the other dummy variables follow the same steps substituting “2”
and “3” in your “if” statements.  When you have entered all the dummy
variables, your Data Editor will look like the following:
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Example: Multiple Linear Regression 


 
Gebotys and Roberts (1989) were interested in examining the 


effects of several variables on the “seriousness rating of the 


crime”.  The variables to be examined within this example are 


“age” (i.e., ‘age’, ‘agesq’), the “amount of television news 


watched in hours per week” (i.e., ‘tvnews’) and “whether the 


person had been a previous victim of crime” (‘victim’).  


Complete the following steps in the multiple regression in 


order to follow the example in this module. 
 


1. Pull up “Serious2” (crime) data set.(or enter data) 
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2. Before proceeding to any analysis, the new variable 


‘agesq’ needs to be created.  See “Example: 


Quadratic Linear Model (page 2)” for complete 


steps in utilizing transformation function in SPSS 


to create ‘agesq’.  Before proceeding to the next 


step, ensure that your data set ‘serious2’ now 


includes five variables (i.e., ‘serious’, ‘age’, ‘agesq’, 


‘tvnews’, ‘victim’). 
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With the assumption that there is a quadratic 


relationship between “seriousness” and “age”, perform 


a multiple linear regression. 
 


1. Click ‘Analyze’ on the main menu bar. 
 
2. Click ‘Regression’ on the Analyze menu. 
 
3. Select ‘Linear’ in the regression submenu.   
 
4. Specify the independent and dependent variables.  


To specify ‘age’, ‘agesq’, ‘tvnews’, and ‘victim’ as 


the independent variables, simply click the arrow 


button to the left of the ‘Independent[s]’ text box.  


‘Age’, ‘agesq’, ‘tvnews’ and ‘victim’ are then 


entered into that text box.  (Note: These four 


independent variables can be selected in one step 


by clicking all four variables while holding down 


the “Control” key.  This will allow all four 


variables to be shifted into the independent text 


box with one click of the arrow button.). Finally, to 


specify ‘serious’ as the dependent variable, go to 


the variable source list and click ‘serious’ and then 
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click the arrow button to the left of the 


‘Dependent:’ text box.  


5. Select the “Statistics”, “plots” and “Save” 


selections for this analysis (See “Example: Linear 


Model with Normal Error” more detailed 


directions.)  For purposes of this example the three 


SPSS windows are provided.  
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6. Click the ‘OK’ command pushbutton in the Linear 


Regression dialogue box.  This will instruct SPSS to 


produce a set of output similar to that to be 


discussed in the next section. 
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Example: Multiple Regression 


SPSS Output Explanation 


 
 
Gebotys and Roberts (1989) were interested in 


examining the effects of two more variables on the 


seriousness rating of the crime.  The following table 


provides the new information concerning the “amount 


of television (tv) news watched in hours per week” and 


“whether the person had been a previous victim of 


crime”. 
 


Y 
Serious 


X1 
Age 


X2 
Amount of TV 
News watched 


(hrs/wk) 


X3 
Previous victim 


of 
Crime (1=yes, 


0=no) 
21 20 4 1 
28 25 5 1 
27 26 5 1 
26 25 4.5 1 
33 30 6 0 
36 34 7 0 
31 40 5.5 1 
35 40 6 0 
41 40 7 0 
95 80 9 0 
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The calculations are again performed on the computer.  


It is hypothesized that there may be a quadratic 


relationship between “seriousness” and “age”.  The 


researchers’ hypothesize that the following model is a 


reasonable one. 


 
  E(y|x) = B0  +  B1x1  +  B2x1


2  +  B3x2  +  B4x3 
 
The model includes age (x1,  x1


2), television news (x2) and 


victimization (x3). 


 
 
In this case we have asked SPSS to fit the model. 
 
  E(y|x) = B0  +  B1x1  +  B2x1


2  +  B3x2  +  B4x3 
 
 


Variables Entered/Removedb


VICTIM,
AGESQ,
TVNEWS,
AGE


a
. Enter


Model
1


Variables
Entered


Variables
Removed Method


All requested variables entered.a. 


Dependent Variable: SERIOUSb. 
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Model Summaryb


.998a .997 .994 1.63 1.712
Model
1


R R Square
Adjusted R


Square


Std. Error
of the


Estimate Durbin-Watson


Predictors: (Constant), VICTIM, AGESQ, TVNEWS, AGEa. 


Dependent Variable: SERIOUSb. 


ANOVAb


3980.808 4 995.202 374.364 .000a


13.292 5 2.658
3994.100 9


Regression
Residual
Total


Model
1


Sum of
Squares df


Mean
Square F Sig.


Predictors: (Constant), VICTIM, AGESQ, TVNEWS, AGEa. 


Dependent Variable: SERIOUSb. 


Coefficientsa


15.923 7.923 2.010 .101 -4.443 36.289
-.939 .234 -.760 -4.003 .010 -1.541 -.336


1.728E-02 .002 1.444 8.709 .000 .012 .022
4.834 1.397 .337 3.460 .018 1.243 8.425
-.567 2.158 -.014 -.263 .803 -6.115 4.981


(Constant)
AGE
AGESQ
TVNEWS
VICTIM


Model
1


B Std. Error


Unstandardized
Coefficients


Beta


Standardi
zed


Coefficien
ts


t Sig.
Lower
Bound


Upper
Bound


95% Confidence Interval
for B


Dependent Variable: SERIOUSa. 
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In order to determine whether the model is 


adequate, we examine the ANOVA table.  Note the 


degrees of freedom and F-statistic values. 


 
  F = 374.364 
 
Which has an F distribution with 4 (number of 


parameters – intercept = 5 – 1 = 4) and 5 (number of 


observations – number of parameters = 10 – 5 = 5) 


degrees freedom.  We reject 


 
Ho: B1  =  B2  =  B3  =  B4  = 0 
Ha: B1  ≠   B2  ≠   B3  ≠   B4  ≠  0 


 
 
With p-value less than .0001, the SIG value on the 


output.  The REGRESSION row refers to the model 


and the RESIDUAL row refers to the error component.  


The mean square of the residual is equal to s2, our 


estimate of the population variance. 


 
  s2  =  MSE  =  2.658 
 
  s  =  MSE  =  1.63 







  11 of 20 


September 2008  Dr. Robert Gebotys 


Note s is also printed in the STD ERROR OF THE 


ESTIMATE column.  In the same area we also have R2, 


R SQUARE printed where 


R2  =ssm/sst 
 
       =  3980/3994 
 
       =  .997 
 
In other words, 99.7% of the variance in seriousness is 


accounted for by the model (age, agesq, tvnews, victim). 
 
 In the Coefficients section the column variable lists 


the ‘ victim’, ‘agesq’, ‘tvnews’, ‘age’ and ‘constant’ , 


which refer to the variables associated with the 


parameters B0, B1,  B2 , B3, and B4  in the model.  The 


column labeled B given the least squares (b0  = 15.923,  


B1  =  -.939,  b2  = .017, b3 = 4.834, b4  = -.567) estimator 


for B0, B1,  B2 , B3,  and B4 .  The equation is therefore 


 
E(y|x) = 15.923 - .939x1  + .017x1


2  + 4.834x2 - .567x3 
 


The STD ERROR column is the standard error column 


for each of the parameters, for example     
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   s(b0)  = 7.923 
   s(b1)  =  .234 
   s(b2)  =  .002 
   s(b3)  =  1.397 
   s(b4)  =  2.158 
 
the T column gives the corresponding t statistic for 


testing the hypotheses 
 


   Ho:  B1  = 0 
   Ha:  B1  ≠  0  
 


   T = =  .934/-.234  =  -4.003 
 
 


   Ho:  B2 =  0 
   Ha:   B2 ≠  0 
 


   T = 8.709 
 
 


   Ho:  B3 = 0        
   Ha:  B3 ≠  0   
 


   T = 3.460 
 
 


   Ho:  B4 = 0       
   Ha:   B4 ≠  0 
 


T = -.263 
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The column SIG gives the OLS or p-values for 


the tests above.  In this case we have p=.01 for B1  


(significant, therefore we reject Ho), p=.0003 for B2 


(significant, therefore we reject Ho), p=.018 for B3 


(significant, therefore we reject Ho), and p=.803 for 


B4  (not significant, therefore we cannot reject Ho).  


All are with 5 degrees of freedom.  These statistics 


indicate that ‘age’, ‘agesq’, and ‘tvnews’ are all 


important in predicting seriousness of the crime but 


that ‘victim’ (whether or not the participant had 


been a victim of crime) is not important. 


 


 The casewise diagnostics of the residuals looks 


reasonable in that it indicates no problems over the 


range of values.  The leverage (LEVER) and Cook’s 


distance (COOK D) values for the 10th observation 


are large (leverage = .8985, Cook D = 104.14) 


indicating this is an influential observation. 
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The summary statistics for a number of measures 


are given on the next page.   


  


Casewise Diagnosticsa


-1.125 21 22.83 -1.83
.697 28 26.86 1.14
.119 27 26.81 .19
.953 26 24.45 1.55
.415 33 32.32 .68


-1.121 36 37.83 -1.83
-.645 31 32.05 -1.05
-.021 35 35.04 -3.50E-02
.694 41 39.87 1.13
.034 95 94.94 5.51E-02


Case Number
1
2
3
4
5
6
7
8
9
10


Std.
Residual SERIOUS


Predicted
Value Residual


Dependent Variable: SERIOUSa. 
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The average leverage is .4 which indicates the 10th 


observation is clearly influential.  The Durbin Watson 


test indicates no serial correlation. 


 


 


Residuals Statisticsa


22.83 94.94 37.30 21.03 10
-.688 2.741 .000 1.000 10


.79 1.63 1.12 .28 10


23.98 57.77 34.14 10.15 10
-1.83 1.55 7.46E-15 1.22 10


-1.125 .953 .000 .745 10
-1.666 1.088 -.034 1.096 10
-4.24 37.23 3.16 12.24 10


-2.233 1.113 -.168 1.291 10
1.189 8.087 3.600 2.271 10
.001 104.149 10.669 32.848 10
.132 .899 .400 .252 10


Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual
Mahal. Distance
Cook's Distance
Centered Leverage Value


Minimum Maximum Mean
Std.


Deviation N


Dependent Variable: SERIOUSa. 


Now, what do 
these residuals 


tell us?
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The residual plots look reasonable. 
 


Regression Standardized Residual


1.00.75.50.250.00-.25-.50-.75-1.00


Histogram


Dependent Variable: SERIOUS
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Scatterplot


Dependent Variable: SERIOUS


Regression Standardized Predicted Value


3.02.52.01.51.0.50.0-.5-1.0


Re
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.5


0.0


-.5
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Congratulations! 
You’ve just completed 
the multiple regression 


module. 
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serious age tvnews victim agesq pre_1 res_1 zpr_1 zre_1 coo_1 lev_1 lmci_1 umci_1 lici_1 uici_1
21 20 4.0 1 400 22.834 -1.834 -0.688 -1.125 0.662 0.444 19.742 25.925 17.625 28.042
28 25 5.0 1 625 26.863 1.137 -0.496 0.697 0.056 0.192 24.600 29.126 22.100 31.626
27 26 5.0 1 676 26.806 0.194 -0.499 0.119 0.001 0.155 24.691 28.921 22.111 31.501
26 25 4.5 1 625 24.446 1.554 -0.611 0.953 0.071 0.132 22.427 26.465 19.794 29.098
33 30 6.0 0 900 32.324 0.676 -0.237 0.415 0.032 0.271 29.772 34.875 27.417 37.231
36 34 7.0 0 1156 37.827 -1.827 0.025 -1.121 0.630 0.437 34.755 40.900 32.631 43.024
31 40 5.5 1 1600 32.051 -1.051 -0.250 -0.645 1.017 0.652 28.417 35.686 26.503 37.599
35 40 6.0 0 1600 35.035 -0.035 -0.108 -0.021 0.001 0.590 31.553 38.517 29.586 40.484
41 40 7.0 0 1600 39.869 1.131 0.122 0.694 0.070 0.229 37.465 42.273 35.037 44.701
95 80 9.0 0 6400 94.945 0.055 2.741 0.034 104.149 0.899 90.757 99.133 89.020 100.870





