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 HANDOUT ON VALIDITY 
 
 A measure (e.g. a test, a questionnaire or a scale) is useful if it is reliable and valid.  A 

measure is valid if it measures what it purports to measure.  Validity can be assessed in 
several ways depending on the measure and its use. 

 
1. Content Validity 
 
 Content validation is employed when it seems likely that test users will want to draw 

references from observed test scores to performances on a larger domain of tasks similar 
to items on the test.  Typically, it involves asking expert judges to examine test items and 
judge the extent to which these items sample a specified performance domain.  There are 
two types of content validity: face validity and logical validity.  A test has face validity if 
an examination of the items leads to the conclusion that the items are measuring what 
they are supposed to be measuring.  Logical or sampling validity is based on a careful 
comparison of the items to the definition of the domain being measured. 

 
2.  Criterion Related Validity 
 
 Criterion-related validation is a study of the relationship between test scores and a 

practical performance criterion that is measurable.  The criterion is the thing of interest or 
the outcome we are concerned about.  When a test score, X, can be related to a criterion 
score, Y, criterion-related validity can be determined.  The validity coefficient, DXY can 
be based on a predictive or a concurrent study.  A predictive-validity coefficient is 
obtained by giving the test to all relevant people, waiting a reasonable amount of time, 
collecting criterion scores, and calculating the validity coefficient.  When a test is used to 
predict future behaviour, predictive validity should be established.  A concurrent-validity 
coefficient is a correlation between test and criterion scores when both measurements are 
obtained at the same time.  Concurrent-validity coefficients are appropriate when the test 
scores are used to estimate a concurrent criterion rather than to predict a future criterion. 

 
3. Construct Validity 
 
 Construct validation is appropriate whenever the test user wants to draw inferences from 

test scores to a behaviour domain which cannot be adequately represented by a single 
criterion or completely defined by a universe of content.  A test’s construct validity is the 
degree to which it measures the behaviour domain or other theoretical constructs or traits 
that it was designed to measure.  More specifically, construct validity can be understood 
as the extent to which the behaviour domain or the constructs of theoretical interest have 
been successfully operationalized.  For example, a researcher may be interested in 
determining clients’ satisfaction with health care services.  Since “satisfaction with health 
care services” is a construct which cannot be adequately represented by a criterion or 
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defined by a universe of content, the researcher chooses to develop a questionnaire of 20 
items in order to tap the construct “satisfaction” and proceeds to collect the data.  The 
question is ow does the researcher know that what he/she is measuring through the 
questionnaire is actually and purely clients’ satisfaction with health care services and not 
something else nor a mixture with other constructs such as clients’ degree of confidence 
in the medical profession?  In this case, a construct validation is appropriate. 

 
 Establishing construct validity is an ongoing process that involves the verification of 

predictions made about the test scores.  Procedures for construct validation may include 
correlations between test scores and designated criterion variables, differentiation 
between groups, factor analysis, multitrait-multimethod matrix analysis, or analysis of 
variance components within the framework of generalizability theory.  The following 
pages will contain introductions and explanations of one of the procedures for 
determining construct validity: the factor analysis. 

 
a. Factorial Validity 

 
 Factorial validity is a form of construct validity that is established through a factor 

analysis.  Factor analysis is a term that represents a large number of different 
mathematical procedures for analyzing the interrelationships among a set of variables and 
for explaining these interrelationships in terms of a reduced number of variables, called 
factors.  A factor is a hypothetical variable that influences scores on one or more 
observed variables.  For example, let’s look at the following hypothetical correlation 
matrix: 

  
       TEST 

    
         1     2     3 

   
   1   1.00    .98   .95 
 Test  2      .98  1.00   .97 
   3      .95   .95  1.00 
    
            
 Although there are three test scores being correlated, it is quite obvious that only one 

dimension/factor is being measured, because of the high correlations among the test 
scores1.  Instead of requiring three scores for each person, one score alone could be 
sufficient. 

 

                                                 

 1 This is based on the assumption that tests measuring the same trait should correlate highly, 
converging on the trait. 
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 The preceding example involves an “eyeball” method of factor analysis.  This is possible 
if the correlation matrix is small and simple.  But most of the correlation matrices are 
more complex and the “eyeball” method of factor analysis is either difficult or unreliable 
(or both).  However, the logic underlying the above simple example in terms of 
determining the number of factors remains the same for complex cases.  This logic is 
helpful in determining the construct validity of a test, with the help of the SPSS factor 
procedure. 

 
 To go back to the example on “satisfaction with health care services” cited earlier, it is 

not difficult to envisage that if the 20 - item questionnaire is really a valid measure of the 
construct “satisfaction with health care services”, a factor analysis on the scores of the 20 
- item questionnaire should result in one factor that can explain most of the variances in 
these 20 items.  But if the 20 - item questionnaire is instead measuring two different 
behaviour domains (e.g. “Satisfaction with health care services” and “confidence in the 
medical profession”), factor analysis on the scores of the 20 - item questionnaire should 
result in two factors, with items measuring “satisfaction” having high factor loadings2 on 
one factor and items measuring “confidence” loading highly on the remaining factor. 

 
 To conclude, factorial validity is one form of construct validity.  Factorial validity is 

assessed by the process of factor analyzing the correlations of scores from selected tests 
(or individual items in a single test) and obtaining a predicted factor-loading pattern. 

 
Determining Factorial Validity Using SPSS Factor Procedure: 
 
Example 1: 
 
 The following illustrative example contains six items extracted from a scale designed to 
measure adolescents’ attitude towards the use of physical aggressive behaviours in their daily 
life.  Each item in the scale refers to a situation where physical aggressive behaviour is or is not 
used.  Adolescents are asked whether they agree or disagree with each and every item on the 
scale.  Adolescents’ responses to the items are converted to scores of either 1 or 0, where 0 
represents disapproval of the use of physical aggressive behaviours.  Below are the contents of 
the six items as well as the scores of 14 adolescents on these six items: 
 
Item No.     Content 
 
 1.  When there are conflicts, people won’t listen to you unless you get 

physically aggressive. 
                                                 

 2 The meaning of factor loadings will be discussed in greater detail in a later section.  In 
the mentime, just imagine that a factor loading is a number which is very much like a correlation 
coefficient in size and meaning.  When a factor analysis is conducted on a correlation matrix, tests 
that are influenced by certain factors are said to have high factor loadings or to load highly on 
those factors. 
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2.  It is hard for me not to act aggressively if I am angry with someone. 

   
 3.  Physical aggression does not help to solve problems, it only makes situations 

worse. 
 
4.  There is nothing wrong with a husband hitting his wife if she has an affair. 
 
5.  Physical aggression is often needed to keep things under control. 
 
6.  When someone makes me mad, I don’t have to use physical aggression.  I can 

think of other ways to express my anger. 
  
 
 
The following is the data obtained from 14 adolescents: 
 
      Items 
Person   1 2 3 4 5 6 

 
 1   0 0 0 0 0 0 
 2   0 0 0 0 1 0 
 3   1 0 1           1 1 0 
 4   1 1 1 1 1 1 
 5   1 1 1 1 1 1 
 6   0 0 1 0 0 0 
 7   0 0 1 1 1 0 
 8   1 1 1 1 1 0 
 9   0 0 0 1 0 0 
 10   0 1 0 1 0 1 
 11   1 1 1 0 1 1 
 12   0 0 1 1 1 1 
 13   0 0 0 0 0 0 
 14   0 0 0 0 0 0 
    
 
 Factorial validity of the above scale can be assessed using factor analysis.  The primary 
purpose of conducting factor analysis on the scores of the six-item scale is to find support for the 
assumption that this six-item scale is measuring a single construct: “adolescents’ attitude towards 
the use of physical aggressive behaviour in daily life”.  If this assumption is supported, a factor 
analysis on this set of data should point to a one-factor solution. 
 
 In the pages that follow, we will first outline and briefly explain the usage of the major 
commands and subcommands for SPSS factor procedure.  Then, the entire computer program for 
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factor analysis will be shown.  This will in turn be followed by detailed discussions on the 
computer outputs. 
 
SPSS commands for Factor Analysis: 
 

Only commands and subcommands pertinent to the needs and purposes of our present 
analysis are shown.  These represent only a very small proportion of the commands and 
subcommands for doing factor analysis on SPSS.  Please read SPSS User’s Guide for 
other appropriate commands and subcommands in the factor procedure not mentioned in 
the following discussion. 

 
Factor  variables=item1 to item6/ 
   analysis=item1 to  item6 
 
 The “variables” subcommand lists the variables3 to be analyzed in the factor analysis, in 

this case, all the 6 items will be analyzed.  The “analysis” subcommand allows us to 
perform analyses on subsets of the variables named on the “variables” subcommand.  But 
since we would like to do the factor analysis on all the six items, therefore, items listed 
under “analysis” subcommand are the same as those in the “variables” subcommand.  
Actually, the “analysis” subcommand is redundant here and can be omitted from the 
present program. 

 
 There are two major phases in the factor analysis, namely, the factor extraction phase and 

the rotation phase.  Several different strategies are available on each of the two phases in 
the SPSS factor procedure4.  For the purpose of the present analysis, the principal 
components analysis (pc) and the varimax rotation methods will be used.  Since these two 
methods are the defaults, we don’t need to write the “extraction=pc” and 
“rotation=varimax” subcommands into the computer program. 

 
 The “variables” and “analysis” subcommands in the above computer program will 

instruct the computer to give us basically all the information we need for the preesent 
factor analysis.  The computer output will contain the following statistics and matrices: 
the initial statistics, factor matrix and final statistics obtained from the principal 
components analysis of the extraction phase; and the rotated factor matrix and factor 

                                                 

 3 “Variables” can mean a lot of things, including tests, sub-tests, individual items on a 
scale, etc. 

 4 The folowing methods can be picked to carry out the extraction phase in the SPSS factor 
procedure: principal components analysis (the default); principal axis factoring; maximum 
likelihood; alpha factoring; image factoring; unweighted least squares; and generalized least 
squares.  In the rotation phase, the following methods are available in the SPSS factor procedure: 
varimax rotation (the default); equamax rotation; quartimax rotation; direct oblimin rotation; and 
no rotation. 
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transformation matrix obtained from the varimax rotation method.  However, if we also 
want to include in the output the correlation matrix of the items, the scree plot, and the 
factor loading plot for the varimax rotation, we have to write into the computer program 
two additional subcommands as shown in the following: 

 
factor   variables=item1   to   item6/ 
   print=correlation/ 
   analysis=item1 to item6/ 
   plot=eigen rotation (1,2) 
 

The “print=correlation” subcommand instructs the computer to print the correlation 
matrix of the items into the output.  The “plot=eigen” subcommand directs the SPSS 
factor procedure to produce the scree plot, which is a plot of factors versus their 
eigenvalues.  The “plot=rotation (w,2)” subcommand directs the computer to plot the 
factor loadings of factors 1 and 2 obtained from the varimax rotation method. 

 
Conducting Factor Analysis on the Set of Scores Obtained from 14 Adolescents for the 6 
Items Using SPSS 
 
1. SPSS Computer Program for the Analysis 
 
2. SPSS Outputs and Discussions5 
 . 
 The initial part of the output contains a correlating matrix showing the correlation 

coefficients among the items6. 
 

 
                                                 

 5 Discussions and Explanations are in italics.  These are not parts of the original computer 
output. 

 6 Please note that the 1-tailed Significance of the Correlation Matrix will also be given if 
the SPSS for Windows Program is used.  However, the SPSS Program used here will not give the 
1-tailed Significance. 

Correlation Matrix

1.000 .689 .645 .344 .645 .378
.689 1.000 .344 .344 .344 .689
.645 .344 1.000 .417 .708 .344
.344 .344 .417 1.000 .417 .344
.645 .344 .708 .417 1.000 .344
.378 .689 .344 .344 .344 1.000

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

Correlation
ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6
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 -------------------------------    F A C T O R   A N A L Y S I S   ------------------------------------------ 
 
 
 It is shown in the above correlation matrix that the largest correlation coefficient occurs 

between item 3 and item 5 (i.e. r = .70833).  The second largest correlation coefficient is 
.68889, which occurs between items 1 and 2 as well as between items 2 and 6.  The 
smallest correlation coefficient is .34427, and all the following 7 pairs of items have this 
correlation coefficient: items 2 and 3: items 2 and 5; items 4 and 1; items 4 and 2; items 4 
and 6; items 6 and 3; and items 6 and 5.  The next smallest correlation coefficient is 
.37778, which occurs between items 1 and 6.  Based on the above correlation matrix and 
using the crude method of “eyeball” factor analysis, it can be suggested that there are 
possibly two factors.  Item 2 and item 6 seem to load on one factor and items 1, 3 and 5 
on the other.  However, item 2 is also highly correlated with item 1 (r  = .68889).  
Besides, item 4 itself can possibly load on another factor (because it is not highly 
correlated with any one of the other factors), but since the correlation coefficients 
between item 4 and each of the items 3 and 5 amount to .41667 which cannot be regarded 
as particularly low, it can be postulated that item 4 may load on the same factor as items 
3 and 5. 

 
 However, the above suggestions are based on very crude analyses and are not very 

conclusive.  More sophisticated analyses have to be performed by the SPSS factor 
procedure.  The following section of the output are the matrices and statistics obtained 
from using the method of the “principal components analysis” in the extraction phase of 
the factor procedure: 

 
EXTRACTION   1   FOR ANALYSIS   1, PRINCIPAL-COMPONENTS ANALYSIS (PC) 

    
 
 
 
 
 
 
 

Communalities

1.000 .725
1.000 .878
1.000 .805
1.000 .382
1.000 .805
1.000 .790

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

Initial Extraction

Extraction Method: Principal Component Analysis.



 

 

 

 
 
 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 W

Total Variance Explained

3.361 56.025 56.025 3.361 56.025 56.025 2.474 41.239 41.239
1.024 17.071 73.096 1.024 17.071 73.096 1.911 31.857 73.096
.734 12.227 85.323
.471 7.846 93.169
.292 4.861 98.030
.118 1.970 100.000

Component
1
2
3
4
5
6

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Scree Plot

Component Number

654321

Ei
ge

nv
al

ue

4

3

2

1

0

Component Matrixa

.848 -7.50E-02

.762 .545

.785 -.435

.610 -9.62E-02

.785 -.435

.676 .577

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 
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hat principal components analysis basically does is to transform a set of correlated variables 
(in this case, each item is a variable) to a set of uncorrelated variables (or principal 
components).  In the context of the present phase of factor analysis, these uncorrelated 
variables are the factors.  In principal components analysis, linear combinations of the 
observed variables are formed.  The first principal component (or factor in this context) is 
the combination that accounts for the largest amount of variance in the sample.  The second 
principal component accounts for the next largest amount of variance and is uncorrelated 
with the first.  Successive components explain progressibely smaller portions of the total 
sample variance, and all are uncorrelated with each other. 

 
 The matrix under the heading “Initial Statistics” contains the solution of the principal 

components analysis when all possible factors are included in the solution.  It is possible to 
compute as many principal components as there are variables; in this example, there can be 
as many as 6 principal components or factors.  These “Initial Statistics” basically tell us the 
amount of variance explained by each factor as well as the percentage of the total variance 
in the sample attributed to each factor.  To make more sense out of these statistics, we need 
to understand how the total variance of the sample is worked out. 

 
 The total variance is the sum of the variance of each variable (or item in this case).  In the 

principal components analysis, all variables and factors are expressed in standardized form, 
with a mean of 0 and a standard deviation of 1.  Since there are 6 items in this example and 
each is standardized to have a variance of 1, the total variance is 6 in this example. 

 
 The eigenvalue is the amount of variance explained by each factor.  The 1st column of the 

“Initial Statistics” contains 6 eigenvalues, one for each of the possible 6 factors respectively.  
The sum of these 6 eigenvalues is equal to the total variance of the sample, that is 6.  The 6 
eigenvalues are arranged in a descending order, with the largest at the top of the column and 
the lowest at the bottom.  Among the 6 factors, factor 1 accounts for the largest amount of 
variance in the sample, while factor 6 contributes to the smallest amount.  For factor 1, the 
corresponding eigenvalue is 3.36147, which means that out of a total variance of 6, 3.36147 
can be attributed to factor 1.  It follows naturally that the percentage of variance accounted 
for by factor 1 is 56.0%, which is obtained from the following computation: 3.36147 divided 
by 6 times 100%.  For factor 6, the eigenvalue and the percentage of variance accounted for 
are 0.11817 and 2.0% respectively. 

 
 It is necessary to briefly introduce the Factor Analysis Model in order to understand the 

meaning of communality.  Under the Factor Analysis Model, the z-scores on variable  i are 
seen as combinations of basically two components, namely, summation of scores on m 
common factors, and scores on the factor unique to variable i.  The Factor Analysis Model is 
best illustrated by the following equation: 
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  m 
  zi     =      E   a ik f k   +  u i    (Equation 1) 

  k = 1 
 
 
 where zi represents z-scores on variable i, aik represents the loadings of variable i on factor 

k7, fk represents scores on common factor k, and ui represents scores on the factor unique to 
variable i.  A common factor is a factor with which 2 or more variables are correlated and 
hence contributes to the observed correlations between these variables; it is actually the 
same as the “factor” which we have consistently been referring to in the above discussion.  A 
unique factor is correlated with only one variable (a unique factor therefore should be 
uncorrelated with any of the common factors and should also not be correlated with any 
unique factors for other remaining variable) and hence does not account for correlations 
between variables8. 

 
 An important question in a factor analysis is the portion of a variable’s variance that is 

associated with variance on the common factors (i.e., the proportion of the variable’s 
variance that is explained by the common factors).  This amount is called communality or the 
common variance and is calculated by  

 
   m 
  h2 i     =     EEEE   a2

 ik       (Equation 2) 
  k = 1  

 
      (h2

i  is the communality of variable i)  
 
for uncorrelated factors9.   The proportion of a variable’s variance associated with variance on its 
unique factor is called the uniqueness or the unique variance and is calculated by 
 
 
  u2 i   =   1  -   h2 i    (Equation 3) 
 
  (u2 i is the uniqueness of variable i) 

                                                 

 7 Loadings of variables on factors (or factor loadings) will be illustrated and explained in a later 
section. 

 8 The theoretical relationship between inter-variable correlations and factor loadings will be 
shown and explained in a later section. 

 9 In a later section, an illustration will be given on how communality can be calculated from 
factor loadings. 
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 Theoretically, u 2 i   = s 2

i   +   e 2
i , where  s 2

i is the specific variance of a variable (i.e. the 
portion of a variable’s true score unrelated to true score variance on any of the other 
variables included in the factor analysis), and   e 2

i is the error variance.  Therefore, the total 
variance (which has been standardized as 1) can be expressed by 

 
  h2 i   +    s 2

i   +   e 2
i   =   1   (Equation 4) 

 
 
 The communality is usually a number less than 1.  In the “Initial Statistics” matrix, all the 

communalities are 1.  This is because all factors are included in this solution.   When all 
factors are included in the solution, all of the variance of each variable is accounted for, and 
there is no need for a unique factor in the model.  The proportion of variance accounted for 
by the common factors (a total of 6 factors in this case), or the communality of a variable, is 
therefore 1 for all the variables. 

 
 Determination of the Number of Factors in the Model  - However, if all the possible factors 

are included in the solution, there is nothing gained since there are as many common factors 
(or simply factors or principal components) as variables.  A common criterion used to 
determine the number of factors to use in the model is that only factors that account for 
variances greater than 1 (i.e.  The eigenvalue is greater than 1) should be included.  This is 
in fact the default criterion in the SPSS factor procedure.  The rationale behind this criterion 
is that factors with a variance less than 1 are no better than a single variable, since each 
variable has a variance of 1.  In the present example, the computer procedure suggests that a 
model with two factors may be adequate to represent the data  (as shown in the “Factor 
Matrix” and the “Final Statistics”).  It can be seen from the “Final Statistics” that each of 
these two factors has an eigenvalue greater than 1 (i.e.  3.36147 and 1.02428 respectively) 
and they together account for over 73% of the total variance of the sample. 

 
 Another method that can be used to decide the number of factors in the model is to inspect 

the scree plot, a plot instigated by the “plot=eigen” subcommand and produced between the 
“Initial Statistics” and the “Factor Matrix” in the output.  Typically, the plot should show a 
distinct break between the steep slope of the large factors and the gradual trailing off of the 
rest of the factors.  The gradual trailing off is called the scree, and experimental evidence 
indicates that the scree begins at the kth factor, where k is the true number of factors.  The 
scree plot in the present output basically suports a 2-factor solution, because the scree 
begins at the 2nd factor 10.   

                                                 

 10 There may be controversies on whether factor 2 should be included in the model because its 
eigenvalue just barely exceeds 1 and it is also likely that “it is already on the scree” in the scree plot.  
However, since this factor explains over 17% of the total variance in the sample, it will not be 
unreasonable to include it in the model. 
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 Factor Loadings and Communality   -   The figures produced in the “Factor Matrix” are the 

factor loadings.  To put it simply, the factor loading of a variable on a factor represents how 
much weight is assigned to the factor.  When the factors are orthogonal (that is, when they 
are uncorrelated with each other), the factor loadings are also correlations between the 
factors and the variables.  Since the principal components analysis is used to extract factors 
in this example, the resulting two estimated factors must be orthogonal.  Hence, from 
inspecting the figures in the “Factor Matrix”, we can say for example that the correlation 
between item 2 and Factor 1 is .7624 and that the correlation between item 6 and Factor 2 is 
.57746, etc. 

 
 Since the two resulting factors are orthogonal, the communality shown in the “Final 

Statistics” can be calculated from the appropriate factor loadings in the “Factor Matrix” 
using equation 2 already discussed in an earlier section: 

 
       m 
   h2 i    =  E   a 2

ik 
      k=1 

 

 
 For example, the communality of item 1 can be obtained from adding the squares of its factor 

loadings on Factor 1 and Factor 2, i.e., .72545 = (.84843)2   + (-.07500)2.  This communality 
of item 1 means that 72.545% of the variance of item 1 is explained by the two common 
factors.   

 
 Relationship between factor loadings and variable inter-correlations - One of the basic 

assumptions of factor analysis is that the observed correlation between variables is due to 
the sharing of common factors.  Therefore, the correlation between a pair of variables has a 
very important relationship to the loadings of the two variables on the factors.  When the 
factors are orthogonal, the general equation relating the variable intercorrelations to factor 
loadings is  

 
   m 
  p ij   = E    aik ajk    (Equation 5) 
   k=1    
 
 where   p ij   is the correlation between scores on variables i and j (in this example, it is the 

correlation between items i  and  j), aik and ajk are respectively the factor loadings of variable  
i  and  j  on factor  k, and m is the number of factors.  When there are two factors like this 
example, the relationship is: 
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  pij  =   ai1 a j1   +    ai2 aj2 

 

 
As an illustration, the factor loadings of item 4 and item 6 on factor 1 and factor 2 are used 
to compute the correlations between item 4 and item 6.    p46  is therefore equal to the sum of  
a41 a61     and   a42 a62, which is .35690 (this value is obtained from (.61204) (.67586) + (-
.09618) (.57746) ).  When compared with the observed correlation coefficient between items 
4 and 6 (i.e.  r46   = .34427) in the correlation matrix given in the output, there is a difference 
of 0.01263.  This difference is called a residual.  For this set of data and analysis, this 
residual is already the smallest.  The biggest residual occurs between items 1 and 4, which is 
equal to 0.18069 (i.e. the difference between the correlation coefficient of .52496 computed 
from equation 5 and the observed correlation coefficient of .34427 from the correlation 
matrix in the output)11. 

 
 There is a major explanation for the occurrence of residuals (i.e., the differences between 

correlations among pairs of items calculated from the equation and their corresponding 
observed correlations): For correlation calculated for a sample, equation 5 will be satisfied 
exactly only for N - 1 factors, where N is the number of variables.  It follows that in this 
example, equation 5 can be satisfied exactly only in a 5-factor solution.  Since the present 
calculations are based on a 2-factor solution which explains about 73% of the total variance 
in the sample, the discrepancies between the observed and computed correlations are 
expected to occur. 

 
 Factor loadings shown in the Factor Matrix are usually called initial or unrotated loadings 

because they are obtained by using a method that permits convenient calculation of the 
loadings.  Typically, researchers do not attempt to interpret these unrotated loadings or this 
factor matrix.  It is because very often the variables and factors in this matrix do not appear 
correlated in any interpretable pattern and it is usually difficult to identify meaningful 
factors based on this matrix.   The factor matrix of unrotated loadings in this example is not 
easy to interpret either.  All items have very high loadings on factor 1, and if we follow the 
conventional rule that loadings less than .30 are considered unimportant, 4 items (i.e. items 
2, 3, 5 and 6) also have very high loadings on factor 2.  Even if we raise the critical level to 
.50, we still have item 2 and item 6 loading highly on factor 2. 

 

                                                 

 11 If the “print=repr” subcommand is included in the computer program, SPSS factor procedure 
will produce in the output a matrix containing variable inter-correlations estimated by using equation 5 
and the residuals. 
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 The Rotation phase of factor analysis attempts to transform the initial matrix into one that is 
easier to interpret12.  The purpose of rotation is to achieve a simple structure.  Essentially, 
the simple structure criteria imply that each variable should have large loadings on as few of 
the factors as possible (preferably one) and low or zero loadings on the remaining factors.  
Factor matrix that satisfies the simple structure criteria permits the factors to be 
differentiated from each other, or to put this in another way, such matrix would allow easier 
identification of sets of closely related variables. 

 
 There are two classes of rotations, orthogonal and oblique.  Orthogonal rotations result in 

uncorrelated factors, whereas oblique rotations result in correlated factors.  Both classes of 
rotations involve finding new axes in a factor loadings plot so that the axes pass closer to 
clusters of variables.  But the new axes must be perpendicular for orthogonal rotations, 
whereas the new axes of an oblique solution are not perpendicular.  Rotation does not affect 
the goodness of fit of a factor solution, that is, although the factor matrix changes, the 
communalities and the percentage of total variance explained do not change.  Factor 
loadings resulting from orthogonal solutions satisfy both equations 2 and 5, but if these two 
equations are applied to factor loadings obtained from oblique solutions, they will be 
satisfied only when additional terms that take into consideration of the correlations among 
the factors are added to the equations.  

 
 In this example, the varimax rotation method is used.  Varimax rotation belongs to the class 

of orthogonal rotations, thus it will result in uncorrelated factors.  The output reproduced 
below are the results after the varimax method has been applied to the initial factor matrix.  
It contains a rotated factor matrix, a factor transformation matrix and a factor loadings plot.  
Since the factor transformation matrix is not particularly relevant to our present discussion, 
discussions will be mainly focussed on the rotated factor matrix and the factor loadings plot. 

 
 
 
 
 
 
 
 
 
                                                 

 12 The process of transforming the initial matrix into one that is easier to interpret is quite 
complicated and will not be explained here.  Basically, all methods of rotation wil result in a set of 
transformation equations used to transform the initial factor loadings so that the approximate simple 
structure (the principle of simple structure will be dealt with later).  With reference to the present 
example, when the items have been plotted on a two-dimensional plot using the initial factor loadings 
as coordinates with different factors represented by different axes (i.e. factor 1 on the x-axis and factor 
2 on the y-axis), rotation phase of factor analysis basically involves finding two new axes, one that 
passes closer to the first cluster and a second that passes closer to the second cluster.  A plot of factor 
loadings resulting from varimax-rotated solution will be included as an illustration in a later section. 



 

 

VARIMAX     ROTATION 1    FOR EXTRACTION  1   IN ANALYSIS  2  -   KAISER NORMALIZATION 

 
FACTOR TRANSFORMATION MATRIX: 

  

Rotated Component Matrixa

.714 .464

.265 .899

.886 .140

.540 .300

.886 .140

.177 .871

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 

Component Transformation Matrix

.788 .616
-.616 .788

Component
1
2

1 2

Extraction Method: Principal Component Analysis.  
Rotation Method: Varimax with Kaiser Normalization.
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Component Plot in Rotated Space

Component 1
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-1.0

item6

item5

item4

item3
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item1
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 The “Rotated Factor Matrix” appears to be a little more easy to interpret than the previous 

“Factor Matrix”.  With the exception of item 1, all other items have high factor loadings on 
only one factor.  If .5 is employed as the critical value of factor loadings (i.e. factor loadings 
smaller than .5 are considered unimportant), we can draw the following conclusions from 
this factor matrix: 

 
a.  A two-factor solution is adequate to represent the data; 
b.  Items 1, 3, 4, and 5 load primarily on factor 1, while items 2 and 6 load  
  primarily on factor 2. 

 
 The above conclusions seem to match the results of the “eyeball” factor analysis described 

on page 8.  However, these results do not seem to support the original assumption, that is, 
this 6-item scale measures a single construct: adolescents’ attitude towards the use of 
physical aggressive behaviours in their daily life. 

 
 Another convenient means of examining the success of an orthogonal rotation is to plot the 

variables using the factor loadings as coordinates on a factor loadings plot (this plot is 
reproduced on page 17 and represents the results of the varimax rotation).  The plotted 
numbers represent the numbers of the variables (or items in this case), e.g.  2 represents item 
2.  The coordinates of each plotted number correspond to the factor loadings in the rotated 
factor matrix, with factor 1 represented by the x-axis and factor 2 by the y-axis.  The 
coordinates are also listed under the plot. 

 
 If a rotation has achieved a simple structure, clusters of variables should occur near the ends 

of the axes and at their intersection.  Variables at the end of the axis are those that have high 
loadings on only that factor.  Variables near the origin of the plot have small loadings on 
both factors.  Variables that are not near to the axes are explained by both factors.  If a 
simple structure has been achieved, there should be few, if any, variables with large loadings 
on more than one factor. 

 

Component Score Coefficient Matrix

.244 .098
-.149 .559
.446 -.191
.201 .038
.446 -.191

-.189 .568

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.
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 There are 5 plotted numbers in the reproduced factor loadings plot instead of 6.  This is 
because item 3 and item 5 have the same coordinates (i.e. same loadings on factor 1 and 
same loadings on factor 2), and the computer only prints one of them, i.e. 5, on the plot.  
Basically most of the plotted numbers are located near the ends of the axes.  Item 1 appears 
to be a little away from the axes because it also has comparatively high loading on factor 2.  
Nevertheless, the plot indicates that the rotation has achieved a relatively simple structure, 
with the majority of the plotted numbers located near the ends of the axes. 

 
3. What Conclusions can we Draw from the Factor Analysis on this Set of Data on the  
 6-item Scale: 
 
 Instead of a predicted one-factor solution, a 2 - factor solution is reached by this factor 
analysis.  The original assumption that the 6 - item scale is measuring one construct is not supported 
by the analysis.  A closer look at the 6 items may suggest why a 2 - factor solution is reached.  One 
of the possible explanations is that items 2 and 6 appear to be related to what the respondents would 
actually behave in conflict situations, while items 3, 4 and 5 (and to a great extent item 1 also) refer 
to the use of physical aggressive behaviours in general situations when respondents’ immediate and 
actual responses and behaviours are not directly involved or asked.  If we examine item 1 which also 
has moderately high loading on the factor on which items 2 and 6 primarily load (i.e. factor 2), we 
can find some support for the above explanation.  While item 1 may be primarily designed to refer to 
some general situation when physical aggressive behaviours were used, the portion of item 1 which 
reads “people won’t listen to you unless you get physically aggressive” may unexpectedly invite the 
respondents to think about how they would actually behave when they are probed with this item.  
Based on the above factor analysis results and explanations, we can suggest that the 6 item scale may 
by measuring two constructs or two dimensions of the same construct.  Factor 1 may be measuring 
adolescents’ general attitude towards use of physical aggressive behaviours in daily life and factor 2 
may in fact be measuring adolescents’ predisposition to act aggressively when provoked.  
Nevertheless, the above explanation may only be one of the many possible explanations for why a 
two-factor solution appears to be more appropriate. 
           
 Reliability analysis on the same set of data suggests that the scale has a very high inter-item 
reliability coefficient (Cronbach’s  "   =    .8396).  However, results of the present analysis do not 
offer support to the claim that this scale is a homogeneous instrument.  While reliability analysis 
suggests that item 4 should be the first to go if some items are to be deleted from the scale, this 
factor analysis also points to the need to look more closely into item 1.  In any event, the scale 
developer has to revise the scale if he/she hopes that only one construct should be measured by the 
scale.  Other methods for construct validation should also be employed to improve the construct 
validity of this scale. 
 
 Two more reminders about effective use of factor analysis: 
a. Rule of thumb for the minimum sample size in factor analysis: 100 subjects or 10 times the 

number of variables (whichever is larger) (thus, the sample size of this example is too 
small!); 



 

 

b. Factors are hypothetical constructs and do not have meanings by themselves.  Meaningful 
interpretation of the resulting factors must have to be based on sound theoretical frameworks 
and unbiased and careful analyses. 

 
Determining Factorial Validity Using SPSS Factor Procedure 
 
Example 2: 
 
 The following questionnaire was developed by a researcher as part of an effort to collect 
participants’ satisfaction with a five-week community-based program designed to teach individuals 
disease prevention and to encourage healthier lifestyles.  The questionnaire contained six items.  
Respondents were asked to respond to each item according to the following scale: 
 
        
         
 1  2  3       4          5   

   
 
Strongly  Agree            Agree               No Opinion              Disagree                 Strongly Agree   
      
   
 
 The 6 items in the questionnaire were: 
           
1. The goals of the program are clear. 
 
2. I feel comfortable in discussing my plans, concerns and experiences with the group. 
 
3. 
 
4. 
 
5. 
 
6. 
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The materials covered in the program are helpful. 

The health contract is useful in assisting me to make healthy lifestyle changes. 

Overall speaking, the group is supportive. 

Overall, the program is useful in assisting me develop positive changes towards healthy 
lifestyles. 
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The following is the data obtained from 10 participants: 
 
       Items 
 Person    1 2 3 4 5 6 
 

1    2 3 1 3 4 2 
 2    1 2 1 1 3 1 
 3    4 3 4 5 3 3 
 4    5 3 2 4 3 2 
 5    2 1 2 2 1 1 
 6    3 3 1 3 3 1 
 7    4 5 2 3 4 2 
 8    2 1 2 2 1 1 
 9    2 2 2 2 2 2 
 10    3 4 2 5 4 2 
 
 
 Factorial validity of the above scale can be assessed using factor analysis.  The primary 
purpose of conducting a factor analysis on the scores of the 6 - item questionnaire is to find support 
for the assumption that this 6 - item questionnaire is measuring a single construct: “participants’ 
satisfaction with the community-based program”.  This assumption is supported if a factor analysis 
on this set of data points to a one-factor solution. 
                 
Conducting Factor Analysis on the Set of Scores Obtained from 10 Respondents for the 6 Items Using SPSS  
     
1. SPSS Computer Program for the Analysis 
                                                                                                                                                         
2. SPSS Outputs and Brief Conclusions13                                                                                          

 
 

                                                 

 13 Brief conclusions are in italics.  They are not parts of the original computer outputs. 

Correlation Matrix

1.000 .607 .496 .746 .366 .589
.607 1.000 .071 .599 .891 .539
.496 .071 1.000 .571 -.134 .696
.746 .599 .571 1.000 .514 .741
.366 .891 -.134 .514 1.000 .493
.589 .539 .696 .741 .493 1.000

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

Correlation
ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6
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3. 
 

 
 

Component Matrixa

.823 .145

.807 -.528

.557 .790

.901 .144

.687 -.689

.866 .244

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 

Rotated Component Matrixa

.721 .423

.273 .925

.936 -.241

.780 .475
7.667E-02 .970

.817 .375

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 

Total Variance Explained

3.673 61.221 61.221 3.673 61.221 61.221 2.752 45.865 45.865
1.479 24.646 85.867 1.479 24.646 85.867 2.400 40.002 85.867
.472 7.874 93.741
.223 3.718 97.460
.122 2.034 99.494

3.038E-02 .506 100.000

Component
1
2
3
4
5
6

Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Extraction Method: Principal Component Analysis.



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Co

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

Extractio
2 ca. 
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Scree Plot

Component Number

654321

Ei
ge

nv
al

ue

4

3

2

1

0

mponent Matrixa

.823 .145

.807 -.528

.557 .790

.901 .144

.687 -.689

.866 .244

1 2
Component

n Method: Principal Component Analysis.
omponents extracted.

Rotated Component Matrixa

.721 .423

.273 .925

.936 -.241

.780 .475
7.667E-02 .970

.817 .375

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.

Rotation converged in 3 iterations.a. 
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Component Plot in Rotated Space

Component 1

1.0.50.0-.5-1.0

C
om
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1.0

.5

0.0

-.5

-1.0

item6
item4

item3

item2

item1

Component Score Coefficient Matrix

.234 .071
-.064 .415
.462 -.309
.250 .085

-.160 .476
.286 .027

ITEM1
ITEM2
ITEM3
ITEM4
ITEM5
ITEM6

1 2
Component

Extraction Method: Principal Component Analysis. 
Rotation Method: Varimax with Kaiser Normalization.
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3.  Brief Conclusions 
 

Factor analysis results suggest that a model with two factors may be adequate to 
represent the data (as shown in the “Final Statistics” of the Principal - Components 
Analysis and the “scree plot”).   These two factors together account for about 86% of the 
variance of the sample.  Based on the results reported in the “Rotated Factor Matrix” 
and the distribution of the items in the “Factor loadings plot”, it can be suggested that 
items 1, 3, 4 and 6 load primarily on factor 1 and items 2 and 5 load primarily on factor 
2.  The above results do not lend support to the original assumption that this 6 - item 
questionnaire is measuring a single construct.  A closer examination of the content of the 
items may suggest a possible explanation for why a two - factor solution appears to be 
more appropriate: items 1, 3, 4 and 6 may be measuring respondents’ satisfaction with 
the program itself (i.e. its goals, content, etc.); but items 2 and 5 may be more related to 
respondents’ satisfaction with the group (i.e. group atmosphere, cohesion, etc.). 
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Part Six: Using SPSS for Windows to Conduct Factor 
Analyses (i.e., tests of factorial validity) 

 
This section will outline the steps necessary for conducting the factor analysis procedure 
as a test of validity, and should be read in conjunction with Bob Gebotys’ “Handout on 
Validity.”   
 
1.1 Specifying the Factor Analysis Procedure 
 
For this analysis it is recommended that one use the data set on adolescent attitudes 
towards aggression (outlined in Gebotys’ “Handout on Validity” p. 5) as used in the 
previous section on reliability analyses. 
 
The recommended steps are outlined below. 
 
1. Begin by entering the data into a Data Editor window or -- if you have saved the 

data from the earlier reliability analyses -- retrieve the existing data file. 
2. Next, click on Statistics on the main menu bar, then Data Reduction, followed 

by Factor…  This will open a ‘Factor Analysis’ dialog box similar to the one 
below. 



1. Next, select all the variables to be analyzed by clicking on the first item on the list 
and scrolling your mouse downward until all items are highlighted.  Once they are 
highlighted, click the right facing arrow in the centre of the screen to move the 
variables to the “Variables…” text box. 

2. Now, click on the Descriptives… pushbutton which will open a ‘Factor Analysis: 
Descriptives’ subdialog box similar to the one shown below. 
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3. Once in the ‘Factor Analysis: Descriptives’ subdialog box, under the heading 
‘Correlation Matrix’ select ‘coefficients’ with a single click on the appropriate 
check box.  Then click the Continue command pushbutton, which will return you 
to the Factor Analysis dialog box. 

4. Next, click on the Extraction… pushbutton at the bottom of the dialog box, 
which will open a ‘Factor Analysis: Extraction’ subdialog box like that shown 
below. 
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5. If not already selected, under the heading ‘Analyze’ select “correlation matrix.”  

Under the heading ‘Display’ select “unrotated factor matrix” and “scree plot.”  
Under the heading ‘Extract’ select “Eigenvalues over 1.”  (Note: the majority of 
these options will be the '‘default” option.)  Once these options are selected, click 
the Continue command pushbutton to return you to the Factor Analysis dialog 
box. 

6. Next, click on the Rotation pushbutton at the bottom of the dialog box, which 
will open a ‘Factor Analysis: Rotation’ subdialog box like the one shown below. 
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7. Next, under ‘Method’ select “Varimax” by clicking on the radio button adjacent 

to that option.  Under ‘Display’ select “Rotated solution” and “Loading plot(s).”  
Then, click the Continue command pushbutton to return you to the Factor 
Analysis dialog box. 

8. Click on the ‘Scores’ pushbutton at the bottom of the dialog box which, will open 
a ‘Factor Analysis: Scores’ subdialog box like the one below. 
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9. Next, select “Display factor score coefficient matrix” by clicking on the check 

box to the left of that option. Then, click the Continue command pushbutton to 
return you to the Factor Analysis dialog box. 

10. You have completed all the selections necessary for undertaking this procedure. If 
you would like to go directly to running the procedure click the OK command 
pushbutton to proceed.  If you would like to view the SPSS syntax for this 
procedure, you may now click the Paste command pushbutton, which will open 
an SPSS Syntax window resembling the one below. 
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Again, in order to run the Factor Analysis procedure from the SPSS Syntax window, 
click Run on the main menu bar followed by All.  It is recommended that you save and 
print the output at this time.  The Factor Analysis output should resemble the output on 
the following pages. 
 
 
 
 
 
 
 

 


