SPSS Chapter 14 Example 1 – One-Way Analysis of Variance

Gebotys and Roberts, *Canadian journal Behavioural Science* (1987) 19, p 479, examined the public's attitude towards sentencing by giving each subject a short story describing a crime and then asking the subject to sentence the offender. The data below are based on this study. There are three treatment/crime conditions: break and enter (A_1), robbery (A_2), and manslaughter (A_3). Three subjects are randomly assigned to each treatment for a total of 9 subjects and a sentence, in months, is recorded.

We are interested in comparing the sentences of the three crime conditions. We are testing:

 H_0 : $\mu_B = \mu_R = \mu_M$ (all of the means are equal)

 $H_a: \mu_B \neq \mu_R \neq \mu_M$ (at least one of the means is different from the rest)

After opening the file, the data appear in the SPSS Data Editor window just like the following (please note that for the variable entitled Crime, break and enter = 1, robbery = 2, and manslaughter = 3):

💼 Unt	🗰 Untitled - SPSS Data Editor 📃 🖪 🗙							
<u>F</u> ile <u>E</u>	<u>File Edit View Data Transform Statistics Graphs Utilities Window Help</u>							
	crime	sentence	var	var	var	var	var	
1	1.00	38.50						
2	1.00	39.80						
3	1.00	37.20						
4	2.00	40.10						
5	2.00	41.50						
6	2.00	39.30						
7	3.00	40.10						
8	3.00	43.20						
9	3.00	42.20						
10								
•							Þ	
		SP	SS Processor is re	eady				

Follow these steps to perform a One-Way ANOVA:

1. Click **Analyze**, click **Compare Means**, and click **One-Way ANOVA**. The following window will appear.

Image: wide crime [crime] Image: wide crime [crime [crime]	🔒 One-Way ANOVA		×
Contrasts Post Hoc Options	erime [crime] sentence	Dependent List: Image: Dependent List: <	OK Paste <u>R</u> eset Cancel Help

- 2. Click "sentence" and click the arrow to move "sentence" into the box entitled Dependent List.
- 3. Click "**crime**" and click the arrow to move "**crime**" into the box entitled **Factor**.
- 4. To obtain a graph of the means click **Options**, **Means Plot**, and **Continue**.

5. To calculate contrasts, click the button entitled **Contrasts** and the following window will appear.

One-Way ANOVA: Contrasts	×
Polynomial Degree: Linear	Continue
Previous Contrast 1 of 1 <u>N</u> ext	Cancel Help
Coefficients: Add Change Remove	
Coefficient Total: 0.000	

6. A reading of the literature indicates that there may be a difference between the mean sentence of A_2 and the mean sentence of A_3 and then if the difference doesn't exist, it seems reasonable to test for a difference between the mean of A_1 and the common value (average value) for A_2 and A_3 . So we are interested in two contrasts: robbery vs. manslaughter (0, 1, -1) as well as break and enter vs. robbery and manslaughter (-2, 1, 1). The coefficients of each contrast are entered separately in the box entitled **Coefficients**. After the first coefficient is entered (i.e., 0) click **Add**. Enter the remaining coefficients of the first contrast (i.e., 1 and -1) in the same manner. Click **Next** to enter the second contrast.

7. Repeat step 5 for the second contrast, then click **Continue**.

8. To calculate post hoc multiple comparisons, click the button entitled **Post Hoc** and the following window will appear.

One-Way ANOVA:	Post Hoc Multiple Comparisons 🛛 🗙
Equal Variances As EQUID LSD Bonferroni Sidak Scheffe R-E-G-W F R-E-G-W Q	sumed S-N-K Waller-Duncan Iukey Type I/Type II Error Ratio: 100 Tukey's-b Dunnett 100 Duncan Control Category: Last Hochberg's GT2 Test Gabriel S-sided Control
Equal Variances No Ta <u>m</u> hane's T2	ot Assumed Dunnett's T <u>3</u> Games-Howell Dunnett's C
Signi <u>f</u> icance level:	05 Continue Cancel Help

9. Click **LSD** and **Bonferroni** so that a checkmark appears in the boxes before those multiple comparisons. Click **Continue**.

10. Click OK.

- 11. To obtain descriptive statistics:
 - 1. Click **Analyze**, **Compare Means**, and **Means**. The following window will appear.

🚜 Means		×
crime [crime] sentence	Dependent List:	OK <u>P</u> aste <u>R</u> eset Cancel
	Independent List:	Help Options

- 2. Click "sentence" and click the arrow to move "sentence" into the box entitled Dependent List.
- 3. Click "crime" and click the arrow to move "crime" into the box entitled Independent List.

4. Click **Options**. The following window will appear.

5. Choose Mean, Standard Deviation, Number of Cases, etc.. Click Continue.

12. Click OK.

The SPSS output for this example of the One-Way ANOVA is the following:

ANOVA

SENTENCE	
----------	--

	Sum of	alf	Mean	L	Cir.
	Squares	at	Square	F	Sig.
Between Groups	16.702	2	8.351	4.611	.061
Within Groups	10.867	6	1.811		
Total	27.569	8			

The F statistic is 4.6 with 2 and 6 degrees of freedom. The p value is marginally significant at p = .06. Thus there are differences between the means, however the differences are not significant at the p = .05 level. We do not know where the means differ (see H_a). If the researchers have pre-planned the comparisons they wish to make (a priori contrasts) and they are orthogonal, then orthogonal contrasts can be used to test the comparisons. This can be done even if the ANOVA (as in this example) is non-significant. The contrasts are given below. Check to see if they are orthogonal.

Contrast Coefficients

	crime					
Contrast	break&enter	robbery	manslaughter			
1	0	1	-1			
2	-2	1	1			

If we look in the Sig. column of the Contrast Tests table it is clear that contrast 2 is significant; there is a significant difference between mean sentencing of break and enter vs. robbery and manslaughter crimes. We usually assume that variances are equal and check this assumption using tests and graphical displays.

		Contrast	Value of Contrast	Std. Error	t	df	Sig. (2-tailed)
SENTENCE	Assume equal variances	1	-1.5333	1.0988	-1.395	6	.212
		2	5.1333	1.9032	2.697	6	.036
	Does not assume equal	1	-1.5333	1.1170	-1.373	3.591	.249
	variances	2	5.1333	1.8711	2.743	4.124	.050

Contrast Tests

The results of the LSD and Bonferonni methods are given below. Note these are not preplanned comparisons. These types of pairwise comparisons are usually used in exploratory studies and require the ANOVA F test to be significant.

Dependent							
			Mean			95% Confide	ence Interval
			Difference			Lower	Upper
	(I) crime	(J) crime	(I-J)	Std. Error	Sig.	Bound	Bound
LSD	break&enter	robbery	-1.8000	1.099	.153	-4.4887	.8887
		manslaughter	-3.3333*	1.099	.023	-6.0221	6446
	robbery	break&enter	1.8000	1.099	.153	8887	4.4887
		manslaughter	-1.5333	1.099	.212	-4.2221	1.1554
	manslaughter	break&enter	3.3333*	1.099	.023	.6446	6.0221
_		robbery	1.5333	1.099	.212	-1.1554	4.2221
Bonferroni	break&enter	robbery	-1.8000	1.099	.458	-5.4123	1.8123
		manslaughter	-3.3333	1.099	.069	-6.9457	.2790
	robbery	break&enter	1.8000	1.099	.458	-1.8123	5.4123
		manslaughter	-1.5333	1.099	.637	-5.1457	2.0790
	manslaughter	break&enter	3.3333	1.099	.069	2790	6.9457
		robbery	1.5333	1.099	.637	-2.0790	5.1457

Multiple Comparisons

Dependent Variable: SENTENCE

*• The mean difference is significant at the .05 level.

The LSD test indicates that the mean for break and enter differs significantly from the mean for manslaughter.

A graph of the means is presented for completeness. Note the means are presented on the next page.

Means

Case Processing Summary

	Cases						
	Inclu	Included Excluded T				otal	
	Ν	Percent	Ν	Percent	N	Percent	
SENTENCE * crim	9	100.0%	0	.0%	9	100.0%	

Report

SENTENCE

crime	Mean	N	Std. Deviation
break&enter	38.5000	3	1.3000
robbery	40.3000	3	1.1136
manslaughter	41.8333	3	1.5822
Total	40.2111	9	1.8564