Power for Professionals

When we examined the confidence interval we saw that it told us where the parameter would lie in repeated sampling. The smaller the margin of error the tighter or more sensitive the interval. A fixed level α test (two sided) can be carried out with a confidence interval (see notes). We want our test to detect H₀ (null hypothesis) that are false. This is measured by the probability the test will reject H₀ when the alternative (H_A) is true - the higher the probability the better.

Power \rightarrow The probability that a fixed level alpha- α significance test will reject H₀ when a particular alternative value of the parameter is true is called the **power** of the test against the alternative.

Along with 95% confidence interval, 5% significance tests, 80% power is very popular. Many granting agencies and industries require the sample size be sufficient to detect results 80% of the time using a 5% test of significance.

Boost the Power

Say you perform a power calculation (see SPSS notes) and find the power too small, what can you do to increase it?

- 1) Increase alpha- α . A 10% test will have a greater chance of rejecting the alternative than a 5% test because the strength of evidence required for rejection is less.
- 2) Increase the sample size. As n increases our standard error decreases (see notes).
- 3) Consider an alternative H_A parameter that is further away from the value under $H_{0.}$ Values that are close to one another are harder to detect (low power).

Power is important for planning. Using a test with low power makes it unlikely you will find a significant effect. Suppose the H_0 is in fact false, it can be widely believed to be true if repeated attempts fail because of low power.

Error Types for Decision Making

If we reject H_0 (accept H_A) when in fact H_0 is true, call this **Type I error**.

If we accept H_0 (reject H_A) when in fact H_A is true, call this **Type II error**.

Truth about Population

		H ₀ true	H _A true
Decision Based	Reject H ₀	Type I error	Correct decision
on Sample	Accept H ₀	Correct decision	Type II error

Significance tests with a fixed α give us a way of understanding the above table because the test either rejects H₀ or fails to reject H₀. Failing to reject H₀ means deciding H₀ is true. So now we can describe our test using Type I and Type II error.

Significance and Type I error

The significance level α of any fixed level test is the probability of a Type I error. Alpha- α is the probability the test will reject H₀ when H₀ is true.

Power and Type II error

The power of a fixed level test against a particular alternative is 1 minus the probability of a Type II error for that alternative.

Suppose we calculate the power of a test to be .87. The probability of a Type II error is 1 - .87 = .13.

Significance Tests

In the research setting H_A is the research hypothesis asserting an effect is present. The null hypothesis says there is no difference. Low p-values present evidence that H_A is true. If H_0 is something that everyone in the profession believes then strong evidence (small p-value) will be needed to reject it. The level of evidence needed will depend on the consequences. If rejecting H_0 means changes are expensive, strong evidence will be needed. A .05 test is very common, but there is no dividing line that is absolute, one must realize that evidence increases as the p-value decreases. Note that when large samples are present then tiny deviations will be declared significant, they may not be practically important. Remember; plan to have an adequate sample size to detect an effect that exists – POWER.

- Probability of Type I error

Probability of Type II error

- Probability of rejecting H_0 : $\mu = 1$ when in fact $\mu = 1$.
 - Probability of accepting H_0 when in fact $\mu = 3$.

One Way ANOVA

Remember that the power of the test is the probability of rejecting H_0 when in fact H_A is true. We measure power with respect to a specific alternative. We do a power calculation to make sure the sample sizes are adequate to detect important differences in means. We may find that the power is low against the alternative and there is little chance of detecting a difference (significant F). Power helps us interpret results where H_0 was not rejected. Power calculations for the ANOVA are similar to the two sample t-test since the ANOVA is a generalization of the t-test (see notes).

We have to calculate the probability of rejecting H_0 when H_A is true, the probability that the observed F is greater than F-critical for the test α . We calculate the **non-central F distribution**. To do this we calculate a **noncentrality parameter** (λ). If all the means are equal λ =0. The larger the differences in means, the larger λ (it tells us how unequal the means are) and consequently we expect high power. We usually repeat the power calculation for different sample sizes to find acceptable levels of power (usually .8 or better).

Summary

In a test of significance we focus on H_0 and a single probability (p-value). The purpose is to measure the evidence against H_0 . Calculations of power are made to check the sensitivity of the test. If we don't reject H_0 we conclude there is not enough evidence against H_0 (not that H_0 is true). If the same problem is thought of as a decision that must be made we focus on both H_A and H_0 . We focus on both probabilities and errors. We must choose H_0 or H_A and cannot claim there is insufficient evidence. We commonly mix the reasoning of *significance tests* and *decision rules*.

Sample Power Software

When you first open the sample power program you will click on File, then new analysis and you will see the following screen. Remember that you can always use 'help' to guide you through the analysis (see yellow box) for interactive guide.

Means:

In order to test the power for a 2 sample t-test:

- 1) Click the Means tab
- 2) Click the t-test for 2 (independent) groups with common variance (enter means)
- 3) Click OK.

🗼 SamplePower - [Procedures]	_ 7 🔀
5. File Help	- 8 ×
Means Proportions Correlations ANOVA Regression General	
O One sample t-test that mean = 0	
O One sample t-test that mean = specific value	
O Paired t-test that mean difference = 0	
O Paired t-test that difference = specific value	
t-test for 2 (independent) groups with common variance (Enter means)	
t-test for 2 (independent) groups with common variance (Enter difference)	
t-test for 2 (independent) groups with common variance (Enter means)	
A recearcher will be assigning phobia patients to either a standard	
treatment or an experimental program, and measuring their anxiety level after six weeks.	
The researcher elects to specify the effect size by providing the	
expected mean for each of the treatment groups.	
Close	
🕐 start 📄 📀 Windows Media Player 🛛 🖾 Sample Power Hando 🚺 SamplePower - [Proc 📰 🗷 💰 🅵	🗧 🔜 7:01 PM

The Following screen will then appear:

	🛓 SamplePower - [t-test for two independent samples with common variance]										
5	🚰 File Options Tools View Help										
©	日 😂 🗊 🔽 ≡ 📃 🋄	E M =	岁 в 🗓	🐨 🕄 🕄) ?						
		· · · · · · · · · · · · · · · · · · ·						1			
		Population Mean	Standard Deviation	N Per Group	Standard Error	95% Lo w er	95% Upper				
	Population 1 Population 2	0.0	1.0 💭	10 📮							
	Mean Difference	0.0	1.0	20	0.45	-0.92	0.92				
	Alpha= 0.05, Tails= 2			Power		5%					
				×							
	Welcome										
	This interactive guide will lead you and precision.	ı through the steps	for computing po	ower							
	To move this box use the title bar	above.									
	To close or reactivate this panel, s	select Help from the	e menu.								
	Help	< <u>B</u> ac	k <u>N</u> ext>								
1	y start 🕖 📀 Windows Me	edia Player 📗 🙋	Sample Power	Hando	🗼 SamplePo	wer - [t-tes	B	🛂 🛃 🕵 🕋 🔡 7:02 PM			

Next, enter the information from our t-test example (taken from Dr. Gebotys', Chapter 7, PS 292 notes):

- 1) Population Mean 1 = 41.5
- 2) Population Mean 2 = 51.4
- 3) Standard Deviation 1 = 17.1
- 4) Standard Deviation 2 = 11.0
- 5) N per Group 1 = 23
- 6) N per Group 2 = 21

🗼 SamplePower - [t-test for	two independe	ent samples wi	ith common	n variance]			_ @ 🔀
5 File Options Tools View He	elp		_	_ 1 _ 1			_ & ×
		B 🗓	<u> 7</u> ? (1 ?			
	Population Mean	Standard Deviation	N Per Group	Standard Error	95% Lower	95% Upper	
Population 1 Population 2	41.5	17.1 💭	23 🕃 21 🕃]			
Mean Difference	-9.9	14.5	44	4.38	1.13	18.67	
Alpha= 0.05, Tails= 2			Power		60%		
			×				
Welcome							
This interactive guide will lead y and precision. To move this box use the title b To close or reactivate this pane	ou through the step ar above. I, select Help from t	s for computing po he menu.	ower				
Help	< <u>B</u> a	ck <u>N</u> ext>					
🐴 start 📄 📀 Windows	Media Player	🔊 Sample Power	Hando	🚶 SamplePo	wer - [t-tes	3	🛂 🛃 🕵 🎑 🛛 7:04 PM

You will now notice that the blue power bar in the bottom right corner indicates that the power for this example is 60%.

In order to see what number of participants would be required in order to increase the power we have two options. We can click the binocular icon in the top tool bar in order to see what number of participants we would need to reach a power of 80% (this tells us that we would need 35 participants in each group). Or, alternatively we can click the graph icon in the top tool bar (the one with bars) in order to create a chart of the power for our example. We also have the option of clicking the table icon in order to obtain a table of the power for our example.

Our Table will look like the following:

		F	Make t	able	n as a Fur	nction of	Sample Si	ze				
Two sample test of means												
				Raw [)ifference =	-9.9	Std Diff	erence = -0	.689			
N (1)		N (2)	Power	Standard Error	95% Lower	95% Upper	Standard Error	95% Lower	95% Upper			
	10	10	.308	6.430	-3.358	23.158	.447	234	1.611			
	15	15	.445	5.250	726	20.526	.365	050	1.428			
	20	20	.564	4.546	1.701	19.023	.316	.054	1.323			
	20	20	.000	4.000	2.512	17 288	.203	.124	1.202			
	35	35	.740	3 437	3.076	16 724	239	214	1.163			
	40	40	.860	3.215	3.527	16.273	.200	.245	1.132			
	45	45	.898	3.031	3.899	15.901	.211	.271	1.106			
	50	50	.926	2.875	4.213	15.587	.200	.293	1.084			
	55	55	.947	2.742	4.482	15.318	.191	.312	1.065			
	60	60	.963	2.625	4.717	15.083	.183	.328	1.049			
	65	65	.974	2.522	4.923	14.877	.175	.342	1.035			
	70	70	.981	2.430	5.106	14.694	.169	.355	1.022			
	75	75	.987	2.348	5.271	14.529	.163	.367	1.011			
	80	80	.991	2.273	5.420	14.380	.158	.377	1.000			
	85	85	.994	2.205	5.555	14.245	.153	.386	.991			
	90	90	.996	2.143	5.679	14.121	.149	.395	.982	•		
<	951	951	997	2 0861	5 792	14 008	145	403	974			
	Two	sample t:	Mean1 = 4 Compu	11.5 Mean2 tational opti	= 51.4 SD1 on: Varianc	l = 17.1 SE e is estima)2 = 11.0 Alp ted (t-test)	oha=.05 Ta	iils=2			

Our chart will look like the following:

ANOVA:

In order to conduct an analysis for a one-way ANOVA

1) Click the ANOVA tab.

2) Select Oneway analysis of variance.

3) Click OK.

🗼 SamplePower - [Procedures]	_ 7 🗙
5. File Help	- 8 ×
Means Proportions Correlations ANOVA Regression General	
Cancel	
Oneway analysis of variance Default	
O Oneway analysis of covariance	
O Factorial analysis of variance (2 factors)	
O Factorial analysis of covariance (2 factors)	
O Factorial analysis of variance (3 factors)	
Factorial analysis of covariance (3 factors)	
Oneway analysis of variance	
districts, have them take the PSAT, and compare the mean scores.	
Her hypothesis is that the mean score in the population is not identical	
across the rive districts.	
🤣 start 🚽 📀 Windows Media Player 🛛 👜 Sample Power Hando 🚺 SamplePower - [Proc 📰 🗷 🖧 🎎 🐼	À 🛃 7:09 PM

Using the information from Dr. Gebotys' One Way ANOVA handout (Chapter 14 of notes) we can run a power analysis for the example with three levels of crime, with three observations per treatment.

	SamplePower - [ANOVA]								r 🔀
52	File Options Tools View Help							_	a ×
Ø		# B 3	🕅 🕄 🕄	?					
			Interacti	ve Guide]			
	Factor Name	Number of C levels	Cases per level	Effect size f	Power				
	Factor A	2	5	0.00	0.05				
	SD within cell 1.00 Variance within cell 1.00		N of cases per Total N	cell	5 <u>.</u>				
	Alpha= 0.05]			
IL			×						
	Welcome								
	This interactive guide will lead you throug power and precision. To move this box use the title bar above.	h the steps for c	omputing						
	To close or reactivate this panel, select H	lelp from the mer	าน.						
	Help	<u>B</u> ack <u>N</u> e	ext>						
4	🕑 start 📄 💿 Windows Media Pla	yer 🔰 🗺 Sa	mple Power Har	ndo 🚺	SamplePower	- [ANO	🗾 🥩 🛂 💰 🔩 🗞 🚽	7:12	PM

- 1) First enter the variance within cell on the left hand side, 1.81 or MSE.
- 2) Next change the N of cases per cell to 3.
- 3) Change the Label for Factor A to 'Crime.'
- 4) Now you will notice that the number of levels needs to be changed. You can fix this by clicking on the number shown under the number of levels column. This will bring up the following screen.

🗼 SamplePower - [ANOVA]				_	J 🛛
$S_{\mu\nu}^{cc}$ File Options Tools View Help				-	Ξ×
	<u>M</u> B <u>X</u> (2)				
F	sing for Crime				
Effect	size for Crime				
Enter f Enter SD	Enter Range	Enter Means	Number of		
			categories in this factor		
1 Break & Enter 38, 2 Robbery 40,	50 30		3		
3 <u>Manslaughter</u> 41.	83				
		Compute f			
Welsone					
welcome		_			
This interactive guide will lead you through power and precision.	the steps for computing				
To move this box use the title bar above.					
To close or reactivate this panel, select He	alp from the menu.				
👌 start 🕖 📀 Windows Me	Sample Powe	SamplePowe	E http://www	7:1	9 PM

- 5) The first thing you will do is change the number of categories in this factor to 3.
- 6) Then you are able to choose one of 4 ways to calculate the effect size: enter f, SD, Range, or Means. Here we will enter the means, which are 38.5, 40.3, and 41.83.
- 7) Now, click the yellow compute f button.
- 8) Click the blue register f button.
- 9) You will now be back out at the main screen. Here you can use the binocular icon in the top toolbar to calculate the number of participants needed per group to reach a power of .8 (happens to be 4 people per group). Or you can use the graph icon to create the following graph of power. Or click the table icon for a table of values.

The table for this example will look like the following:

The chart for this example will look like the following:

You can also create a report by clicking the 'Make Report' icon:

Two-Way ANOVA:

Now if we run through the example from the two-way ANOVA handout (Chapter 16 notes) we will do the following.

SamplePower - [Procedures]	
Sampler over (Frocedures)	_ a ×
Means Proportions Correlations ANOVA Regression General Oneway analysis of variance Oneway analysis of covariance Default Default Oneway analysis of covariance Example Example Factorial analysis of covariance (2 factors) Factorial analysis of variance (3 factors) Default Factorial analysis of covariance (3 factors) Default Example	
Factorial analysis of variance (2 factors) A psychiatrist will assigning schizophrenics to treatments using a 2x3 design: Dosage is (a) low or (b) standard, while counseling of family members is (a) minimal (b) monthly or (c) weekly. She will be looking at a measure of family satisfaction, which is expected to vary as a function of these factors and the interaction between the factors. Close	
🤔 start 🔰 📀 Windows Me 🛛 👜 Sample Powe 🚺 SamplePowe 🦉 http://www 🥩	🖸 A 🚮 🕵 🌄 🕺 7:28 PM

- 2) Click OK.
- 3) Change the N cases per cell to 2.
- 4) Enter the variance within cell, assume 42.29 = MSE.
- 5) Change the name of factor A to 'Crime.'
- 6) Click on the number of cases factor A.
- 7) Change the number to 3.
- 8) Enter the necessary information. Means, 46.87, 59.25, and 78.25.
- 9) Click the yellow compute f button. Click the blue register f button.
- 10) Now back at the main screen change the name of factor B to 'Age' and click on the number of cases factor B.
- 11) Change the number to 4.
- 12) Enter information into the means tab. Means, 53, 67.83, 51.16, and 73.83.
- 13) Click the yellow compute f button. Click the blue register f button.
- 14) Lastly, for the interaction click the medium effect size, .25.

Now if we click the table icon on the top toolbar we will get the following table.

Our chart will look like the following:

If we run the report function we get the following:

Correlation:

In order to conduct a correlation analysis click on the correlation tab and select one sample test that correlation = 0.

🗼 SamplePower - [Procedures]	_ P 🔀
5. File Help	- 8 ×
Means Proportions Correlations ANOVA Regression General Cancel Cancel Default Two sample test that correlation = specific value Two sample test that correlations are equal	
One sample test that correlation = 0 A resarcher is planning to study the correlation between number of hours of driver training class and number of traffic citations over the first five years of driving. He expects that the correlation is negative. The null hypothesis is that the correlation is zero. Close	
🔧 Start 🔰 📀 Windows Me 🖾 Sample Powe 🚺 SamplePowe 🤌 http://www	🚽 🛃 🚮 🕵 🥵 🔜 7:40 PM

Click Ok.

Now we will pretend that we are interested in the correlation between the number of hours spent watching television and the number of violent behaviours exhibited by children.

We will assume based on the previous literature that the population correlation is moderate at .30. We will also assume that we will be able to recruit 50 children to take part in our study.

Below we can see that with a sample of 50 children our power would only be 59%.

If we click on the binocular icon in the top toolbar we can see that in order to reach a power of 80% we would need 82 children to take part in our study.

	SamplePowe	r - [One-sar	nple corre	elation]								_ 7 🗙
5	File Options	Tools View H	Help	nn \		-						- 8 ×
				M = 🧭	<u>B</u> <u>3</u>	<u>∦</u> () [9					
			Popul Correl	ation ation		N of Cases	Standard Error	9 Loy	5% 99 wer Upp	5% per		
	Population		0.	30		50 🚍	0.15	0.	02 0.	53		
	Alpha= 0.05, T	ails= 2				Power		59%				
						×						
	The program	n displays pov	ver									
	For the given e	effect size (popu ple size (50), an	lation r= 0.30 id alpha (0.05	0, tested agains 5, 2-tailed), powe	st a constant er is 0.59.							
	This means that effect, rejecting 0.00	at 59% of studie: g the null hypoth	s would be ex nesis that the	xpected to yield population corre	a significant elation is							
	0.00.											
		Help		< <u>B</u> ack	Next >]						
2	start	🕑 Windows	Medi	💌 Sample Po	wer	🚺 Sample	Power	🖉 http://	www.wl		🗟 🛃 🖬 🚳 🇞	7:45 PM

Our table would look like the following.

Our chart would look like this:

Regression:

In order to conduct a regression analysis click on the regression tab and select the appropriate option, in this case we will be using 'Set A, Set B, and interaction.'

🗼 SamplePower - [Procedures]	_ @ 🔀
5. File Help	- 8 ×
Means Proportions Correlations ANOVA Regression General	
Cancel	
O One set of predictors Default	
O Set of covariates followed by set of predictors	
Set A, Set B, and interaction	
O Polynomial regression	
C Covariates followed by dummy coded variable	
Set A, Set B, and interaction	
A physician wants to look at the impact of treatment (Drug1/Drug2/Placebo) on T-Cell counts.	
He plans to enter T-Cells at baseline as a covariate (SET-1) followed	
by treatment, which will be entered as two sets (Dummy code for Drug-1 vs placebo, and Dummy code for Drug-2 vs Placebo).	
Close	
🔧 start 📄 📀 Windows Medi 👜 Sample Power 🚺 SamplePower 🍘 http://www.wl	🔥 🚓 7:51 PM

Click Ok.

Now, using the small social work data set as our example we will enter our first set as age and age squared (so 2 variables in the set) and we will assume that this accounts for 10% of the variance. Our second set will be years of experience (so only 1 variable) and we will assume that it accounts for 5% of the variance. Our interaction set will consist of gender X managerial status (so 2 variables in the set) and we will assume that it accounts for 15% of the variance. Finally, we will need to adjust the number of cases to 250 and set the box in the bottom right hand corner of the screen to start with set 1 and end with set 3.

🗼 SamplePower - [Multiple regression]											_ 7 🔀
										_ 7 ×	
	Multiple regression Make graph										
	Increment to R-Squa					uared	ed Cumulative R-Squared				
		Variable		Number Variables Set	Increment to in R-Squared	Power for Increment	Cumulative Number Variables	Cumulative R-Square	Power for Cumulative R-Squared		
	1	First set		2	0.10	1.00	2	0.10	1.00		
	2	Second set		1	0.05	0.99	3	0.15	1.00		
	3	Interaction		2	0.15	1.00	5	0.30	1.00		
	A	lpha	0.05				N of cases		250		
	Designated set									×	
	Welcome						Start with set	0.05	End with set		
	1	This interactive	guide will lead y	ou through the ste	gh the steps for computing				3 🚺		
	power and precision.						Variables in this set		5		
	To move this box use the title bar above. To close or reactivate this panel, select Help from the menu.					16	Increment to R-SQ		0.30		
						ן∟	Power for this increm	ient	1 00		
			Help	< <u>B</u> ack	<u>N</u> ext>	-					
	2	start 🌖	🕑 Windows	💌 Sample	: P	mplePo	🛃 http://w	🔡 Norton A		🔊 <mark>Za</mark> 💰	🚕 8:01 PM

Our chart will look like the following:

