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Correlation Coefficient  (Ex. 2.2 Pg.126) 
How strong is the linear relationship 
between quantitative variables X and Y? 
Researchers report the correlation 
coefficient to summarize the strength of 
association between two variables. The 
correlation is defined as follows: 
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bxy = slope of least square line for (xi,yi) 

i=1,2 ... n 
 

The correlation is a messy calculation. It is 
best calculated by computer. If the standard 
deviation of X and Y is equal to one then the 
correlation is equal to the slope of the line. 
 
Facts

1) rxy = ryx (the correlation of X and Y is 
equal to the correlation of Y and X) 

 
2)  -1 ≤ rxy ≤ 1  

(the correlation lies between -1 and 
+1) 

 
3) rxy = 1  if and only if  Yi = a + b Xi   

i = 1, 2 ... n   b > 0 
 



In other words the correlation is 1 only if all 
of the points lie on a line whose slope is 
greater than 0. 
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 4) rxy = -1  if and only if Yi = a + b Xi     

i = 1,2 ... n    b<0 
The correlation is -1 only if all of the 
points lie on a line whose slope is 
less than 0. 

 
 5) r2

xy = proportion of observed 
variation in Y explained by a 
linear dependence on X. 

 
Some examples are given below of data and 
the corresponding correlation.  Note how the 
points cluster closer to a line as the 



correlation moves away from 0 and closer to 
+1. 
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Figure 2.9 Two scatterplots of the same 
data; the linear pattern in the lower plot 
appears stronger because of the surrounding 
white space. 
 



 
Figure 2.10 How the correlation r measures 
the direction and strength of linear 
association. 
 
Example (cont): Age is (X) 
     Income is (Y) 
 
The correlation between X and Y is: 
    r = .967 
 



 
 
This is a very strong, positive relationship: 
 
 r2 = (.967)2 = .94 of the variation in Y 

is 
     explained by X. 
 
R squared is .94 or we can say that 94% of 
the variance in income is explained by the 
age.  
 
Almost all of the variance in Y (income) is 
explained by X (age).   
 
In other words there is very little variance in 
Y (6%) that X does not explain. 
 
 

 

 

 

 



reliability and validity 
 

We often think of reliability and validity as separate ideas but, in fact, they're 
related to each other. Think of the center of the target as the concept that you are 
trying to measure. Imagine that for each person you are measuring, you are 
taking a shot at the target.  

 

Another way we can think about the relationship between reliability and validity is 
shown in the figure below. Imagine that we have two concepts we would like to 
measure, student verbal and math ability.  

 



 

reliability 

In many areas of research, the precise measurement of hypothesized processes or 
variables (theoretical constructs) poses a challenge by itself. For example, in psychology, 
the precise measurement of personality variables or attitudes is usually a necessary first 
step before any theories of personality or attitudes can be considered. In general, in all 
social sciences, unreliable measurements of people's beliefs or intentions will obviously 
hamper efforts to predict their behavior. The issue of precision of measurement will also 
come up in applied research, whenever variables are difficult to observe. For example, 
reliable measurement of employee performance is usually a difficult task; yet, it is 
obviously a necessary precursor to any performance-based compensation system.  

In all of these cases, Reliability & Item Analysis may be used to construct reliable 
measurement scales, to improve existing scales, and to evaluate the reliability of scales 
already in use. Specifically, Reliability & Item Analysis will aid in the design and 
evaluation of sum scales, that is, scales that are made up of multiple individual 
measurements (e.g., different items, repeated measurements, different measurement 
devices, etc.). You can compute numerous statistics that allows you to build and evaluate 
scales following the so-called classical testing theory model.  

The assessment of scale reliability is based on the correlations between the individual 
items or measurements that make up the scale, relative to the variances of the items. The 
classical testing theory model of scale construction has a long history, and there are many 
textbooks available on the subject. A widely acclaimed "classic" in this area, with an 
emphasis on psychological and educational testing, is Nunally (1970).  

 

 

 

True Score Theory is a theory about measurement.  

true score theory maintains that every measurement is an additive composite of 
two components: true ability (or the true level) of the respondent on that 
measure; and random error. We observe the measurement -- the score on the 
test, the total for a self-esteem instrument, the scale value for a person's weight. 
W 

. 



The simple equation of X = T + eX has a parallel equation at the level of the 
variance or variability of a measure. That is, across a set of scores, we assume 
that: 

var(X) = var(T) + var(eX) 

What is reliability? For instance, we often speak about a car as reliable: "I have 
a reliable car." Or, news people talk about a "usually reliable source". In both 
cases, the word reliable usually means "dependable" or "trustworthy."  

 

 

 

 

 

 

 

In research, the term 
reliability means 

"repeatability" or "consistency". A measure is considered reliable if it would give 
us the same result over and over again (assuming that what we are measuring 
isn't changing!).  

We'll begin by defining a measure that we'll arbitrarily label X. It might be a 
person's satisfaction with child care survey ,score on a math achievement test or 
a measure of severity of illness. It is the value (numerical or otherwise) that we 
observe in our study. Now, to see how repeatable or consistent an observation 
is, we can measure it twice.  

It's important to keep in mind that we observe the X score -- we never actually 
see the true (T) or error (e) scores. For instance, a student may get a score of 85 
on a satisfaction with child care survey.  

If our measure, X, is reliable, we should find that if we measure or observe it 
twice on the same persons that the scores are pretty much the same. If you look 
at the figure you should see that the only thing that the two observations have in 
common is their true scores, T. That the two observed scores, X1 and X2 are 
related only to the degree that the observations share true score. You should 



remember that the error score is assumed to be random.the true score -- your 
true ability on that measure -- would be the same on both observations  

Reliability is a ratio or fraction. 

true level on the measure  

 

the entire measure  
You might think of reliability as the proportion of "truth" in your measure. Now, we 
don't speak of the reliability of a measure for an individual -- reliability is a 
characteristic of a measure that's taken across individuals. the definition above in 
terms of a set of observations. The easiest way to do this is to speak of the 
variance of the scores.  

the variance of the true score  

 

the variance of the measure  
for the variance and our variable names: 

var(T)  

 

var(X)  
how do we calculate the variance of the true scores.  

we can't compute reliability because we can't calculate the variance of the 
true scores 

the best we can do is to estimate it. Maybe we can get an estimate of the 
variability of the true scores. Remember our two observations, X1 and X2? We 
assume  that these two observations would be related to each other to the 
degree that they share true scores. So, let's calculate the correlation between X1 
and X2. Here's a simple formula for the correlation:  

 



covariance(X1, X2)  

 

sd(X1) * sd(X2)  
where the 'sd' stands for the standard deviation (which is the square root of the 
variance). If we look carefully at this equation, we can see that the covariance, 
which simply measures the "shared" variance between measures must be an 
indicator of the variability of the true scores because the true scores in X1 and X2 
are the only thing the two observations share! So, the top part is essentially an 
estimate of var(T) in this context. And, since the bottom part of the equation 
multiplies the standard deviation of one observation with the standard deviation 
of the same measure at another time, we would expect that these two values 
would be the same (it is the same measure we're taking) and that this is 
essentially the same thing as squaring the standard deviation for either 
observation. So, the bottom part of the equation becomes the variance of the 
measure (or var(X)). If you read this paragraph carefully, you should see that the 
correlation between two observations of the same measure is an estimate of 
reliability. 

How big is an estimate of reliability? To figure this out, let's go back to the 
equation given earlier:  

var(T)  

 

var(X)  
and remember that because X = T + e, we can substitute in the bottom of the 
ratio:  

var(T)  

 

var(T) + var(e)  
we can easily determine the range of a reliability estimate.  

 



Sum Scales  

What will happen when we sum up several more or less reliable items designed to 
measure child care satisfaction? Suppose the items were written so as to cover a wide 
range of possible areas. If the error component in subjects' responses to each question is 
truly random, then we may expect that the different components will cancel each other 
out across items. In slightly more technical terms, the expected value or mean of the error 
component across items will be zero. The true score component remains the same when 
summing across items. Therefore, the more items are added, the more true score (relative 
to the error score) will be reflected in the sum scale.  

Number of items and reliability. This conclusion describes a basic principle of test 
design. Namely, the more items there are in a scale designed to measure a particular 
concept, the more reliable will the measurement (sum scale) be.  
 

general classes of reliability estimates
There are four general classes of reliability estimates, each of which estimates 
reliability in a different way. They are: 

 Inter-Rater or Inter-Observer Reliability 
Used to assess the degree to which different raters/observers give consistent 
estimates of the same phenomenon.  
 Test-Retest Reliability 
Used to assess the consistency of a measure from one time to another.  
 Parallel-Forms Reliability 
Used to assess the consistency of the results of two tests constructed in the 
same way from the same content domain.  
 Internal Consistency Reliability 
Used to assess the consistency of results across items within a test.  

 

 

 

 

 

 

 



Inter-Rater or Inter-Observer Reliability 

Whenever you use humans as a part of your measurement procedure, you have 
to worry about whether the results you get are reliable or consistent. People are 
notorious for their inconsistency. We are easily distractible. We get tired of doing 
repetitive tasks. We daydream. We misinterpret. The other major way to estimate 
inter-rater reliability is appropriate when the measure is a continuous one. There, 
all you need to do is calculate the correlation between the ratings of the two 
observers. 

Test-Retest Reliability 

We estimate test-retest reliability when we administer the same test to the same 
(or a similar) sample on two different occasions.  

 

 

Parallel-Forms Reliability 

In parallel forms reliability you first have to create two parallel forms.  One way to 
accomplish this is to create a large set of questions that address the same 
construct and then randomly divide the questions into two sets.  You administer 
both instruments to the same sample of people.  The correlation between the two 
parallel forms is the estimate of reliability.   

 



 

Internal Consistency Reliability 

In internal consistency reliability estimation we use our single measurement 
instrument administered to a group of people on one occasion to estimate 
reliability.  In effect we judge the reliability of the instrument by estimating how 
well the items that reflect the same construct yield similar results.  We are  
looking at how consistent the results are for different items for the same construct 
within the measure.   There are a wide variety of internal consistency measures 
that can be used. 

Average Inter-item Correlation  

The average inter-item correlation uses all of the items on our instrument that are 
designed to measure the same construct.  We first compute the correlation 
between each pair of items, as illustrated in the figure.  For example, if we have 
six items we will have 15 different item pairings (i.e., 15 correlations).  The 
average interitem correlation is simply the average or mean of all these 
correlations.  In the example, we find an average inter-item correlation of .90 with 
the individual correlations ranging from .84 to .95. 



 

Average Itemtotal Correlation 

This approach also uses the inter-item correlations. In addition, we compute a 
total score for the six items and use that as a seventh variable in the analysis.  
The figure shows the six item-to-total correlations at the bottom of the correlation 
matrix.   They range from .82 to .88 in this sample analysis, with the average of 
these at .85. 

 



Split-Half Reliability  

In split-half reliability we randomly divide all items that purport to measure the 
same construct into two sets.  We administer the entire instrument to a sample of 
people and calculate the total score for each randomly divided half.  the split-half 
reliability estimate, as shown in the figure, is simply the correlation between 
these two total scores. In the example it is .87. 

 

 
 

Split-Half Reliability  

An alternative way of computing the reliability of a sum scale is to divide it in some 
random manner into two halves. If the sum scale is perfectly reliable, we would expect 
that the two halves are perfectly correlated (i.e., r = 1.0). Less than perfect reliability will 
lead to less than perfect correlations. We can estimate the reliability of the sum scale via 
the Spearman-Brown split half coefficient:  

rsb = 2rxy /(1+rxy)  



In this formula, rsb is the split-half reliability coefficient, and rxy represents the correlation 
between the two halves of the scale.  

 

 

Cronbach's Alpha (α)  

Imagine that we compute one split-half reliability and then randomly divide the 
items into another set of split halves and recompute, and keep doing this until we 
have computed all possible split half estimates of reliability. Cronbach's Alpha is 
mathematically equivalent to the average of all possible split-half estimates,  The 
figure shows several of the split-half estimates for our six item example and lists 
them as SH with a subscript.   

 

Cronbach's Alpha  

if there are several subjects who respond to our items, then we can compute the variance 
for each item, and the variance for the sum scale. The variance of the sum scale will be 
smaller than the sum of item variances if the items measure the same variability between 
subjects, that is, if they measure some true score. Technically, the variance of the sum of 



two items is equal to the sum of the two variances minus (two times) the covariance, that 
is, the amount of true score variance common to the two items.  

We can estimate the proportion of true score variance that is captured by the items by 
comparing the sum of item variances with the variance of the sum scale. Specifically, we 
can compute:  

= (k/(k-1)) * [1- (s2
i)/s2

sum]  

This is the formula for the most common index of reliability, namely, Cronbach's 
coefficient alpha ( ). In this formula, the si**2's denote the variances for the k 
individual items; ssum**2 denotes the variance for the sum of all items. If there is no true 
score but only error in the items (which is esoteric and unique, and, therefore, 
uncorrelated across subjects), then the variance of the sum will be the same as the sum of 
variances of the individual items. Therefore, coefficient alpha will be equal to zero. If all 
items are perfectly reliable and measure the same thing (true score), then coefficient 
alpha is equal to 1. (Specifically, 1- (si**2)/ssum**2 will become equal to (k-1)/k; if we 
multiply this by k/(k-1) we obtain 1.)  

Alternative terminology. Cronbach's alpha, when computed for binary (e.g., true/false) 
items, is identical to the so-called Kuder-Richardson-20 formula of reliability for sum 
scales. In either case, because the reliability is actually estimated from the consistency of 
all items in the sum scales, the reliability coefficient computed in this manner is also 
referred to as the internal-consistency reliability.  

 

Comparison of Reliability Estimators 

Each of the reliability estimators has certain advantages and disadvantages.  
Inter-rater reliability is one of the best ways to estimate reliability when your 
measure is an observation. However, it requires multiple raters or observers.  As 
an alternative, you could look at the correlation of ratings of the same single 
observer repeated on two different occasions.  For example, let's say you 
collected videotapes of child-mother interactions and had a rater code the videos 
for how often the mother smiled at the child.  To establish inter-rater reliability 
you could take a sample of videos and have two raters code them 
independently.  To estimate test-retest reliability you could have a single rater 
code the same videos on two different occasions.  You might use the inter-rater 
approach especially if you were interested in using a team of raters and you 
wanted to establish that they yielded consistent results.  If you get a suitably high 
inter-rater reliability you could then justify allowing them to work independently on 
coding different videos.  You might use the test-retest approach when you only 
have a single rater and don't want to train any others.  On the other hand, in 
some studies it is reasonable to do both to help establish the reliability of the 
raters or observers. 



The parallel forms estimator is typically only used in situations where you intend 
to use the two forms as alternate measures of the same thing.  Both the parallel 
forms and all of the internal consistency estimators have one major constraint -- 
you have to have multiple items designed to measure the same construct.  This 
is relatively easy to achieve in certain contexts like achievement testing (it's easy, 
for instance, to construct lots of similar addition problems for a math test), but for 
more complex or subjective constructs this can be a real challenge.  If you do 
have lots of items, Cronbach's Alpha tends to be the most frequently used 
estimate of internal consistency. 

The test-retest estimator is especially feasible in most experimental and quasi-
experimental designs that use a no-treatment control group.  In these designs 
you always have a control group that is measured on two occasions (pretest and 
posttest).   the main problem with this approach is that you don't have any 
information about reliability until you collect the posttest and, if the reliability 
estimate is low, you're pretty much sunk. 

Each of the reliability estimators will give a different value for reliability.  In 
general, the test-retest and inter-rater reliability estimates will be lower in value 
than the parallel forms and internal consistency ones because they involve 
measuring at different times or with different raters.   

 

 
 

Designing a Reliable Scale  
After the discussion so far, it should be clear that, the more reliable a scale, the better 
(e.g., more valid) the scale. As mentioned earlier, one way to make a sum scale more 
valid is by adding items. You can compute how many items would have to be added in 
order to achieve a particular reliability, or how reliable the scale would be if a certain 
number of items were added. However, in practice, the number of items on a 
questionnaire is usually limited by various other factors (e.g., respondents get tired, 
overall space is limited, etc.). Let us return to our prejudice example, and outline the 
steps that one would generally follow in order to design the scale so that it will be 
reliable:  

Step 1: Generating items. The first step is to write the items. This is essentially a 
creative process where the researcher makes up as many items as possible that seem to 
relate to topic of interest(ie chid care satisfaction). In theory, one should "sample items" 
from the domain defined by the concept. In practice, for example in marketing research, 
focus groups are often utilized to illuminate as many aspects of the concept as possible. 
In educational and psychological testing, one commonly looks at other similar 



questionnaires at this stage of the scale design, again, in order to gain as wide a 
perspective on the concept as possible.  

Step 2: Choosing items of optimum difficulty. In the first draft of our questionnaire, we 
will include as many items as possible. We then administer this questionnaire to an initial 
sample of typical respondents, and examine the results for each item. First, we would 
look at various characteristics of the items, for example, in order to identify floor or 
ceiling effects. If all respondents agree or disagree with an item, then it obviously does 
not help us discriminate between respondents, and thus, it is useless for the design of a 
reliable scale. In test construction, the proportion of respondents who agree or disagree 
with an item, or who answer a test item correctly, is often referred to as the item 
difficulty. In essence, we would look at the item means and standard deviations and 
eliminate those items that show extreme means, and zero or nearly zero variances.  

 

 

 

 

Step 3: Choosing internally consistent items. Remember that a reliable scale is made 
up of items that proportionately measure mostly true score; in our example, we would 
like to select items that measure mostly the topic of interest(child care satisfaction), and 
few esoteric aspects we consider random error. To do so, we would look at the following:  

STATISTICA 
RELIABL. 
ANALYSIS 

Summary for scale: Mean=46.1100 Std.Dv.=8.26444 Valid n:100
Cronbach alpha: .794313 Standardized alpha: .800491 

Average inter-item corr.: .297818 
  

variable 
Mean if 
deleted 

Var. if 
deleted 

StDv. if
deleted

Itm-Totl
Correl.

Squared
Multp. R

Alpha if
deleted

ITEM1 
ITEM2 
ITEM3 
ITEM4 
ITEM5 
ITEM6 
ITEM7 
ITEM8 
ITEM9 

ITEM10 

41.61000 
41.37000 
41.41000 
41.63000 
41.52000 
41.56000 
41.46000 
41.33000 
41.44000 
41.66000 

51.93790 
53.79310 
54.86190 
56.57310 
64.16961 
62.68640 
54.02840 
53.32110 
55.06640 
53.78440 

7.206795
7.334378
7.406882
7.521509
8.010593
7.917474
7.350401
7.302130
7.420674
7.333785

.656298

.666111

.549226

.470852

.054609

.118561

.587637

.609204

.502529

.572875

.507160

.533015

.363895

.305573

.057399

.045653

.443563

.446298

.328149

.410561

.752243

.754692

.766778

.776015

.824907

.817907

.762033

.758992

.772013

.763314

 
 

Shown above are the results for 10 items. Of most interest to us are the three right-most 
columns. They show us the correlation between the respective item and the total sum 



score (without the respective item), the squared multiple correlation between the 
respective item and all others, and the internal consistency of the scale (coefficient alpha) 
if the respective item would be deleted. Clearly, items 5 and 6 "stick out," in that they are 
not consistent with the rest of the scale. Their correlations with the sum scale are .05 and 
.12, respectively, while all other items correlate at .45 or better. In the right-most column, 
we can see that the reliability of the scale would be about .82 if either of the two items 
were to be deleted. Thus, we would probably delete the two items from this scale.  

Step 4: Returning to Step 1. After deleting all items that are not consistent with the 
scale, we may not be left with enough items to make up an overall reliable scale 
(remember that, the fewer items, the less reliable the scale). In practice, one often goes 
through several rounds of generating items and eliminating items, until one arrives at a 
final set that makes up a reliable scale.  

VALIDITY 
 
 A measure (e.g. a test, a questionnaire or a scale) is useful if it is reliable and 

valid.  A measure is valid if it measures what it purports to measure.  Validity can 
be assessed in several ways depending on the measure and its use. 

 
1. Content Validity 
 
 Content validation is employed when it seems likely that test users will want to 

draw references from observed test scores to performances on a larger domain of 
tasks similar to items on the test.  Typically, it involves asking expert judges to 
examine test items and judge the extent to which these items sample a specified 
performance domain.  There are two types of content validity: face validity and 
logical validity.  A test has face validity if an examination of the items leads to the 
conclusion that the items are measuring what they are supposed to be measuring.  
Logical or sampling validity is based on a careful comparison of the items to the 
definition of the domain being measured. 

 
2.  Criterion Related Validity 
 
 Criterion-related validation is a study of the relationship between test scores and a 

practical performance criterion that is measurable.  The criterion is the thing of 
interest or the outcome we are concerned about.  When a test score, X, can be 
related to a criterion score, Y, criterion-related validity can be determined.  The 
validity coefficient, DXY can be based on a predictive or a concurrent study.  A 
predictive-validity coefficient is obtained by giving the test to all relevant people, 
waiting a reasonable amount of time, collecting criterion scores, and calculating 
the validity coefficient.  When a test is used to predict future behaviour, predictive 
validity should be established.  A concurrent-validity coefficient is a correlation 
between test and criterion scores when both measurements are obtained at the 
same time.  Concurrent-validity coefficients are appropriate when the test scores 
are used to estimate a concurrent criterion rather than to predict a future criterion. 



 
3. Construct Validity 
 
 Construct validation is appropriate whenever the test user wants to draw 

inferences from test scores to a behaviour domain which cannot be adequately 
represented by a single criterion or completely defined by a universe of content.  
A test’s construct validity is the degree to which it measures the behaviour 
domain or other theoretical constructs or traits that it was designed to measure.  
More specifically, construct validity can be understood as the extent to which the 
behaviour domain or the constructs of theoretical interest have been successfully 
operationalized.  For example, a researcher may be interested in determining 
clients’ satisfaction with health care services.  Since “satisfaction with health care 
services” is a construct which cannot be adequately represented by a criterion or 
defined by a universe of content, the researcher chooses to develop a 
questionnaire of 20 items in order to tap the construct “satisfaction” and proceeds 
to collect the data.  The question is how does the researcher know that what 
he/she is measuring through the questionnaire is actually and purely clients’ 
satisfaction with health care services and not something else nor a mixture with 
other constructs such as clients’ degree of confidence in the medical profession?  
In this case, a construct validation is appropriate. 

 
 Establishing construct validity is an ongoing process that involves the verification 

of predictions made about the test scores.  Procedures for construct validation 
may include correlations between test scores and designated criterion variables, 
differentiation between groups, factor analysis, multitrait-multimethod matrix 
analysis, or analysis of variance components within the framework of 
generalizability theory.  The following pages will contain introductions and 
explanations of one of the procedures for determining construct validity: the 
factor analysis. 

 
a. Factorial Validity 

 
 Factorial validity is a form of construct validity that is established through a factor 

analysis.  Factor analysis is a term that represents a large number of different 
mathematical procedures for analyzing the interrelationships among a set of 
variables and for explaining these interrelationships in terms of a reduced number 
of variables, called factors.  A factor is a hypothetical variable that influences 
scores on one or more observed variables. To go back to the example on 
“satisfaction with health care services” cited earlier, it is not difficult to envisage 
that if the 20 - item questionnaire is really a valid measure of the construct 
“satisfaction with health care services”, a factor analysis on the scores of the 20 - 
item questionnaire should result in one factor that can explain most of the 
variances in these 20 items.  But if the 20 - item questionnaire is instead 
measuring two different behaviour domains (e.g. “Satisfaction with health care 
services” and “confidence in the medical profession”), factor analysis on the 
scores of the 20 - item questionnaire should result in two factors, with items 



measuring “satisfaction” having high factor loadings1 on one factor and items 
measuring “confidence” loading highly on the remaining factor. 

 
 To conclude, factorial validity is one form of construct validity.  Factorial validity 

is assessed by the process of factor analyzing the correlations of scores from 
selected tests (or individual items in a single test) and obtaining a predicted 
factor-loading pattern. 

 

 Factotial Validity-General Purpose  
The main applications of factor analytic techniques are: (1) to reduce the number of 
variables and (2) to detect structure in the relationships between variables, that is to 
classify variables. Therefore, factor analysis is applied as a data reduction or structure 
detection method (the term factor analysis was first introduced by Thurstone, 1931).  
 

Basic Idea of Factor Analysis as a Data Reduction Method  

Suppose we conducted a (rather "silly") study in which we measure 100 people's height 
in inches and centimeters. Thus, we would have two variables that measure height. If in 
future studies, we want to research, for example, the effect of different nutritional food 
supplements on height, would we continue to use both measures? Probably not; height is 
one characteristic of a person, regardless of how it is measured.  

Let us now extrapolate from this "silly" study to something that one might actually do as 
a researcher. Suppose we want to measure people's satisfaction with child care. We 
design a satisfaction questionnaire with various items; among other things we ask our 
participants how satisfied they are with their child care (item 1) and how important child 
care is to them(item 2). Most likely, the responses to the two items are highly correlated 
with each other. 

 Combining Two Variables into a Single Factor. One can summarize the correlation 
between two variables in a scatterplot. A regression line can then be fitted that represents 
the "best" summary of the linear relationship between the variables. If we could define a 
variable that would approximate the regression line in such a plot, then that variable 
would capture most of the "essence" of the two items. participants single scores on that 
new factor, represented by the regression line, could then be used in future data analyses 

                                                 

 1 The meaning of factor loadings will be discussed in greater detail in a later 
section.  In the mentime, just imagine that a factor loading is a number which is very 
much like a correlation coefficient in size and meaning.  When a factor analysis is 
conducted on a correlation matrix, tests that are influenced by certain factors are said to 
have high factor loadings or to load highly on those factors. 



to represent that essence of the two items. In a sense we have reduced the two variables to 
one factor. Note that the new factor is actually a linear combination of the two variables.  

Principal Components Analysis. The example described above, combining two 
correlated variables into one factor, illustrates the basic idea of factor analysis, or of 
principal components analysis to be precise (we will return to this later). If we extend the 
two-variable example to multiple variables, then the computations become more 
involved, but the basic principle of expressing two or more variables by a single factor 
remains the same.  

Extracting Principal Components. We do not want to go into the details about the 
computational aspects of principal components analysis here, which can be found 
elsewhere (references were provided at the beginning of this section). However, 
basically, the extraction of principal components amounts to a variance maximizing 
(varimax) rotation of the original variable space. For example, in a scatterplot we can 
think of the regression line as the original X axis, rotated so that it approximates the 
regression line. This type of rotation is called variance maximizing because the criterion 
for (goal of) the rotation is to maximize the variance (variability) of the "new" variable 
(factor), while minimizing the variance around the new variable  

Generalizing to the Case of Multiple Variables. When there are more than two 
variables, we can think of them as defining a "space," just as two variables defined a 
plane. Thus, when we have three variables, we could plot a three- dimensional 
scatterplot, and, again we could fit a plane through the data.  

 

With more than three variables it becomes impossible to illustrate the points in a 
scatterplot, however, the logic of rotating the axes so as to maximize the variance of the 
new factor remains the same.  

Multiple orthogonal factors. After we have found the line on which the variance is 
maximal, there remains some variability around this line. In principal components 
analysis, after the first factor has been extracted, that is, after the first line has been drawn 
through the data, we continue and define another line that maximizes the remaining 
variability, and so on. In this manner, consecutive factors are extracted. Because each 



consecutive factor is defined to maximize the variability that is not captured by the 
preceding factor, consecutive factors are independent of each other. Put another way, 
consecutive factors are uncorrelated or orthogonal to each other.  

How many Factors to Extract? Remember that, so far, we are considering principal 
components analysis as a data reduction method, that is, as a method for reducing the 
number of variables. The question then is, how many factors do we want to extract? Note 
that as we extract consecutive factors, they account for less and less variability. The 
decision of when to stop extracting factors basically depends on when there is only very 
little "random" variability left. The nature of this decision is arbitrary; however, various 
guidelines have been developed, and they are reviewed in Reviewing the Results of a 
Principal Components Analysis under Eigenvalues and the Number-of- Factors Problem.  

Reviewing the Results of a Principal Components Analysis. Without further ado, let us 
now look at some of the standard results from a principal components analysis. To 
reiterate, we are extracting factors that account for less and less variance. To simplify 
matters, one usually starts with the correlation matrix, where the variances of all variables 
are equal to 1.0. Therefore, the total variance in that matrix is equal to the number of 
variables. For example, if we have 10 variables each with a variance of 1 then the total 
variability that can potentially be extracted is equal to 10 times 1. Suppose that in the 
satisfaction study introduced earlier we included 10 items to measure different aspects of 
satisfaction with child care at home and at work. The variance accounted for by 
successive factors would be summarized as follows:  

STATISTICA 
FACTOR 
ANALYSIS 

Eigenvalues (factor.sta) 
Extraction: Principal components 

  
  

Value 
  

Eigenval 
% total 

Variance 
Cumul.

Eigenval
Cumul.

%
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

6.118369 
1.800682 
.472888 
.407996 
.317222 
.293300 
.195808 
.170431 
.137970 
.085334 

61.18369 
18.00682 
4.72888 
4.07996 
3.17222 
2.93300 
1.95808 
1.70431 
1.37970 

.85334 

6.11837
7.91905
8.39194
8.79993
9.11716
9.41046
9.60626
9.77670
9.91467

10.00000

61.1837
79.1905
83.9194
87.9993
91.1716
94.1046
96.0626
97.7670
99.1467

100.0000

 
 

Eigenvalues 
In the second column (Eigenvalue) above, we find the variance on the new factors that 
were successively extracted. In the third column, these values are expressed as a percent 
of the total variance (in this example, 10). As we can see, factor 1 accounts for 61 percent 
of the variance, factor 2 for 18 percent, and so on. As expected, the sum of the 



eigenvalues is equal to the number of variables. The third column contains the cumulative 
variance extracted. The variances extracted by the factors are called the eigenvalues. This 
name derives from the computational issues involved.  

Eigenvalues and the Number-of-Factors Problem 
Now that we have a measure of how much variance each successive factor extracts, we 
can return to the question of how many factors to retain. As mentioned earlier, by its 
nature this is an arbitrary decision. However, there are some guidelines that are 
commonly used, and that, in practice, seem to yield the best results.  

The Kaiser criterion. First, we can retain only factors with eigenvalues greater than 1. In 
essence this is like saying that, unless a factor extracts at least as much as the equivalent 
of one original variable, we drop it. This criterion was proposed by Kaiser (1960), and is 
probably the one most widely used. In our example above, using this criterion, we would 
retain 2 factors (principal components).  

The scree test. A graphical method is the scree test first proposed by Cattell (1966). We 
can plot the eigenvalues shown above in a simple line plot.  

 

Cattell suggests to find the place where the smooth decrease of eigenvalues appears to 
level off to the right of the plot. To the right of this point, presumably, one finds only 
"factorial scree" -- "scree" is the geological term referring to the debris which collects on 
the lower part of a rocky slope. According to this criterion, we would probably retain 2 or 
3 factors in our example.  

Principal Factors Analysis 
Before we continue to examine the different aspects of the typical output from a principal 
components analysis, let us now introduce principal factors analysis. Let us return to our 
satisfaction questionnaire example to conceive of another "mental model" for factor 
analysis. We can think of participants responses as being dependent on two components. 
First, there are some underlying common factors, such as the "satisfaction-with-child 
care" factor we looked at before. Each item measures some part of this common aspect of 
satisfaction. Second, each item also captures a unique aspect of satisfaction that is not 
addressed by any other item.  



Communalities. If this model is correct, then we should not expect that the factors will 
extract all variance from our items; rather, only that proportion that is due to the common 
factors and shared by several items. In the language of factor analysis, the proportion of 
variance of a particular item that is due to common factors (shared with other items) is 
called communality. Therefore, an additional task facing us when applying this model is 
to estimate the communalities for each variable, that is, the proportion of variance that 
each item has in common with other items. The proportion of variance that is unique to 
each item is then the respective item's total variance minus the communality. A common 
starting point is to use the squared multiple correlation of an item with all other items as 
an estimate of the communality  

Factor Analysis as a Classification Method  

Let us now return to the interpretation of the standard results from a factor analysis. We 
will henceforth use the term factor analysis generically to encompass both principal 
components and principal factors analysis. Let us assume that we are at the point in our 
analysis where we basically know how many factors to extract. We may now want to 
know the meaning of the factors, that is, whether and how we can interpret them in a 
meaningful manner. To illustrate how this can be accomplished, let us work "backwards," 
that is, begin with a meaningful structure and then see how it is reflected in the results of 
a factor analysis. Let us return to our child care satisfaction example; shown below is the 
correlation matrix for items pertaining to satisfaction at work and items pertaining to 
satisfaction at home.  

STATISTICA 
FACTOR 
ANALYSIS 

Correlations (factor.sta) 
Casewise deletion of MD 

n=100 
Variable WORK_1 WORK_2 WORK_3 HOME_1 HOME_2 HOME_3 
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

1.00 
.65 
.65 
.14 
.15 
.14 

.65 
1.00 

.73 

.14 

.18 

.24 

.65

.73
1.00

.16

.24

.25

.14

.14

.16
1.00

.66

.59

.15

.18

.24

.66
1.00

.73

.14 

.24 

.25 

.59 

.73 
1.00 

 
The work satisfaction items are highly correlated amongst themselves, and the home 
satisfaction items are highly intercorrelated amongst themselves. The correlations across 
these two types of items (work satisfaction items with home satisfaction items) is 
comparatively small. It thus seems that there are two relatively independent factors 
reflected in the correlation matrix, one related to satisfaction at work, the other related to 
satisfaction at home.  

Factor Loadings. Let us now perform a principal components analysis and look at the 
two-factor solution. Specifically, let us look at the correlations between the variables and 
the two factors (or "new" variables), as they are extracted by default; these correlations 
are also called factor loadings.  



STATISTICA 
FACTOR 
ANALYSIS 

Factor Loadings (Unrotated)
Principal components 

  
Variable Factor 1 Factor 2
WORK_1 
WORK_2 
WORK_3 
HOME_1 
HOME_2 
HOME_3 

.654384 

.715256 

.741688 

.634120 

.706267 

.707446 

.564143

.541444

.508212
-.563123
-.572658
-.525602

Expl.Var 
Prp.Totl 

2.891313 
.481885 

1.791000
.298500

 
Apparently, the first factor is generally more highly correlated with the variables than the 
second factor. This is to be expected because, as previously described, these factors are 
extracted successively and will account for less and less variance overall.  

Rotating the Factor Structure. We could plot the factor loadings shown above in a 
scatterplot. In that plot, each variable is represented as a point. In this plot we could rotate 
the axes in any direction without changing the relative locations of the points to each 
other; however, the actual coordinates of the points, that is, the factor loadings would of 
course change. In this example, if you produce the plot it will be evident that if we were 
to rotate the axes by about 45 degrees we might attain a clear pattern of loadings 
identifying the work satisfaction items and the home satisfaction items.  

Rotational strategies. There are various rotational strategies that have been proposed. 
The goal of all of these strategies is to obtain a clear pattern of loadings, that is, factors 
that are somehow clearly marked by high loadings for some variables and low loadings 
for others. This general pattern is also sometimes referred to as simple structure (a more 
formalized definition can be found in most standard textbooks). Typical rotational 
strategies are varimax. 

We have described the idea of the varimax rotation before (see Extracting Principal 
Components), and it can be applied to this problem as well. As before, we want to find a 
rotation that maximizes the variance on the new axes; put another way, we want to obtain 
a pattern of loadings on each factor that is as diverse as possible, lending itself to easier 
interpretation. Below is the table of rotated factor loadings.  

STATISTICA 
FACTOR 
ANALYSIS 

Factor Loadings (Varimax normalized)
Extraction: Principal components 

  
Variable Factor 1 Factor 2
WORK_1 
WORK_2 
WORK_3 
HOME_1 

.862443 

.890267 

.886055 

.062145 

.051643

.110351

.152603

.845786



HOME_2 
HOME_3 

.107230 

.140876 
.902913
.869995

Expl.Var 
Prp.Totl 

2.356684 
.392781 

2.325629
.387605

 
 

Interpreting the Factor Structure. Now the pattern is much clearer. As expected, the 
first factor is marked by high loadings on the work satisfaction items, the second factor is 
marked by high loadings on the home satisfaction items. We would thus conclude that 
satisfaction, as measured by our questionnaire, is composed of those two aspects; hence 
we have arrived at a classification of the variables.  

Confirmatory Factor Analysis. Over the past 15 years, so-called confirmatory methods 
have become increasingly popular (e.g., see Jöreskog and Sörbom, 1979). In general, one 
can specify a priori, a pattern of factor loadings for a particular number of orthogonal or 
oblique factors, and then test whether the observed correlation matrix can be reproduced 
given these specifications.  

 
 

Miscellaneous Other Issues and Statistics  

Factor Scores. We can estimate the actual values of individual cases (observations) for 
the factors. These factor scores are particularly useful when one wants to perform further 
analyses involving the factors that one has identified in the factor analysis.  

Reproduced and Residual Correlations. An additional check for the appropriateness of 
the respective number of factors that were extracted is to compute the correlation matrix 
that would result if those were indeed the only factors. That matrix is called the 
reproduced correlation matrix. To see how this matrix deviates from the observed 
correlation matrix, one can compute the difference between the two; that matrix is called 
the matrix of residual correlations. The residual matrix may point to "misfits," that is, to 
particular correlation coefficients that cannot be reproduced appropriately by the current 
number of factors.  

Matrix Ill-conditioning. If, in the correlation matrix there are variables that are 100% 
redundant, then the inverse of the matrix cannot be computed. For example, if a variable 
is the sum of two other variables selected for the analysis, then the correlation matrix of 
those variables cannot be inverted, and the factor analysis can basically not be performed. 
In practice this happens when you are attempting to factor analyze a set of highly 
intercorrelated variables, as it, for example, sometimes occurs in correlational research 
with questionnaires. Then you can artificially lower all correlations in the correlation 
matrix by adding a small constant to the diagonal of the matrix, and then restandardizing 



it. This procedure will usually yield a matrix that now can be inverted and thus factor-
analyzed; moreover, the factor patterns should not be affected by this procedure. 
However, note that the resulting estimates are not exact.  
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