SPSS Chapter 12 Example 1 - One-Way Analysis of Variance (ANOVA)

A study of reading comprehension in children compared three methods of instruction, known as basal, DRTA, and strategies (denoted as "Strat" in this example). A measure of reading comprehension (the "**comp**" variable seen below) was received after the instruction was completed. We are interested in comparing the reading comprehension of the three instruction groups. We are testing

H₀: $\mu_B = \mu_D = \mu_S$

 $H_a: \mu_B \neq \mu_D \neq \mu_S$

After opening the file, the data appear in the SPSS Data Editor window just like the following (please note that for the variable entitled *Group*, basal=1, DRTA=2 and strategies=3):

🛗 P75	54 - SPSS Data	Editor				_ 🗆 ×			
<u>F</u> ile <u>E</u>	<u>dit V</u> iew <u>D</u> ata	<u>T</u> ransform <u>S</u>	tatistics <u>G</u> raph	is <u>U</u> tilities <u>W</u>	/indow <u>H</u> elp				
<mark>≥∎⊜</mark> <u> ⊳ ⊑ t k m 1≣1≣∎∎</u> S⊘									
1:group 1									
	group	score	comp	var	var	vai			
1	1	4	41						
2	1	6	41						
3	1	9	43						
4	1	12	46						
5	1	16	46						
6	1	15	45						
7	1	14	45						
8	1	12	32						
9	1	12	33						
10	1	8	39						
11	1	13	42						
12	1	9	45			-			
			SPSS Proces	sor is ready					

Follow these steps to perform a One-Way ANOVA:

1. Click **Analyze**, click **Compare Means**, and click **One-Way ANOVA**. The following window will appear.

📲 One-Way ANOVA		×
 Image: group Image: score Imag	Dependent List: Image: Dependent List: <	OK <u>P</u> aste <u>R</u> eset Help
	<u>Contrasts</u> Post <u>H</u> oc <u>Options</u>	

- 2. Click "**comp**" (a.k.a. "**comprehension score**") and click ▶ to move "**comp**" into the box entitled *Dependent List*.
- 3. Click "group" and click ▶ to move "group" into the box entitled *Factor*.

4. To calculate contrasts, click the button entitled **Contrasts** and the following window will appear.

One-Way ANOVA: Contrasts 🛛 🔀						
□ Polynomial Degree: Linear ▼ Previous Contrast 1 of 1 Next	Continue Cancel					
Coefficients: Add Change Remove Coefficient Total: 0.000	Help					

- 5. We are interested in two contrasts: basal vs. DRTA and strategies (-2, 1, 1) as well as DRTA vs. strategies (0, 1, -1). The coefficients of each contrast are entered separately in the box entitled *Coefficients*. After the first coefficient is entered (i.e., -2), click Add. Enter the remaining coefficients of the first contrast (i.e., 1 and 1) in the same manner. Click Next to enter the second contrast.
- 6. Repeat step 5 for the second contrast, then click **Continue**.

Dr. Robert Gebotys

7. To calculate post hoc multiple comparisons, click the button entitled **Post Hoc** and the following window will appear.

One-Way ANOVA: Post Hoc Multiple Comparisons 🛛 🛛 🗙							
Equal Variances As	sumed						
 □ ESD □ Bonferroni □ Sjdak □ Scheffe □ B-E-G-W F □ R-E-G-W Q 	S-N-K Waller-Duncan Iukey Type I/Type II Error Ratio: 100 Tukey's-b Dunnett Duncan Control Category: Last ▼ Hochberg's GT2 Test Gabriel 2-sided O < Control Control O > Control						
Equal Variances No	t Assumed						
🔲 Ta <u>m</u> hane's T2	🗖 Dunnett's T <u>3</u> 🔲 G <u>a</u> mes-Howell 🔲 D <u>u</u> nnett's C						
Signi <u>f</u> icance level: .05							
	Continue Cancel Help						

- 8. Click **LSD** and **Bonferroni** so that a checkmark (✓) appears in the boxes before those multiple comparisons. Click **Continue**.
- 9. Click **OK**.

The SPSS output for this example of the One-Way ANOVA is the following:

ANOVA

comp

	Sum of		Mean		
	Squares	df	Square	F	Sig.
Between Groups	357.303	2	178.652	4.481	.015
Within Groups	2511.682	63	39.868		
Total	2868.985	65			

The null hypothesis of equal means is rejected. F(2,63)=4.481,p=.015.The researcher knows that there is at least one difference among the means. Preplanned comparisons which are orthogonal can also be tested. See the notes for an interpretation of each contrast.

Contrast Coefficients

	Group			
Contrast	basal	DRTA	strat	
1	-2	1	1	
2	0	1	-1	

The orthogonal comparisons are tested in the table below. Under the null hypothesis the contrast=0, the alternative hypothesis indicates the contrast is not equal 0. Contrast one is significant p=.009 however contrast two is not significant p=.202. The average of the d and s groups is different from the b group. The d and s groups do not differ.

Contrast Tests

			Value of	Std.			Sig.
		Contrast	Contrast	Error	t	df	(2-tailed)
comp	Assume equal variances	1	4.455	1.649	2.702	63	.009
-		2	2.455	1.904	1.289	63	.202
	Does not assume equal	1	4.455	1.563	2.851	47.945	.006
	variances	2	2.455	1.998	1.228	39.661	.227

The multiple comparisons are given on the next table. The tests both indicate that the b and d group means differ.

Multiple Comparisons
Dependent Variable: comp

						95% Confidence	
			Mean			Interval	
	(I) GROUP	(J) GROUP	Difference	Std.		Lower	Upper
			(I-J)	Error	Sig.	Bound	Bound
LSD	basal	DRTA	-5.682*	1.904	.004	-9.486	-1.877
		strat	-3.227	1.904	.095	-7.032	.577
	DRTA	basal	5.682*	1.904	.004	1.877	9.486
		strat	2.455	1.904	.202	-1.350	6.259
	strat	basal	3.227	1.904	.095	577	7.032
		DRTA	-2.455	1.904	.202	-6.259	1.350
Bonferroni	basal	DRTA	5.682*	1.904	.012	-10.364	999
		strat	-3.227	1.904	.285	-7.910	1.455
	DRTA	basal	5.682*	1.904	.012	.999	10.364
		strat	2.455	1.904	.606	-2.228	7.137
	strat	basal	3.227	1.904	.285	-1.455	7.910
		DRTA	-2.455	1.904	.606	-7.137	2.228

* The mean difference is significant at the .05 level.