SPSS Chapter 7 Example 1 - One-Sample t Test

The U.S. Agency for International Development provides corn soy blend (CSB) for emergency relief to countries around the world. Government specifications state that CSB should contain 2 pounds of vitamin premix for every 200 pounds of product such that the final product contains 40 mg/100 g of vitamin C. Thus, we want to test

$$H_0: \mu = 40$$

 $H_a: \mu \neq 40$

The data are entered into SPSS and look like the following:

🛗 P5	07 - SPSS Data	Editor				_ 🗆	х		
<u>F</u> ile	<u>E</u> dit <u>V</u> iew <u>D</u> ata	<u>T</u> ransform <u>S</u> ta	tistics <u>G</u> raphs	<u>U</u> tilities <u>W</u> indow	<u>H</u> elp				
Ê	- 4) 🖳 🏪 🛊	M <u>*</u>		<u>v</u>				
1:vit	C	26							
	vitc	var	var	var	var	var			
1	26								
2	31								
3	23								
4	22								
5	11								
6	22								
7	14								
8	31						•		
•						Þ			
	SPSS Processor is ready								

1. Click **Analyze**, click **Compare Means**, and click **One-Sample t Test**. The following window will appear.

1	One-Sample T Test		×
	Vitamin C (mg/100 g) [Test Variable(s):	OK Paste <u>R</u> eset Cancel Help
		Test⊻alue: 0	<u>O</u> ptions

- 2. Click "vitc" (a.k.a. "Vitamin C (mg/100 g)") and click ▶ to move "vitc" into the box entitled *Test Variable(s)*.
- 3. Change the value "**0**" to "**40**" in the box entitled *Test Value* (40 is the value of μ for the H_o).
- 4. A 95% confidence interval is the default for the One-Sample t Test. If you wish to change the confidence level, click **Options**, change "**95**" to the desired confidence level in the box entitled *Confidence Interval*, and click **Continue**.
- 5. Click **OK**.

The SPSS output for this example of the One-Sample t Test is the following:

One-Sample Statistics

			Std.	Std. Error
	Ν	Mean	Deviation	Mean
Vitamin C (mg/100 g)	8	22.50	7.19	2.54

There are eight observations with a mean of 22.50.

One-Sample Test

	Test Value = 40					
	t	df	Sig.	Mean	95% Confi	dence
			(2-tailed)	Difference	Interval of the	
					Difference	
					Lower	Upper
Vitamin C (mg/100 g)	-6.883	7	.000	-17.50	-23.51	-11.49

The One-Sample t Test tests H_0 : $\mu = 40$ vs H_a : $\mu \neq 40$. The t statistic is t = 6.883 with 7 degrees of freedom. The p-value is less than .001 indicating strong evidence against H_0 . We now calculate an exact p-value below.

Follow these steps to calculate the p-value:

- 1. Enter the value of the test statistic (i.e., -6.883) into the SPSS Data Editor using a variable called "**teststat**."
- 2. Click Transform and click Compute. The following window will appear.

👷 Compute Variable		×
Type&Label	Numeric <u>E</u> xpression:	4
teststat	+ > 7 8 9 Eunctions: ABS(numexpr) - <=>= 4 5 6 ABS(numexpr) * = = 1 2 3 / & 1 0 . ARSIN(numexpr) // & 1 0 . ARTAN(numexpr) // Delete Delete CDFNORM(zvalue) CDF.BERNOULLI(q,p) If If If If If	

- 3. Type "**pvalue**" in the box entitled *Target Variable*.
- 4. In the box entitled *Functions*, click the \checkmark button until the function entitled *CDF*.*T*(*q*, *df*) appears in the box. Double click on **CDF**.**T**(**q**, **df**) to move this function into the box entitled *Numeric Expression*.

Note: The CDF.T(q, df) function stands for the cumulative distribution function for the t distribution, and it calculates the area to the left of q under the t distribution.

5. The CDF.T(q, df) function will appear as *CDF.T(?, ?)* in the *Numeric Expression* box. The variable "teststat" replaces the q, and the degrees of freedom (df) for this example are 7 (i.e., 8-1). Thus, for H_a : $\mu \neq 40$, the

Numeric Expression should appear as "2*(1 - ABS(CDF.T(teststat, 7)))". The 2 is there to multiply the probability by 2 since this is a two sided test.

Note: The ABS(numexpr) function stands for the Absolute Value of a numerical expression. For H_a : $\mu < 40$, the Numeric Expression should appear as "**CDF.T**(teststat, 7)". For H_a : $\mu > 40$, the Numeric Expression should appear as "1 - CDF.T(teststat, 7)".

6. Click **OK**.

The exact p-value necessary will appear in the SPSS Data Editor window in the variable entitled *pvalue*:

🛗 Untitled - SPSS Data Editor 📃 🖸 ک									
<u>File Edit View Data Transform Statistics Graphs Utilities Window H</u> elp									
Ē	<u> ≈∎⊜ ¤ ⊳ ⊡ ⊾ № M 4</u> 11 <u>∎1</u> 155 <u></u> ⊗⊘								
1:pva	lue	.000245739	9734074				_		
	teststat	pvalue	var	var	var	var			
1	6.833	.0002							
2									
3									
4									
5									
6									
7									
8							•		
						Þ			
	SPSS Processor is ready								