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Abstract 

 

The present paper studies the effects of bandwagon and underdog on the political 

equilibrium of two-party competition models. We adapt the generalized Wittman-Roemer model 

of political competition for voter conformism, which views political competition as the one 

between parties with factions of the opportunists and the militants that Nash-bargain one another, 

and consider three special cases of the general model: the Hotelling-Downs model, the classical 

Wittman-Roemer model, and what we call the ideological-party model.  

In the Hotelling-Downs model, where the militants have no bargaining power in both 

parties, political parties put forth an identical policy at the equilibrium, regardless of the type of 

voter conformism, and this is the only equilibrium. Thus neither bandwagon nor underdog has 

any effect on the Hotelling-Downs political equilibrium.  

In both the ideological-party and classical Wittman-Roemer models, parties propose 

differentiated policies at the equilibrium, and the extent of policy differentiation depends on the 

degree of voter conformism. In these models, multiple equilibria generically exist when the 

bandwagon effect is sufficiently strong.  We characterize the relationship between the extent of 

voter conformism and equilibrium party platforms in dynamically stable equilibria of these 

models. 

 

JEL Categories: D3, D7, H2 

Keywords: bandwagon, underdog, Nash-bargaining, Hotelling-Downs model, Wittman-

Roemer model, ideological-party model 
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1. Introduction 

 

In almost all democracies, opinion polls have become an integral part of national elections. 

Public opinion polls provide aggregate information to the public about the views of their fellow 

citizens. By doing so, they may sometimes influence the behavior of voters and thus who will be 

elected. In turn, opinion polls may influence announced policies of candidates as well.  

The various theories about how this happens can be divided into three categories: ‘voter 

conformism,’ ‘strategic voting,’ and ‘participation/abstention.’  

A well-known example of voter conformism is the bandwagon effect.  The bandwagon 

effect occurs when the poll prompts voters to back the candidate shown to be winning in the poll, 

thus increasing his/her chances of being on the winner’s side in the end. The idea that voters are 

susceptible to such an effect is old, and has remained persistent in spite of much debate on its 

empirical existence. Bartels (1985, 1988), for instance, shows that voters are motivated in part by 

a desire to vote for the winning candidate. The opposite of the bandwagon effect is the underdog 

effect; this occurs when people support, out of sympathy, the candidate perceived to be ‘losing’ 

the elections. In a meta-study of research on this topic, Irwin and van Holsteyn (2002) show that 

from the 1980s onward, empirical evidence for the existence of the bandwagon effect is found 

more often than for the underdog effect.1 

                                                             
1 There have been at least two explanations for the existence of voter conformism. The first consists in assuming that 

polls may exert a normative influence over voters; when voters perceive the existence of a social norm – defined by a 

majority preference expressed in polls in the case of a bandwagon effect – they may feel compelled to abandon their 

views and comply with such norms, to avoid perhaps cognitive dissonance. The second, which seems more 

compelling, consists in assuming that individuals may be influenced by polls because they use revealed public 

preferences as information about the correct option to take. Considering they have strong incentives to minimize the 
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The second category of theories on the effect of polls on voting concerns strategic voting. 

These theories are based on the idea that voters will sometimes not choose the candidate they 

prefer the most, but another, less-preferred, candidate from strategic considerations. An example 

can be found in the UK general election of 1997. Then Cabinet Minister, Michael Portillo's 

constituency of Enfield was believed to be a safe seat, but opinion polls showed that the Labour 

candidate Stephen Twigg was steadily gaining support, which may have prompted supporters of 

other parties to vote for Twigg in order to remove Portillo. 

The third category of theories concerns voter participation/abstention. It is often 

suggested that supporters of the candidate shown to be significantly lagging behind may give up 

casting their ballots, resulting in a landslide victory of another candidate. In the South Korean 

presidential election of 2007, when a conservative candidate, M.B. Lee, achieved a landslide 

victory over a liberal candidate, D.Y. Chung, with the vote shares of 48.7% versus 26.1%, it was 

widely believed that anti-Lee voters had abstained significantly, concluding from several pre-

election polls that Chung would have no chance of winning even if they would cast votes for him. 

(Indeed the voting rate was 63%, the lowest one since 1987.) But the opposite of this 

phenomenon may happen as well. A well-known example is the boomerang effect where the 

likely supporters of the candidate shown to be winning feel that they are ‘home and dry’ and that 

their vote is not required, thus allowing another candidate to win. 

Since Leibenstein’s (1950) pioneering work on consumer conformism, there have been 

many studies on the effect of conformism on economic behavior; see Akerlof (1997), Banerjee 

(1992), Bernheim (1994), Birkchandani et al. (1992), and Schelling (1974). There are also some 

                                                                                                                                                                                                      
costs of acquiring the information necessary to make right choices (Downs, 1957), voters may rely upon ‘information 

shortcuts,’ such as group references, party identification, or knowledge about where other voters stand on issues. 
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political models incorporating the effect of opinion polls on voter conformism and its 

consequence for actual vote shares (Aldrich, 1980; Baumol, 1957; Simon, 1954). To the best of 

our knowledge, no political models have been developed to study the effect of voter conformism 

on the nature of political competition. The current paper aims at filling this gap in the literature. 

In the present paper, we are particularly interested in the effect of voter conformism, in the form 

of bandwagon or underdog, on equilibrium party platforms.  

We ask the following: Does the presence of voter conformism affect the policy positions 

of candidates? If it does, does it mitigate policy differentiation among candidates, or exacerbate 

it? 

To answer these questions, we adapt the generalized Wittman-Roemer model of two-party 

competition for voter conformism. Instead of viewing political competition as occurring between 

two parties each of which is a unitary actor that maximizes a certain payoff function, the 

generalized Wittman-Roemer model views political equilibrium as the one obtained from 

competition between parties with factions that have different goals and Nash-bargain with one 

another to set the policy. Following Roemer (2001), we assume that there are two factions in each 

party: the opportunists whose goal is to win the election and the militants whose objective is to 

maximize the average well-being of their party members. 2 

The generalized Wittman-Roemer model has one advantage for our study; it covers 

various models of political competition as its special cases. Thus it allows us to study the 

consequence of voter conformism on the equilibrium of various political models in a unified 

framework. We will study three special cases of the generalized Wittman-Roemer model of 

                                                             
2
 A generalized Wittman-Roemer equilibrium, where bargaining power is fixed, can be considered a special case of 

Roemer’s (2001) party unanimity Nash equilibrium, where bargaining power is not specified a priori.  
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political competition, which have received much attention among students of political economy. 

One is the Hotelling-Downs model in which parties maximize their probabilities of victory, and 

another is the classical Wittman-Roemer model (Roemer, 1997) in which parties maximize the 

expected utilities of their key constituents. The third is the one, which we call the ideological-

party model, in which each party sets its policy equal to the ideal tax rate of its endogenously-

determined average member. 

In defining voter conformism, we follow Simon (1954). Simon (1954) holds that voting 

behavior is a function of voters’ expectations of the electoral outcome, and published poll data 

influence these expectations. The bandwagon effect exists if voters are more likely to vote for a 

candidate when they expect him to win than when they expect him to lose; if the opposite holds, 

the underdog effect exists.  

We will define the generalized Wittman-Roemer model’s equilibrium as a static concept, 

but the issues we are studying – bandwagon, underdog, and policy positions of candidates – are 

inherently dynamic. We show that the model’s equilibrium is identical to a stationary point of a 

certain best-response dynamic, and study some of its dynamic properties as well.  

Section 2 presents the generalized Wittman-Roemer model of political competition, which 

is adapted for voter conformism. Section 3 studies the effect of voter conformism on the 

Hotelling-Downs political equilibrium, where the militants have no bargaining power in both 

parties. We prove that voter conformism has no effect on the equilibrium policy in this case, for 

the unique equilibrium in this model is both parties’ putting forth the same policy. In section 4 we 

study another extreme case of the generalized Wittman-Roemer model in which the opportunists 

have no bargaining power in both parties: the ideological-party model. In contrast with the 

Hotelling-Downs model, the presence of multiple equilibria is generic in this model when the 
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bandwagon effect is sufficiently strong. In those equilibria that are dynamically stable and have 

the membership share of party L greater than 0.5 (less than 0.5), an increasing bandwagon effect 

decreases (increases) the equilibrium tax rates of both parties; the opposite holds for the underdog 

effect. Section 5 studies the classical Wittman-Roemer model in which both the militants and the 

opportunists have equal bargaining power in both parties. Two parties in the classical Wittman-

Roemer model propose differentiated equilibrium policies (as in the model without voter 

conformism), and the extent of such policy differentiation depends on the degree of voter 

conformism. As in the ideological-party model studied in section 4, multiple equilibria 

generically exist in the classical Wittman-Roemer model when the bandwagon effect is 

sufficiently strong.  In contrast with the purely ideological parties, the Wittman-Roemer parties 

move in an opposite direction as the parameter capturing the extent of voter conformism increases. 

In those Wittman-Roemer equilibria that are dynamically stable, an increasing bandwagon effect 

exacerbates the policy differentiation of the two parties; the opposite holds when the underdog 

effect is considered. Section 6 concludes. We collect all the proofs in Appendix. 

 

2. The model 

 

Throughout the paper, we will maintain that there are two political parties (or candidates 

representing them), L and R, and that the policy space is the unit interval: [0,1]T = . A generic 

element of T  will be denoted by t , which we call a tax rate, or simply a policy. We assume that 

the party that wins the election implements its announced policy. Because we study the models 

with two parties, the issue of strategic voting is not our concern. Also the potential issue of voter 

participation/abstention is not explicitly modeled. 
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There is a continuum of voters; we are modeling an election in large polities, where no 

individual voter is noticeable. Voters are endowed with one-dimensional characteristic, w
+

Î R , 

whose distribution  is given by a strictly increasing and continuous distribution function (.)F ; its 

associated probability measure is denoted by (.)P .3 We call w  an income. The mean of w , 

denoted by m , is assumed to exist.  

In this model, party membership will be endogenously determined. We assume a perfectly 

representative democracy where: (1) every voter belongs to one and only one party (thus there are 

no ‘undecided’ voters); (2) each party member receives an equal weight in the determination of 

the party’s von Neumann-Morgenstern utility function; and (3) each voter votes for the party of 

which he/she is a member.  

Suppose ( , )L Rt t T TÎ ´  is a pair of policy positions of the two parties and [0,1]x Î  is an 

expected membership share of party L, which is ascertained perhaps through opinion polls. 

(Because there are only two parties, the expected membership share for party R is 1 x- .) Given 

( , )
j j
t x , where L,Rj = , we assume that voter preferences are given by 

(1 ) ( ) ( )
j j j
t w h t xa m qf- + + ,     (1)  

where a  is a  positive constant, and (.)h  and (.)f  are functions satisfying the following 

conditions.  

 

Assumption 1: (1) : [0,1]f ® R  is strictly increasing and finite-valued on [0,1]; and 

(2) :h T ® R  is strictly increasing, strictly concave, and finite-valued on T. 

 

                                                             
3 R+ is defined to be the set of all non-negative real numbers, not just of positive numbers. 
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Some remarks are in order regarding voter preferences. 

First, facing an election, voters care not only about the policy positions of political parties 

but also the membership shares of the parties. Note that the voter’s utility function consists of two 

parts: a quasi-linear utility function that represents the economic interests of voters, 

(1 ) ( )j jt w h ta m- + , and a utility bonus/penalty from supporting the winning/losing party, 

( )jxqf , where L,Rj = . Because (.)f  is increasing, we have ( ) (1 )x xqf qf> -  if and only if  

1
2

( ) 0xq - > . Thus the bandwagon effect is captured by the assumption that q  is positive; other 

things being equal, voters prefer a party whose expected membership share is greater than ½. The 

presence of the underdog effect would be equivalent to assuming that q  is negative. Finally, if 

q = 0 , there is no voter conformism. 

Second, if we interpret tm  as the per capita amount of public goods,4 then a  measures the 

extent to which voters value the consumption of public goods. The parameter q , on the other 

hand, measures the relative salience of voter conformism. By letting a  and q  vary across voters, 

one might allow a voter to be equipped with three characteristics: ( , , )w a q . Our equilibrium will 

be well-defined even in that case.5 For the sake of simplicity, we will maintain that the parameter 

values of a  and q  are identical for all voters; voters differ only in the level of incomes that they 

hold. Of course, this is a great simplification. If some voters are vulnerable to the bandwagon 

effect, others may be susceptible to the underdog effect; still others may receive no influence at 

all. Because we do not know who are more susceptible to which effect, we study each case 

separately by assuming that all voters are susceptible to the same effect.  

                                                             
4
 This is the case if there is no incentive effect of taxation. 

5
 What is essential in our model is the uni-dimensionality of the policy space, not the uni-dimensionality of the voter 

characteristic space. 



8 

 

Facing ( , , )
L R
t t x , voter w  (weakly) prefers L to R if 

( ) ( ( ) ( )) ( ( ) (1 )) 0
L R L R
t t w h t h t x xa m m q f f- - + - + - - ³ .   (2) 

If 
L R
t t> , the left-hand side expression of (2) is decreasing in w  and goes to -¥   as w ® ¥ , 

but may be negative at 0w =  if 1
2

( ) 0xq - < . If 
L R
t t< , it is increasing in w  and goes to ¥   as 

w ® ¥ , but may be positive at 0w =  if 1
2

( ) 0xq - > .  

Thus, for 
L R
t t¹ , we define the cutoff level of income for inequality (2) as:  

( , , ) max[ ( , , ), 0]
L R L R

w t t x t t xvº ,    (3) 

where 
( ) ( ) ( ) (1 )

( , , ) L R
L R

L R L R

h t h t x x
t t x

t t t t

m m f f
v a q

- - -
= +

- -
. 

By Assumption 1, the first term inside the max expression of equation (3) is always finite 

(for 
L R
t t¹ ). It is not always positive; it can be negative if 1

2
( )( ) 0

L R
x t tq - - < . To prevent 

uninteresting situations in which 
( ) (1 )

L R

x x

t t

f f
q

- -

-
 always dominates 

( ) ( )
L R

L R

h t h t

t t

m m
a

-

-
, we 

make the following assumption; without this assumption, there may exist some [0,1]x Î  at which 

one party is preferred by ‘all’ voters for all distinct pairs of 
L R
t t¹ .  

 

Assumption 2: For any [0,1]x Î , there exists at least one pair of distinct policies ( , )
L R
t t , 

L R
t t¹ , such that ( , , ) 0

L R
w t t x > . 
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The set of voters who prefer L to R is the set of w  for whom inequality (2) is satisfied. 

Thus, given ( , , )
L R
t t x , the set of voters who prefer L to R is  

1
2

1
2

1
2

{ | ( , , )} if               

{ | ( , , )} if               

if  and ( ) 0( , , )

a random half subset of if  and ( ) 0

if  and ( ) 0,

L R L R

L R L R

L RL R

L R

L R

w w w t t x t t

w w w t t x t t

t t xt t x

t t x

t t x

q

q

q

+

+

+

+

ìï Î £ >ïïï Î ³ <ïïïï = - >W =í

= - =

Æ = - <
î

R

R

R

R
ïïïïïïïï

  

(4) 

and the actual membership share of party L is given by 

' ( ( , , ))
L R

x P t t x= W ,     (5) 

where 

( )
( )

1
2

1 1
2 2

1
2

( , , ) if                  

1 ( , , ) if                  

( ( , , )) 1 if  and ( ) 0 

if  and ( ) 0 

0 if  and ( ) 0.

L R L R

L R L R

L R L R

L R

L R

F w t t x t t

F w t t x t t

P t t x t t x

t t x

t t x

q

q

q

ìï >ïïï - <ïïïïW = = - >í
ïï = - =ïïïï = - <ïïî

 

Note a difference between the case in which 1
2

 and ( ) 0
L R
t t xq= - >  and the case in 

which 1
2

 and ( ) 0
L R
t t xq= - = . In the former case, all voters strictly prefer L to R, while in the 

latter case, voters are indifferent between them. We assume that indifferent voters decide their 

party membership by flipping a fair coin. This also means that the two random half-subsets of 

+
R will have exactly the same distributions of voters as (.)F . 

So far, we described the basic data of the model. We now introduce the two factions that 

Nash-bargain one another in setting the party policy.  

The opportunists in each party are those who advocate a policy that maximizes an 

increasing function of its actual membership share. To be precise, let : [0,1] [0,1]F ®  be an 
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increasing function such that 1 1
2 2

( )  and ( ) 1 (1 )x xF = F = -F - . Then, given ( , , )
L R
t t x , party 

L’s opportunists are maximizing  

( )( , ; ) ( ( , , ))
L R L R
t t x P t t xp = F W ,     (6) 

and party’s R’s opportunists are maximizing ( )1 ( ( , , )) 1 ( , ; )
L R L R

P t t x t t xpF - W = - .  

Our formulation of the objective function of the opportunists covers a number of different 

specifications in the literature on political economy. 

First, it covers the models with electoral uncertainty, where ( , , )
L R
t t xp  and 

1 ( , , )
L R
t t xp-  are interpreted as probabilities of victory. To see this, suppose the actual vote 

share for L is given by ( ( , , ))
L R

P t t x eW + , where e  is a random variable distributed by a 

symmetric distribution function (.)G  such that 1
2

(0)G = . Then party L’s probability of victory is 

( )Pr( ( ( , , )) 0.5) 1 0.5 ( ( , , ))
L R L R

P t t x G P t t xeW + > = - - W , and thus ( ) ( 0.5)x G xF = - .  

Second, if 1 1
2 2

1
2( ,1] { }

( ) 1 ( ) 1 ( )x x xF = + , where 1 ( )
A
x  is an indicator function that takes 1 if 

x AÎ  and 0 otherwise, then ( , , )
L R
t t xp  can be considered  a probability of victory in the models 

with electoral certainty. 

Third, if ( )x xF = , then ( , , )
L R
t t xp  and 1 ( , , )

L R
t t xp-  are actual membership shares. 

This might be the case if there is no electoral uncertainty and the election is not of the winner-

takes-all type. For instance, under proportional representation, the opportunists may care more 

about vote shares than probabilities of victory. 6 

                                                             
6 Baron (1993) and Ortuno-Ortin (1997) study models of political competition under proportional representation, in 

which the influence of the groups favoring a certain policy is proportional to the percentage votes favoring that policy. 
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Although our formulation is flexible enough to cover various specifications, we will call 

( , , )
L R
t t xp  and 1 ( , , )

L R
t t xp-  probabilities of victory throughout the paper. Also we will 

maintain the following assumption.  

 

Assumption 3: : [0,1] [0,1]F ®  is strictly increasing.7 

 

Some remarks should be in order regarding the behavior of the opportunists in our model. 

Indeed the actual membership share, ( ( , , ))
L R

P t t xW , and thus ( , , ) ( ( ( , , )))
L R L R
t t x P t t xp = F W , 

have a number of ‘distinct’ features that do not exist in the standard models of political 

competition. Figure 1 illustrates some possible shapes that ( ( , , ))
L R

P t t xW  can take. (In what 

follows, we will discuss in terms of the membership share of party L; symmetric statements hold 

for the R membership share:1 ( , , )
L

P t t x- .) 

 

[Figure 1 about here] 

 

The case of 1
2

( ) 0xq - =  corresponds to the standard models. In this case, ( ( , , ))
R

P t t xW  

is monotonic on both [0, )
R
t   and ( ,1]

R
t , and discontinuous at 

R
t t=  (unless 

R
t  is the ideal tax 

                                                                                                                                                                                                      
As another interpretation, ( , , )

L R
t t xp  and 1 ( , , )

L R
t t xp-  in this specification may well be interpreted as probabilities 

of victory in the models with very large electoral uncertainty. Suppose the error term e  in a model with electoral 

uncertainty is uniformly distributed over [ 0.5, 0.5]- ; thus uncertainty is very large. Then ( ) ( 0.5)x G x xF = - =   for 

[0,1]x Î . 

7 Thus Assumption 3 rules out the models with electoral certainty where ( , , )
L R
t t xp  is interpreted as a probability of 

victory (the second specification in the above discussion). 
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rate of the voter with the median income). It is monotonic in the following sense; as t  increases 

up to 
R
t  on [0, )

R
t , ( ( , , ))

R
P t t xW  increases up to lim(1 ( ( , , )))

R

R
t t

F w t t x
-®

- , and as t  decreases 

down to 
R
t  on ( ,1]

R
t , it increases up to  lim ( ( , , ))

R

R
t t

F w t t x
+®

. At  
R

t t= , 1
2

( ( , , ))
R

P t t xW = , which 

is, in general, not equal to the two limits. 

When 1
2

( ) 0xq - ¹ , on the other hand, ( ( , , ))
R

P t t xW  is inherently non-monotonic and 

continuous everywhere in t .  We make the statement precise in the following lemma. 

 

Lemma 1:  (1) Suppose 1
2

( ) 0xq - > . For any [0,1)
R
t Î , ( ( , , ))

R
P t t xW  strictly decreases 

on ( ,1]
R
t  with lim ( ( , , )) 1

R

R
t t

P t t x
+®

W = . Also for any (0,1]
R
t Î , there exists unique ( , )

R
a t x  on 

[0, )
R
t  such that (i) ( ( , , )) 1

R
P t t xW =  for all [ ( , ), ]

R R
t a t x tÎ ; and (ii) whenever ( , ) 0

R
a t x > , 

( ( , , ))
R

P t t xW  strictly increases on [0, ( , ))
R

a t x  with 
( , )

lim ( ( , , )) 1
R

R
t a t x

P t t x
-®

W = . 

(2) Suppose 1
2

( ) 0xq - < . For any (0,1]
R
t Î , there exists ( , )

R
b t x  on [0, )

R
t  such that 

( ( , , ))
R

P t t xW  strictly decreases on [ ( , ), )
R R

b t x t  with lim ( ( , , )) 0
R

R
t t

P t t x
-®

W = . Also for any 

[0,1)
R
t Î , there exist ( , )

R
c t x  and ( , )

R
d t x  on ( ,1]

R
t  such that (i) ( , ) ( , )

R R
c t x d t x£ ; (ii) 

( ( , , )) 0
R

P t t xW =  for all [ , ( , )]
R R

t t c t xÎ ; and (iii) whenever ( , ) ( , )
R R

c t x d t x< , ( ( , , ))
R

P t t xW  

strictly increases on ( ( , ), ( , )]
R R

c t x d t x  with 
( , )
lim ( ( , , )) 0

R

R
t c t x

P t t x
+®

W = .  

 

Due to Lemma 1, the opportunists of the model with voter conformism behave very 

differently from those in the standard models. We explain the implication of Lemma 1 for the 
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case of 0q > . Part (1) of Lemma 1 states that the opportunists of the party with the expected 

membership share greater than 1
2

 can be better off by advocating a policy that is closer to its 

opponent’s policy. But part (2) states that the opportunists in the party with the expected 

membership share less than 1
2

 become worse off if they advocate a policy that is too close to the 

other party’s policy; by doing so, they decrease their party’s actual membership share. Rather the 

opportunists in the latter party can make themselves better off by moving away, within a certain 

limit, from the opposition party’s policy. The higher the value of q , the stronger the incentive of 

the opportunists in the latter party to move away from the policy of the opposition party. This 

implication is sharply in contrast with the one obtained in the standard models, where the 

opportunists of each party become better off as they move their policy to the direction of the other 

party’s policy. 

We now describe the objective function of the militants in each party. Consider an 

arbitrary partition of the polity into two sets of party members, 
L

H  and 
R

H , such that 

L R
H H

+
È = R  and 

L R
H HÇ = Æ . Assume that a party’s von Neumann-Morgenstern utility 

function is the average of its members’ utility functions representing economic interests. Thus, for 

an arbitrary policy t TÎ and party memberships 
L

H  and 
R

H ,  they are: 

1
((1 ) ( )) ( ) if ( ) 0

( )( ; )

0 if ( ) 0

L
L

w H
LL

L

t w h t dP w P H
P HV t H

P H

a m
Î

ìïï - + ¹ïï= í
ïï =ïïî

ò ,  (7) 

and 

1
((1 ) ( )) ( ) if ( ) 0

( )( ; )

0 if ( ) 0

R
R

w H
RR

R

t w h t dP w P H
P HV t H

P H

a m
Î

ìïï - + ¹ïï= í
ïï =ïïî

ò .  (8) 
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In our model, these are the objective functions that the militants would like to maximize. 8 

Because the utility function representing the economic interests is quasi-linear, each 

party’s von Neumann-Morgenstern utility function, defined as the average well-being of its 

members, is identical to the utility function of the voter whose income equals the mean income of 

its members; for  

1
((1 ) ( )) ( ) (1 ) ( )

( ) L
L

w H
L

t w h t dP w t w h t
P H

a m a m
Î

- + = - +ò ,  (9) 

and 

1
((1 ) ( )) ( ) (1 ) ( )

( ) R
Rw H

R

t w h t dP w t w h t
P H

a m a m
Î

- + = - +ò ,  (10) 

where 
1

( )
( ) L

L w H
L

w wdP w
P H Î

= ò  and 
1

( )
( ) R

R w H
R

w wdP w
P H Î

= ò . 

We finished describing the objective functions of the two factions. To model a within-

party Nash-bargaining process between the factions, we need to specify the impasse payoffs, the 

payoffs of the factions should they fail to come to an agreement. If party L’s factions fail to come 

to an agreement, party R wins the election by default; the probability of victory for party L is zero 

and party R’s policy will be implemented. Thus given ( , , )
R L
t x H , the Nash-bargaining solution 

between the two factions of party L is the policy 
L
t  that maximizes a Nash product: 

1
( ( , , ) 0) ( ( ; ) ( ; ))L L

R L R L
t t x V t H V t H

g g
p

-
- - ,     (11) 

for some [0,1]
L

g Î . Similarly, given ( , , )
L R
t x H , party R’s factions Nash-bargain to a policy 

R
t  

that maximizes: 

                                                             
8
 We are assuming that the militants care only about the economic well-being of their members, and not about the 

part due to voters’ conformist preferences.  
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1
(1 ( , ; ) 0) ( ( ; ) ( ; )) ,R R

L R L R
t t x V t H V t H

g g
p

-
- - -     (12) 

for some [0,1]
R

g Î . 

We now define:  

 

Definition 1: For given , [0,1]
L R

g g Î , a generalized Wittman-Roemer political 

equilibrium with voter conformism is a partition of the polity into *
LH  and *

RH  and a triple 

* * *( , , )L Rt t x  such that: 

(1) 1* * * * * *arg max( ( , ; )) ( ( ; ) ( ; ))L L

L R L R L
t t t x V t H V t H

g g
p

-
Î - ; 

(2) 
1* * * * * *arg max(1 ( , ; )) ( ( ; ) ( ; ))R R

R L R L R
t t t x V t H V t H

g g
p

-
Î - - ; 

(3) * * * *( , , )
L L R

w H w t t xÎ Þ Î W ,  

* * * *\ ( , , )
R L R

w H w t t x
+

Î Þ Î WR ;  

(4) * *( )
L

x P H= . 

 

The first two conditions in Definition 1 require that given * * *( , , )L Rx H H , 
* *( , )L Rt t  be a Nash 

equilibrium of a game in which each party’s payoff function is a weighted Nash product of the 

payoff functions of its two factions. Thus a generalized Wittman-Roemer equilibrium is ‘doubly 

Nash.’ Each party plays a best-response to the opponent while holding * * *( , , )L Rx H H  
constant, and 

the best-response is an outcome of a within-party Nash-bargaining process. 

The third condition endogenizes party membership; it states that no member of either 

party is better represented by the other party at the equilibrium. If condition (3) is violated, some 
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members of party j  will prefer to join party i . This is certainly not a stable situation. Baron 

(1993) first uses the idea here – that malcontents ‘vote with their feet’ by defecting to the other 

party – in the context of political competition, although our formulation is close to those of 

Ortuno-Ortin and Roemer (1998) and Roemer (2001: page 92). 

The fourth condition requires that the actual party membership shares be identical to the 

expected party membership shares at the equilibrium party platforms.  Thus a generalized 

Wittman-Roemer equilibrium with voter conformism is a rational-expectation equilibrium.  One 

needs to note that the fourth condition is weaker than the requirement that the actual party 

membership shares be identical to the expected party membership shares for all possible pairs of 

party platforms; it requires only that they are identical at the equilibrium platforms. Another 

interpretation of the fourth condition is that polls are accurate in predicting party membership 

shares at the equilibrium party platforms. 

There emerge several interesting special cases from a generalized Wittman-Roemer 

political equilibrium with voter conformism. 

First, if we set 1
L R

g g= = , we have the Hotelling-Downs model, adapted for voter 

conformism. In this model, the militants have no bargaining power in both parties. 

Second, if we set 0
L R

g g= = , we have the model of political competition between two 

purely ideological parties in which the opportunists have no say in determining party policies. 

Without endogenous party membership or voter conformism, this model would be trivial; each 

party simply puts forth the ideal policy of its (exogenously given) average member. With voter 

conformism and endogenous party membership, however, the model is no longer trivial. Although 

each party puts forth the ideal policy of its average member, the membership is endogenously 
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determined and voter conformism affects the membership; this in turn changes the policy of the 

two parties. We call a political equilibrium in this case an ideological-party equilibrium with voter 

conformism. 

Finally, if we have 1
2L R

g g= = , then we have the classical Wittman-Roemer model, 

adapted for endogenous party membership and voter conformism, where the two factions have 

equal bargaining power in both parties. (For details of the classical Wittman-Roemer model, see 

Roemer (1997; 2001: Chapter 3).) 

It is difficult to characterize a generalized Wittman-Roemer equilibrium with voter 

conformism in its full generality. In the following sections, we will study the above-mentioned 

three special cases. The first two models are relatively easy to characterize; the third one is more 

difficult. 

Several remarks are in order regarding Definition 1. 

First, it would be useful to see how our equilibrium concept is different from those 

employed in the standard political economic models. Let us compare our equilibrium 

concept with the classical Wittman-Roemer equilibrium, where voter conformism is not 

present. (A similar comparison can be made regarding the Hotelling-Downs model.) The 

classical Wittman-Roemer equilibrium requires only that * *( , )
L R
t t  be mutual best responses of 

the two parties; party memberships and their shares are then automatically derived from 

* *( , )
L R
t t . In contrast, for * * * * *( , , , , )

L R L R
t t x H H  to be a Wittman-Roemer equilibrium with voter 

conformism, the following two conditions must be met simultaneously: given * * *( , , )
L R

x H H , 

* *( , )
L R
t t  must be mutual best responses of the two Wittman-Roemer parties, and * *( , )

L R
t t  must 
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predict precisely * * *( , , )
L R

x H H . Put it mathematically, Definition 1 requires that * * *( , , )L Rt t x  

be a fixed point of  

( ; , ( , , )) ( ; , ( , , )) ( ( , , ))
L R L R R L L R L R
t x t t x t x t t x P t t xb bW ´ W ´ W ,   (13) 

where 
i

b  is the best response of party i derived while holding constant the membership of 

party i and the expected membership share of party L. 

Second, condition (4) of Definition 1 shows another way of presenting the bandwagon and 

underdog effects. Condition (4) requires that given * *( , )
L R
t t , the equilibrium membership share of 

party L be a fixed point of the map * *( ( , , ))
L R

P t t xW . The presence of the bandwagon effect implies 

that the map is increasing, while the underdog effect corresponds to the case in which the map is 

decreasing.  

Figures 2 and 3 illustrate. In both figures, the horizontal axis measures the expected 

membership share of party L and the vertical axis measures its actual membership share. In 

Figure 2, we draw two possible shapes of the map * *( ( , , ))
L R

P t t xW   for the case in which * *

L R
t t> ; 

Figure 3 draws the corresponding maps
 
for the case in which * *

L R
t t= . The intersection of the map 

with the 45 degree line is the equilibrium membership share of party L, given * *( , )
L R
t t . 

 

[Figures 2 and 3 about here] 

 

It is straightforward to prove that there always exists such a fixed point, given * *( , )
L R
t t . If 

* *

L R
t t> , there is at least one fixed point when 0q > , and only one fixed point when 0q £ . 
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(There may exist multiple fixed points if 0q > ; the exact number of fixed points is determined 

by the curvature of the map * *( ( , , ))
L R

P t t xW .) If * *

L R
t t= , on the other hand, there are three fixed 

points ( 1
2

0,  ,  and 1 ) when 0q > , and only one ( 1
2

) when  0q £ . 

One needs to note that not all of multiple fixed points at * *( , )
L R
t t  are equilibrium 

membership shares; we repeat that for a membership share, as a fixed point, to be an 

‘equilibrium’ membership share, the fixed point calculated at * *( , )
L R
t t  must confirm the pair of 

policies as mutual-best responses at the fixed point. 

Third, our interpretation of the generalized Wittman-Roemer equilibrium as a Nash-

bargaining solution between the two factions provides useful formulae in a differentiable 

environment. Assume , (0,1)
L R

g g Î . Then the first-order condition for the maximization of 

equation (11) is: 

* * ** * ( , ; )( ; )
L L RL L

L

L L

t t xV t H

t t

p
l

¶¶
=-

¶ ¶
,     (14) 

where 
* * * *

* * *

( ; ) ( ; )
0

(1 ) ( , ; )
L L R LL

L

L L R

V t H V t H

t t x

g
l

g p

-
= ³

-
. Likewise, the first order condition for the 

maximization of equation (12) is: 

* * * * *( ; ) (1 ( , ; ))
R R L R

R

R R

V t H t t x

t t

p
l

¶ ¶ -
=-

¶ ¶
,     (15) 

where 
* * * *

* * *

( ; ) ( ; )
0

(1 ) 1 ( , ; )
R R R L R

R

R L R

V t H V t H

t t x

g
l

g p

-
= ³

- -
. 

Thus at the generalized Wittman-Roemer equilibrium, if a move from *

i
t  increases 

the payoff of party i’s militants, then it must decrease the payoff of party i’s opportunists. In 
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other words, if a policy pair is a generalized Wittman-Roemer equilibrium, neither party’s 

factions can unanimously agree to alter their proposal, given the policy played by the 

opposition party. 

Fourth, although we presented the generalized Wittman-Roemer equilibrium with voter 

conformism as a static concept, it is possible to interpret it as a stationary point of the following 

dynamic process. 

1. Suppose there is a sequence of decision making over time until party conventions, 

which are held simultaneously and, perhaps, some months prior to the election. Thus we are 

modeling a dynamic process of debate among citizens and politicians which ultimately results in 

equilibrium party platforms and equilibrium party memberships. 9 Start with an arbitrary triple 

0 0 0 0 0( , , , , )
L R L R
t t x H H  in the first period. 

2. In each period after the first, each voter decides the party of which he/she will be a 

member in the current period, observing the two parties’ previous policies and taking their past 

membership shares as the expected membership shares of the current period. 

3. After observing the current party membership, each party chooses its current policy 

through a Nash-bargaining process between the two factions, while assuming that the other party 

will choose the policy it chose in the previous period.  

4. In the next period, voters revise their party membership according to rule 2, and parties 

revise the policies according to rule 3.  

5. The process continues until the time of party conventions.  

                                                             
9 One might wish to model a dynamic process that continues until the election time, but such a modeling should 

assume that parties can costlessly change their announced policies, even after party conventions, up to the day of the 

election. We think it unrealistic; indeed changing its policy after the party convention would harm the party’s 

credibility with the voters.  
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To see that a stationary point of this dynamic process is identical to a generalized 

Wittman-Roemer equilibrium defined in Definition 1, suppose ( , )
L R
t t  is a policy pair of the 

previous period, ( , )
L R

H H  is a pair of the sets of party members in that period, and ( )
L

x P H=  is 

the membership share of party L in that period. If we follow the above dynamic process, the 

variables of interest in the current period (denoted with a prime) are given by 

' ( , , ) ( , , ( ))
L L R L R L

H t t x t t P H= W = W ,   ' '\
R L

H H
+

= R ,   (16) 

' '( ) ( ( , , ))
L L R

x P H P t t x= = W ,     (17) 

1' ' 'arg max( ( , ; )) ( ( ; ) ( ; ))L L

L R L R L
t t t x V t H V t H

g g
p

-
Î - ,    (18) 

1' ' 'arg max(1 ( , ; )) ( ( ; ) ( ; ))R R

R L R L R
t t t x V t H V t H

g g
p

-
Î - - .   (19) 

Equations (16)-(19) then define a dynamic process of updating ( , , , , )
L R L R
t t x H H  into 

' ' ' ' '( , , , , )
L R L R
t t x H H . A stationary point of this dynamic process is clearly a generalized Wittman-

Roemer equilibrium with voter conformism. 

Note that equations (18) and (19) define a ‘best-response’ dynamic. Note also that a 

partition of the polity into the two parties is entirely determined by ( , , )
L R

w t t x  defined in 

equation (3); the cutoff level of income that separates the polity into two parties in the current 

period is determined by ' ( , , )
L R

w w t t x= . Thus the dynamic process justifying the Wittman-

Roemer politics is fully characterized by the following system of first-order difference equations: 

' ( ; , ( , , ))
L L R L R
t t x w t t xbÎ ,     (20) 

' ( ; , ( , , ))
R R L L R
t t x w t t xbÎ ,    (21) 

' ( ( , , ))
L R

x P w t t x= .     (22) 
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Best responses are well defined for all , [0,1)
L R

g g Î , and so is the best-response dynamic. 

As we discussed earlier in this section, ( , , )
R

t t xp  is discontinuous at 
R

t t=  if 1
2

( ) 0xq - = , and 

continuous everywhere if 1
2

( ) 0xq - ¹ . (See Figure 1 again.) This implies that best responses 

may not be well defined if  1
L

g =  and 1
2

( ) 0xq - = . If  1
L

g ¹ , on the other hand, 

1
( ( , , )) ( ( ; ) ( ; ))L L

R L R L
t t x V t H V t H

g g
p

-
- is always continuous in t , even in the case of 

1
2

( ) 0xq - = . This is because as 
R

t t® , ( ; ) ( ; ) 0
L R L

V t H V t H- ®  while ( , , )
R

t t xp  approaches 

to a finite number. Thus it is only the Hotelling-Downs parties that may not have a best response 

to some of its opponent’s policies. 

There may exist multiple best responses. In that case, we will assume that parties choose 

the ones close to what they chose in the previous period. This assumption is particularly important 

when there are multiple equilibria. 10 

Finally, we briefly remark that there may exist ‘trivial’ non-differentiated equilibria in the 

generalized Wittman-Roemer model of political competition. If (.)F  is ‘symmetric,’ for instance, 

* * 1
2

( , , )t t , where *t  is the ideal tax rate of the voter with the median (mean) income, is an 

equilibrium for all , [0,1]
L R

g g Î .11 Other trivial non-differentiated equilibria may also exist, if we 

further specify the functional forms of (.)h  and (.)f . These equilibria are not of our interest. (In 

                                                             
10 We argue only that the above-mentioned best-response dynamic justifies the generalized Wittman-Roemer 

equilibrium with voter conformism, not that the best-response dynamic that we use in the paper is the only 

‘reasonable’ dynamic for justifying it. Which dynamic is more reasonable is not our concern. 

11 Here is a sketch of the proof. If both parties propose an identical policy at the expected membership share of ½, the 

actual membership share is also ½. At the membership share of ½, no party would like to deviate unilaterally if the 

income distribution is symmetric because the policy is optimal for both the militants and the opportunists when the 

other party is holding that policy. 
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any way, no real income distribution is symmetric.) They are not generic; we are more interested 

in ‘generic’ equilibria. 

 

3. The Hotelling-Downs model of political competition when voter conformism is present 

 

We first study the political equilibrium of the Hotelling-Downs model when voter 

conformism is present. This is the case of 1
L R

g g= =  in our formulation.  

In the original Hotelling-Downs model without voter conformism, a pair of Condorcet 

winners constitutes a political equilibrium. In the model with voter conformism, which policy will 

be a Condorcet winner depends, in general, upon the expected membership share x .  We define a 

strict x -Condorcet winner to be a policy that defeats all other policies in pairwise elections at the 

expected membership share of x .  

We now prove:  

 

Theorem 1: The unique Hotelling-Downs equilibrium with voter conformism is 

* * * * * 1
2

( , , ) ( , , )
L R
t t x t t= , where *t  is a strict 1

2
-Condorcet winner. The equilibrium party 

membership is an arbitrary random half subset of 
+

R  for each party.  

 

Thus were real politics a Hotelling-Downs kind, there would be no differentiation of 

policies between political parties, and voter conformism would have no consequence on party 

platforms or policies; parties would propose the same policy whatever the types of voter 

conformism. Note that the theorem does not require any assumption on (.)F . 
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Lemma 1 provides an intuition for why there is no Hotelling-Downs equilibrium with 

* 1
2

x ¹  . If 0q >  and * 1
2

x ¹ , the opportunists in the ‘winning’ party would like to choose a 

policy that is as close as possible to the policy of the other party while the opportunists in the 

losing party would like to move away from the policy of the opponent party. A policy pair 

L R
t t=  is not an equilibrium because a losing party will deviate from it. A policy pair 

L R
t t¹  is 

not an equilibrium because a winning party has an incentive to come closer to the policy of a 

losing party. The opposite is true if 0q < . 

The Hotelling-Downs model of political competition seems quite robust; the model’s 

prediction with voter conformism is identical to its prediction without voter conformism. But we 

do not think the Hotelling-Downs equilibrium attractive as a description of real politics, in 

particular when voter conformism is present. 

First, in the Hotelling-Downs world of politics, political parties and their candidates would 

have no concern about opinion polls and possible effects of voter conformism that opinion polls 

might generate, although their sole motivation is winning the election. We think it idiosyncratic.  

Second, the Hotelling-Downs equilibrium with voter conformism is a knife-edge 

equilibrium, and thus justifying the equilibrium from a dynamic perspective seems difficult. 

Looking at best responses in the Hotelling-Downs model would be helpful.  

Referring to Figure 1, one can easily verify the following: 

(1) If 1
2

( ) 0xq - =  and *

j
t t= , party i’s best response to 

j
t  is to choose the policy equal 

to *

j
t t= . If 1

2
( ) 0xq - =  and *

j
t t¹ , on the other hand, party i has no best response. (As party 

i increases its tax rate on [0, )
j
t ,  its probability of victory increases; it becomes 1

2
 at 

j
t ,  and 

decreases afterwards.)   
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(2) If 1
2

( ) 0xq - > , party i has a continuum of best responses, which always includes 
j
t . 

(If 1
2

( ) 0xq - > , party i  can have ‘all’ voters as its party members by choosing the same policy 

as the opponent’s.) In this case, party i  may use a random device to choose one among many.  

(3) If 1
2

( ) 0xq - < , party i has a best response that is not equal to 
j
t . (Choosing 

j
t  is the 

worst option for party i in this case, because the entire polity will turn away from the party.) 

Thus unless the initial expected fraction of voters who prefer L to R is precisely equal to 

1
2

, and the initial pair of policies is exactly that of strict 1
2

-Condorcet winners, the dynamic 

process may stuck in the middle (due to the absence of a best response), or simply drift away from 

the equilibrium (due to the multiplicity of best responses). We conjecture, without a proof, that 

the probability that the dynamic process the Hotelling-Downs politics converges to the 

equilibrium is zero. 

 

4. The ideological-party equilibrium with voter conformism 

 

We now study the case in which both parties are purely ideological, consisting only 

of the militants.  This is another extreme case in our formulation.  

Because parties propose the ideal policy of their average members and party 

memberships are sharply separated, it is a generic feature of this model that policies are 

differentiated at the equilibrium. Also due to the presence of voter conformism, multiple 

equilibria may exist, in particular, when the bandwagon effect is sufficiently strong. Of 

course, not all of them are expected to be stable in the dynamic context. 
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As we remarked earlier, this model would be trivial without endogenous party 

membership or voter conformism. To be precise, the model is not game-theoretic; each party 

simply chooses the ideal policy of its average member. The model is, however, nontrivial 

when party membership is endogenously determined and voter conformism is present. Our 

study in this section will also shed some lights on the classical Wittman-Roemer model of 

political competition that will be studied in section 5.    

We denote the ideal tax rate of voter w  by ( ) arg max(1 ) ( )t w t w h ta mº - +% . 

Because T  is compact and convex, and (1 ) ( )t w h ta m- +  is continuous in ( , )t w  and 

strictly quasi-concave in t , ( )t w%  is a well-defined continuous function of w . Also 

(1 ) ( )t w h ta m- +  has decreasing differences on T
+

´R ; thus ( )t w%  is non-increasing in 

w .12 We now prove the following: 

 

Theorem 2: Suppose ( (0) ) ( ( ) )

(1) (0)

h t h tq m m m

a f f

-
<

-

% %
, where ( )t w%  is the ideal tax rate of w .  

(1) There exists a differentiated ideological-party equilibrium with voter conformism such 

that * *

L R
t t>  and * (0,1)x Î . 

                                                             
12

 A function ( , )v t w  has decreasing differences on T
+

´R  if 1 2t t>  and 1 2w w>  imply 

1 1 2 1 1 2 2 2( , ) ( , ) ( , ) ( , )v t w v t w v t w v t w- £ - . 
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(2)  Suppose (.)h , (.)f  and (.)F  are differentiable. For any asymptotically-stable 

differentiated ideological-party equilibrium, the following holds: 

*

* 1
2

0j
t

x
q

¶
> Þ £

¶
 and 

*

* 1
2

0j
t

x
q

¶
< Þ ³

¶
 for L,Rj =  and 0q ¹ .  

 

Thus for any stable differentiated ideological-party equilibrium where party L’s 

membership share is greater than 1
2

, an increasing bandwagon effect decreases the ideal tax rates 

of the two parties and an increasing underdog effect increases the ideal tax rates of the two parties. 

The opposite holds for any stable differentiated ideological-party equilibrium where party R’s 

membership share is greater than 1
2

. 

An intuition for the result is very simple. Take 0q >  and consider an equilibrium with 

* 1
2

x > . As q  increases, some voters at the margin will switch from party R to party L. This 

conversion makes the average members of both parties richer than before, which in turn decreases 

the ideal tax rates of both parties. An intuition for the case in which * 1
2

x <  is similar. 

We illustrate the ideological-party equilibrium with voter conformism in Figure 4, which 

shows the equilibrium cutoff level of income that separates party memberships.  

 

[Figure 4 about here] 

 

In this model, equations (20)-(22) can be merged into a single equation. We used the 

following equilibrium condition for the cutoff level of income in Figure 4: 
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( ( ( )) ) ( ( ( )) ) ( ( )) (1 ( ))
max[ , 0]

( ( )) ( ( )) ( ( )) ( ( ))
L R

L R L R

h t w w h t w w F w F w
w

t w w t w w t w w t w w

m m f f
a q

- - -
= +

- -

% %

% % % %
. (23) 

For this numerical example, we chose for F a lognormal distribution derived from a normal 

distribution with mean m and standard deviation s. We estimate the parameter values of the 

lognormal distribution using the 2004 US Census Bureau data. Our estimated parameters are  

1.408m =  and 0.886s = .13 Finally, we chose ( )h t tm m=  and ( ) kx xf = , where 1k ³ . 

Figure 4 shows that there emerge multiple equilibria when the bandwagon effect is 

sufficiently strong. The bottom right panel of Figure 4 shows that we have three equilibria. 

Among them, the middle one is unstable while the other two are stable. Thus in contrast with the 

Hotelling-Downs model we studied in section 3, multiple equilibria generically exist when the 

bandwagon effect is sufficiently strong. 

 

5. Voter conformism and the classical Wittman-Roemer model of political competition 

 

So far we studied two extreme cases of a generalized Wittman-Roemer model of political 

competition with voter conformism. We now study the effect of voter conformism on the classical 

Wittman-Roemer political equilibrium, in which two factions have equal bargaining power in 

both parties. Like the ideological-party model of political competition, it is a generic feature of 

the classical Wittman-Roemer model that parties propose differentiated policies at the equilibrium. 

Also the phenomenon of multiple equilibria is generic when the bandwagon effect is sufficiently 

strong.  

                                                             
13

 According to the US Census Bureau 2004 Economic Survey, the mean household income in the United States was 

$60,528, and the Gini coefficient for household incomes in that year was 0.469. 
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A general characterization of the classical Wittman-Roemer equilibrium with voter 

conformism is somewhat difficult to obtain. Thus we will calculate them numerically. In the 

numerical computation, we chose the same functions used in section 4. For (.)F , we set 

( ) ( 0.5)x G xF = - , where (.)G  is a normal distribution with mean 0 and standard deviation 0.05. 

We varied the value of q  from -1.5 to 1.5, and found the classical Wittman-Roemer 

equilibrium with voter conformism for all values of q in this range. As in the original Wittman-

Roemer model without voter conformism, parties propose differentiated policies at the 

equilibrium. Figure 5 and Table 1 illustrate.  (To save space, we do not report equilibrium party 

memberships.) 

 

[Figure 5 about here] 

[Table 1 about here] 

 

We first note that the underdog effect has almost no significance on the classical Wittman-

Roemer equilibrium, although it has a minor effect of mitigating the policy differentiation. We 

varied the value of q  from -0.01 to -1.5, but the tax rates and the vote shares are almost constant. 

(When we examine the equilibria carefully, we note that the difference of party platforms, * *

L R
t t- , 

keeps decreasing from 0.136541 at 0.01q =-  to  0.136352 at 1.5q =- .)  

The bandwagon effect has, on the other hand, significantly different implications on the 

classical Wittman-Roemer equilibrium. 

First, as in the ideological-party model, we observe multiple Wittman-Roemer equilibria 

when the bandwagon effect is sufficiently strong. In our numerical calculation, the branching 

point is at 0.586q = . If q is less than it, there exists one equilibrium. At 0.586q = , there 
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emerge two equilibria. After that, one of the two equilibria branches into two separate equilibria. 

Thus, if 0.586q > , there always exist three equilibria. When multiple equilibria exist, we call 

them type-A, type-B, and type-C equilibria. A type-A equilibrium is the one in which *x  is 

significantly less than 0.5, a type-B equilibrium is that in which *x  is significantly greater than 

0.5, and a type-C equilibrium is the one in which *x  is between them, which is nearby 0.5. We 

plot the three types of equilibria separately in Figure 5. 

It is not easy to merge equations (20)-(22) into one in this model. We thus checked the 

stability of Wittman-Roemer equilibria by calculating the Jacobian of the system of equations 

(20)-(22). If eigenvalues of the Jacobian are all less than 1 in their absolute terms, it would be 

asymptotically stable in a dynamic context. We find that all type-A and type-B equilibria are 

asymptotically stable while all type-C equilibria are not. Thus more meaningful equilibria in a 

dynamic context are those of type-A and type-B. 

In type-A and type B equilibria, political parties diverge more as the bandwagon effect 

becomes larger.14 We thus observe that in dynamically stable classical Wittman-Roemer 

equilibria, an increasing bandwagon effect exacerbates the policy differentiation of the two parties.  

The classical Wittman-Roemer equilibrium is sharply in contrast with the ideological-

party equilibrium, where parties move in the same direction as the degree of voter conformism 

changes; the classical Wittman-Roemer parties move in an opposite direction as the parameter 

that captures the degree of voter conformism increases. 

                                                             
14 In type-C equilibria, on the other hand, the difference in policies between the two parties is almost constant. When 

we examine the type-C equilibria carefully, we note that the difference of party platforms, * *

L R
t t- , keeps decreasing 

from 0.1383 at 0.59q =  to  0.13625 at 0.98q = , and afterwards increases up  to 0.13626 at 1.5q = . But such 

changes are almost unnoticeable. 
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It would be useful to see how factions in each party bargain to an equilibrium policy, 

taking the equilibrium policy of the opposition party as given. Recall that at a generalized 

Wittman-Roemer equilibrium, neither party’s factions can unanimously agree to alter their 

proposal. Any policy that increases both factions’ payoffs cannot be a Wittman-Roemer 

equilibrium; given the policy played by the opposition party, if a move from *

i
t  increases the 

payoff of party i’s militants, then it must decrease the payoff of party i’s opportunists. Thus 

the bargaining outcome lies always in the Pareto mini frontier defined by the payoff 

functions of the two factions calculated at the opposition party’s policy.  

We illustrate this point in Figure 6.  

 

[Figure 6 about here] 

 

We chose type-A and type-B equilibria at 0.9q = . In each figure, we draw the 

payoff functions of the two factions, computed at the equilibrium policy of the opposition 

party, and the equilibrium tax rate (vertical line).The two dots before and after the vertical 

line represents the policies that determine the boundaries of the Pareto mini frontier. Any 

policy outside the interval determined by the two dots will not be agreed upon within a party 

because both factions can be better off by deviating from it to a policy inside the interval. 

The precise location of the equilibrium policy inside the interval is determined by equation 

(14) or (15). 

We now provide an intuition behind the main results in this section. We will consider the 

bandwagon effect only; the underdog effect can be explained in similar ways.  
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Suppose party R is winning ( * 1
2

x < ), as in a type-A equilibrium. Pick any level of 0q > . 

At the current level of q , a proposal of R-militants to change the current R policy to the direction 

of the ideal tax rate of its average member would not be agreed upon within the party because it 

would require a sacrifice of R-opportunists. If the value of q  increases, however, it gives a 

windfall gain to R-opportunists, because more voters will lean toward R even at the same policy 

pairs. Thus, without sacrificing its opportunists, party R can change its policy slightly to the 

direction of the ideal tax rate of its average member.  

The intuition for the direction of a policy change in the losing party, in this case party L, is 

different from that for the winning party. According to Lemma 1 of section 2, the opportunists of 

a ‘losing party’ can be better off by moving away from the policy of the opposition party. The 

higher the value of q , the stronger the incentive of the opportunists of a losing party to move 

away from the policy of the opponent. Such a move will be agreed upon by the militants of party 

L, because it implies that the party policy will be closer to the ideal policy of the militants. 

An explanation for the case in which party L is winning, as in the type-B equilibrium, is 

similar. An increase in q  in this situation gives a windfall gain to L-opportunists; thus L-militants 

can call for a higher tax rate without scarifying L-opportunists. At the same time, party R’s 

opportunists propose a policy which is further distant from the policy of party L. 

The above explanations based on the Nash bargaining perspective also provide an 

intuition for why neither bandwagon nor underdog has much impact on the policy differences 

when the vote share is nearby 0.5. If the vote share is close to 0.5, windfall gains to the 

opportunists of the winning party are very small; there is not much room for bargaining for policy 

changes. Also the change that the opportunists of a losing party demand will be small. 
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6. Conclusion 

 

Using the framework of the generalized Wittman-Roemer model of political competition, 

we studied the potential effect that voter conformism might have on the political equilibrium of 

various models. The current paper shows that the effect of voter conformism on the nature of 

political equilibrium is quite different depending on the model one uses. 

We find that voter conformism, both bandwagon and underdog, has no effect on the 

Hotelling-Downs political equilibrium. Even if voter conformism is present, the Hotelling-Downs 

parties propose an identical policy at the equilibrium, which is equal to a strict ½ -Condorcet 

winner. But such an equilibrium seems difficult to justify in a dynamic context. 

In the ideological-party model, political parties propose differentiated policies at the 

equilibrium and the presence of multiple equilibria is generic when the bandwagon effect is 

sufficiently strong. In those equilibria that are dynamically stable and have the membership share 

of party L greater than 0.5 (less than 0.5), an increasing bandwagon effect decreases (increases) 

the equilibrium tax rates of both parties; the opposite is true for the underdog effect 

The Wittman-Roemer parties behave differently not only from the Hotelling-Downs 

parties but also from the purely ideological ones. Unlike the Hotelling-Downs parties but like the 

purely ideological parties, the Wittman-Roemer parties propose differentiated equilibrium 

policies, and the extent of such policy differentiation depends on voter conformism. Existence of 

multiple equilibria for a sufficiently strong bandwagon effect is also generic. In contrast with the 

purely ideological parties which move in the same direction as the degree of voter conformism 

changes, the Wittman-Roemer parties move in an opposite direction as the parameter that captures 

the degree of voter conformism increases. In those equilibria that are dynamically stable, the 
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stronger the bandwagon effect is, the more differentiated policies are. The opposite holds when 

the underdog effect is present; an increasing underdog effect mitigates the policy differentiation 

of the two parties, although that effect is not large.  

The present paper studies the effect of voter conformism on political equilibrium in a uni-

dimensional policy space. It is well known that both the Hotelling-Downs and Wittman-Roemer 

models of political competition do not possess generic equilibria when the policy space is multi-

dimensional. There are models that possess generic equilibria in a multi-dimensional policy space, 

such as the probabilistic voting model of Lindbeck and Weibull (1987), or the party unanimity 

Nash equilibrium model of Roemer (1999, 2001). We leave the study of the effect of voter 

conformism on these models for future research. 
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Appendix 

 

Proof of Lemma 1:   

We first note that ( , , )
R

t t xv  consists of two terms. The first term, 
( ) ( )

R

R

h t h t

t t

m m
a

-

-
, is 

finite- and positive-valued, and strictly decreases on [0, ) ( ,1]
R R
t tÈ .  

(1) Suppose 1
2

( ) 0xq - >  .  

Then for any [0,1)
R
t Î , 

( ) (1 )

R

x x

t t

f f
q

- -

-
 is strictly decreasing and positive-valued on  

( ,1]
R
t  with 

( ) (1 )
lim

Rt t
R

x x

t t

f f
q

+®

- -
= ¥

-
, which implies that ( , , )

R
t t xv  is positive-valued and 

strictly decreases on ( ,1]
R
t   with lim ( , , )

R

R
t t

t t xv
+®

= ¥ . Because ( , , ) max[ ( , , ), 0]
R R

w t t x t t xv=  

and ( ( , , )) ( ( , , ))
R R

P t t x F w t t xW =  on ( ,1]
R
t , the first statement is proved. 

On the other hand, for any (0,1]
R
t Î , 

( ) (1 )

R

x x

t t

f f
q

- -

-
 is strictly decreasing and 

negative-valued on [0, )
R
t  with 

( ) (1 )
lim

Rt t
R

x x

t t

f f
q

-®

- -
=-¥

-
, which implies that ( , , )

R
t t xv  

strictly decreases on [0, )
R
t   with lim ( , , )

R

R
t t

t t xv
-®

=-¥ . Thus there exists unique ( , )
R

a t x  on 

[0, )
R
t  such that (i) max[ ( , , ), 0] 0

R
t t xv =  for all [ ( , ), )

R R
t a t x tÎ ; and (ii) whenever ( , ) 0

R
a t x > , 

( , , )
R

t t xv  is positive and strictly decreases on [0, ( , ))
R

a t x . Because 
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( ( , , )) 1 ( ( , , ))
R R

P t t x F w t t xW = -  on [0, )
R
t  and ( ( , , )) 1

R R
P t t xW = , the second statement is 

proved.  

 (2) Suppose 1
2

( ) 0xq - <  .  

Then for any (0,1]
R
t Î , 

( ) (1 )

R

x x

t t

f f
q

- -

-
 is strictly increasing and positive-valued on 

[0, )
R
t  with 

( ) (1 )
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Rt t
R

x x

t t

f f
q

-®

- -
= ¥

-
, which implies that ( , , )

R
t t xv  is positive-valued and 

either strictly increasing or U-shaped on [0, )
R
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R

R
t t

t t xv
-®

= ¥ . Thus ( ( , , ))
R

P t t xW  is 

either strictly decreasing or inverse U-shaped on [0, )
R
t  with lim ( ( , , )) 0

R

R
t t

P t t x
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W = . Therefore 

there exists ( , )
R
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R
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R
P t t xW  strictly decreases on [ ( , ), )

R R
b t x t  with 

lim ( ( , , )) 0
R

R
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P t t x
-®

W = . The first statement is proved. 

For any [0,1)
R
t Î , 

( ) (1 )

R

x x

t t

f f
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- -

-
 is strictly increasing and negative-valued on ( ,1]

R
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with 
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x x

t t

f f
q
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-
, which implies that ( , , )

R
t t xv  is either strictly increasing or 

inverse U-shaped on ( ,1]
R
t  with lim ( , , )

R

R
t t

t t xv
+®

=-¥ . Thus there exist ( , )
R

c t x  and ( , )
R
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( ,1]
R
t  such that (i) ( , ) ( , )

R R
c t x d t x£ ; (ii) max[ ( , , ), 0] 0

R
t t xv =  for all ( , ( , )]

R R
t t c t xÎ ; and 

(iii) whenever ( , ) ( , )
R R

c t x d t x< , ( , , )
R

t t xv  is positive and strictly increases on 

( ( , ), ( , )]
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c t x d t x . Noting that ( ( , , )) ( ( , , ))
R R

P t t x F w t t xW =  on ( ,1]
R
t  and ( , , ) 0

R R
P t t x = , we 

complete the proof of the second statement.       █ 
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Proof of Theorem 1:  

We first prove that * * * * * 1

2
( , , ) ( , , )
L R
t t x t t=  is an equilibrium. At * 1

2
x = , equation (1) 

becomes  

1
2

1
2

(1 ) ( ) ( ) from candidate L

(1 ) ( ) ( ) from candidate R
L L

R R

t w h t

t w h t

a m qf

a m qf

ìï - + +ï
í
ï - + +ïî

 . 

Because the same constant, 1

2
( )qf , appears in both lines, voters decide only by looking at 

the policy positions of the two parties. Therefore the standard theorems on the Hotelling-Downs 

model apply. (See pages 21 and 53 of Roemer (2001), for instance.) We thus have 

* *1 1
2 2

* * *

L Rx x
t t t

= =
= = , which in turn yields the vote share of *1

2
x= .  Because voters are all 

indifferent at * * * * * 1

2
( , , ) ( , , )
L R
t t x t t= , the equilibrium party membership is an arbitrary random half 

subset of 
+

R  for each party. 

It remains to prove that there are no other equilibria than this. 

First, the above argument also proves that the case in which *

L R
t t t= ¹

 
and 

1
2

( ) 0xq - =  and the case where 
L R
t t¹

 
and 1

2
( ) 0xq - =   do not constitute an equilibrium. 

Second, we prove that the case in which 
L R
t t=

 
and 1

2
( ) 0xq - ¹  does not constitute an 

equilibrium. Consider first the case of underdog: 0q < . In this case, if 
L R
t t t= = , there will be 

no equilibrium membership share of party L other than 1

2
 (see Figure 2), which completes the 

proof. Next we consider the case of bandwagon: 0q > . If 
L R
t t t= = , the only candidates for 

the equilibrium membership share of party L not equal to 1

2
are either 0 or 1. If 

L R
t t t= =  and 

the expected membership share of party L is 1x = , the actual membership share for party R is 
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1 ( ( , ,1)) 0P t t- W = ; party R has an incentive to deviate. (By assumption 2, there is a profitable 

direction of deviation.) If 
L R
t t t= =  and the expected membership share of party L is 0x = , its 

actual membership share is also 0; party L has an incentive to deviate. 

Finally, we prove that any case in which 
L R
t t¹  and 1

2
( ) 0xq - ¹

 
cannot be an 

equilibrium. Suppose the actual membership share for party L at the triple is ( ( , , ))
L R

P t t xW . 

There are three cases. 

Case 1: Suppose ( ( , , )) (0,1)
L R

P t t xW Î  at the triple. This means that party R’s 

membership share at the triple is 1 ( ( , , )) (0,1)
L R

P t t x- W Î . If 1
2

( ) 0xq - < , party R can 

increases its actual membership share to 1 by choosing the policy that party L chooses. If 

1
2

( ) 0xq - > , party L has an incentive to choose the same policy as party R’s. 

Case 2: Suppose ( ( , , )) 0
L R

P t t xW =  at the triple. For all values of q  and x , party L has 

an incentive to deviate to a policy that gives it a positive membership share. 

Case 3: Suppose ( ( , , )) 1
L R

P t t xW =  at the triple. For all values of q  and x , party R has 

an incentive to deviate to a policy that gives a positive membership share.  █ 

 

Proof of Theorem 2:  

(1) Step 1: For any arbitrary 0w >  such that ( ) (0,1)F w Î , define two functions, 

(.)
L
w  and (.)

R
w ,  as follows:  

0

1
( )

( )

w

L
w w wdF

F w
= ò  and 

1
( )

1 ( )R w
w w wdF

F w

¥

=
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Note that (.)
L
w  and (.)

R
w  are increasing continuous functions of w . Also note that 

( ) ( )
L R
w w w w<  for all w . (Recall that F  is strictly increasing.) 

Step 2: We now show that there is a positive-valued fixed point of the map:  

( ( ( )) ) ( ( ( )) ) ( ( )) (1 ( ))
( )

( ( )) ( ( )) ( ( )) ( ( ))
L R

L R L R

h t w w h t w w F w F w
w

t w w t w w t w w t w w

m m f f
v a q

- - -
º +

- -

% %

% % % %
. 

The map (.)v is continuous: for ( ( )) ( ( ))
L R

t w w t w w>% % , (.)h  is strictly concave on T, and ( (.))
j

t w%  

is continuous. Thus, if (0) 0v >  and ( )v ¥ <¥ , the map has a positive-valued fixed point. The 

condition that ( )v ¥ <¥  holds because (.)f  is finite-valued and (.)h  is strictly concave. The 

condition that (0) 0v >  is ensured under the stated assumption.   

Step 3: Denote the positive-valued fixed point by *w  and define: * *[0, ]
L

H w= ;  

* *( , )
R

H w= ¥ ; * *( ( ))
j j
t t w w= % , L,Rj = ; and * *( )x F w= . Then they clearly constitute an 

ideological-party equilibrium with * *

L R
t t>  and * (0,1)x Î . 

(2) The full dynamic system in this model consists of four equations: ( ( ))
j j
t t w w= % , 

L,Rj = ; ( )x F w= ; and ' ( ) ( ) ( ) (1 )L R

L R L R

h t h t x x
w

t t t t

m m f f
a q

- - -
= +

- -
. Because it can be 

reduced to a single difference equation, ' ( )w wv= , and the other three equations are not 

difference equations, the condition for the stability of the dynamic system is: 
*( )

1
w

w

v¶
<

¶
.  

Fix q , and let *( )w q  be the cutoff level of income evaluated at a dynamically stable 

ideological-party equilibrium. Then we must have: * *( ) ( ( ))w wq v q= . Differentiating both sides, 
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we obtain: 

( )

* * *

*
* *

( ) (1 )

( )
1

L R

w x x

w
t t

w

f f

q v

¶ - -
=

æ ö¶ ¶ ÷ç ÷- -ç ÷ç ÷ç ¶è ø

. The denominator is positive if the equilibrium is 

stable. The numerator is positive if * 1
2

x >  and negative if * 1
2

x < . Thus 
*

* 1
2

0 0
w

x
q

¶
- > Þ >

¶
 

and 
*

* 1
2

0 0
w

x
q

¶
- < Þ <

¶
. The proof is complete by noting that *

j
t  is a non-increasing function 

of *w .  █ 
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Figure 1: Actual membership shares 
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Note: Dots represent the place where the policy of the opposition party is held. These figures are 

drawn while holding constant the policy of the opposition party and the expected membership 

share of party L. 
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Figure 2: Bandwagon and underdog when 
L R
t t>  
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Figure 3: Bandwagon and underdog when 
L R
t t=  
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 Figure 4: The cutoff level of income that separates party membership in the ideological-

party equilibrium 
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Note: Parameter values are: m=1.40804; s=0.8860; k=1.5; a=1.0. The thick curve represents the 
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the 45 degree line. 
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Figure 5: Classical Wittman-Roemer equilibria with voter conformism 
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Note: Parameter values are: m=1.40804; s=0.8860; a=0; b=0.05; k=1.5; a=1.8. 
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Figure 6: Equilibrium tax rates and the policies determining the boundaries of the Pareto 

mini frontier in the classical Wittman-Roemer model with voter conformism 
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Note: Parameter values are: m=1.40804; s=0.8860; a=0; b=0.05; k=1.5; a=1.8. Figures are drawn at 

0.9q = . Wiggly curves represent the payoff functions of the opportunists and smooth concave curves 

represent the payoff functions of the militants. Vertical lines represent equilibrium tax rates. Dots on both 

sides of the vertical lines represent the policies determining the boundaries of the Pareto mini frontier.  
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Table 1: Classical Wittman-Roemer equilibria with voter conformism 

 

q x tL tR tL-tR x tL tR tL-tR x tL tR tL-tR 

-1.50 0.500 0.36770 0.23135 0.13635         

-1.00 0.499 0.36775 0.23138 0.13637         

-0.50 0.499 0.36785 0.23145 0.13640         

0 0.498 0.36817 0.23163 0.13655         

0.50 0.473 0.38358 0.22866 0.15493         

 Type A Type B Type C 

0.60 0.461 0.39487 0.22052 0.17435 0.520 0.36861 0.22451 0.14410 0.509 0.36631 0.22872 0.13759 

0.70 0.453 0.40434 0.21114 0.19320 0.532 0.37820 0.21825 0.15995 0.504 0.36664 0.23022 0.13642 

0.80 0.446 0.41261 0.20145 0.21116 0.539 0.38824 0.21415 0.17409 0.503 0.36688 0.23059 0.13629 

0.90 0.440 0.42011 0.19176 0.22835 0.544 0.39853 0.21087 0.18766 0.502 0.36702 0.23076 0.13626 

1.00 0.435 0.42712 0.18221 0.24491 0.549 0.40894 0.20809 0.20085 0.502 0.36711 0.23086 0.13625 

1.10 0.430 0.43382 0.17284 0.26098 0.553 0.41938 0.20564 0.21374 0.502 0.36718 0.23093 0.13625 

1.20 0.426 0.44037 0.16369 0.27668 0.556 0.42983 0.20343 0.22641 0.501 0.36723 0.23098 0.13625 

1.30 0.421 0.44688 0.15476 0.29213 0.559 0.44027 0.20139 0.23888 0.501 0.36727 0.23101 0.13626 

1.40 0.417 0.45350 0.14603 0.30747 0.562 0.45069 0.19948 0.25121 0.501 0.36730 0.23104 0.13626 

1.50 0.413 0.46035 0.13750 0.32285 0.565 0.46110 0.19767 0.26343 0.501 0.36732 0.23106 0.13626 

 
 

Note: Parameter values are: m=1.40804; s=0.8860; a=0; b=0.05; k=1.5; a=1.8. In the numerical computation, we increased the value of 

q  from -1.5 to 1.5 by the size of 0.01, with the total of 301 separate calculations. Due to the space constraint, we report only some of them.   


