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Abstract.  We construct an equilibrium model of party competition, in which parties are

especially concerned with their core and swing voters, concerns which American political

scientists have focused upon in their attempts to understand party behavior in general

elections.

Parties compete on a large policy space of possible income-tax policies.  An

element in this infinite-dimensional space is a function which maps pre-fisc income into

post-fisc income.  The only restrictions are that the function be continuous, and satisfy

exogenously specified upper and lower bounds on its derivative, where it is

differentiable.    Only a fraction of each voter type will vote for each party, perhaps

because of issues not modeled here or voter misperceptions of policies.  Each party’s

policy makers comprise two factions, one concerned with maximizing the welfare of its

constituency, or its core, the other with winning over swing voters.    An equilibrium is a

pair of parties (endogenously determined), and a pair of policies, one for each party, in

which neither party can deviate to another policy which will be assented to by both its
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versions of the paper were presented at the ESF workshop on public economics in
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core and swing factions.  Formally, this is a Nash equilibrium where each party possesses

only a quasi-order over the policy space.   We fully characterize the equilibria.   There are

many.  In a specially important case, each party proposes a piece-wise linear tax

schedule, and these schedules coincide for a possibly large interval of middle-income

voters, while the ‘left’ party gives more to the poor and the ‘right’ party more to the rich.

An empirical section uses the data of Piketty and Saez on taxation in the US

during the twentieth century to assess the model’s predictions.  We argue that the model

is roughly confirmed.
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The spirit of a people, its cultural level, its social structure, the deeds its policy may

prepare—all this and more is written in its fiscal history, stripped of all phrases.  He who

knows how to listen to its message here discerns the thunder of world history more

clearly than anywhere else.1

1.  Introduction

Formal political-economic analysis of taxation has been in the main of a

schematic nature: that is, existing models of income taxation usually assume that taxation

is an affine function of income2.   In reality, income-tax policy is extremely complex,

reflecting the fact that many competing interests must be satisfied, or attended to.  (For a

useful ‘short history’ of the income tax in the United States, see Brownlee (2004), which

contains a full guide to the literature.)   In this paper, I attempt to capture this complexity

by modeling political competition over the income tax as taking place on an infinite

dimensional space of functions.   Each political party will propose a function which will

define the post-tax-and-transfer income, for every possible realization of pre-tax income,

and these functions will be chosen from a large space, constrained only by upper and

lower bounds on what the marginal tax rates can be3.

We will suppose that two parties are competing in a general election, and that the

platform of each party consists in a proposal of such a ‘post-fisc’ income function.  The

paper’s positive aspect is to model the view that parties concentrate on core and swing

voters, a view which is ubiquitous in contemporary American political science4.   A

simple way of formalizing these aims of a party is to assume that there are intra-party

                                                  
1 Schumpeter (1954 [1918]), as quoted in Brownlee (2004).
2 A number of papers, for example Dixit and Londregan (1998), study ‘pork barrel

politics,’ in which parties propose payments to each of a finite number of voter types.

Here, the policy space is finite dimensional, but could be of high dimension.
3 I first studied taxation on this policy space in Roemer (2006).  The present paper

presents several new equilibrium concepts.  The optimization techniques used here are

similar to the ones employed in that monograph.
4 See Cox (2006) for a recent review of the formal literature which attempts to model
parties’ concerns with swing and core voters.
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factions concerned, respectively, with these two problems – of satisfying the core

constituency, and of appealing to the swing voters.   We show that this solves the

problem of the existence of a (Nash-type) equilibrium in pure strategies in the game of

party competition, even when the parties are choosing strategies from an infinite

dimensional space.

Besides modeling parties as complex organizations (in the sense that policy is set

by intra-party bargaining, rather than by the maximization of a single payoff function),

we depart from traditional formal approaches in the study of political competition in

another way.   The polity consists of a continuum of voter types, where ‘type’ is defined

by the pre-tax income of the agent or household.  In many – perhaps most -- formal

papers about political competition, parties represent no constituencies.   This is the case

with the Downs model, where each party is only the vehicle of a candidate who seeks

election.  It is as well essentially the case with the citizen-candidate models of Osborne

and Slivinski (1996) and  Besley and Coate (1997), where candidates run on their own

ideal policies (each ‘party’ represents a constituency of one type).     In models where

parties represent non-trivial constituencies – see for instance Dixit and Londregan (1998),

Austen-Smith(2000), Levy (2004), and Roemer (1999, 2001,2006)   -- it is supposed that

each party represents an element of some partition of the polity.  Here, we depart from

these practices, by recognizing that, in reality, it is never the case that the sets of voters

who support the various parties form an easily defined partition of the space of voter

types.   For instance, in American elections, a substantial fraction of voters at every

income level supports each of the two parties: see figure 8 below for the details, and

McCarty, Poole and Rosenthal (2006, chapter 3).  Of course, one can say that, if the

space of types were modeled as having sufficiently large dimensionality, there would

always be characteristics of voters that would enable us to define the set voting for a

particular party as an element of a partition of that space.   We prefer, however, to take a

more statistical approach – to keep the space of types of small dimension, and to say that,

from the viewpoint of parties, there is a random element in voting, and therefore, if a

party is concerned to represent its constituents, it has to attempt to represent every

household type, at least to some extent – because some fraction of every type will vote

for each party.
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We will define an equilibrium concept reflecting these concerns, and then

characterize an important class  of equilibria in the income-tax competition game.  The

main characteristics of the equilibria are these:

1.   In every equilibrium, there is a ‘Left’ and a ‘Right’ party.  The Left party puts more

weight on the interests of voters the poorer they are, and the Right puts more weight on

the interests of voters, the richer they are;

2.  In an important sub-class of these equilibria, each party proposes a piece-wise linear

post-fisc policy;

3. In every such equilibrium, the policy proposed by Left entails an increasing average

rate of taxation on the whole domain of incomes;  the policy proposed by the Right

entails an average rate of taxation that increases up to a point, and then decreases;

4. There is a two dimensional manifold of these equilibria, where a particular equilibrium

can be viewed as being characterized by the relative strength of the ‘swing’ versus ‘core’

factions within each of the two parties;

5. In every equilibrium, the two parties propose exactly the same tax treatment for what

may be a substantial interval of middle-income voters.  The greater the focus the parties

place upon swing voters, the larger will be the size of this interval.

In section 2, we propose several concepts of political equilibrium.  In section 3,

we characterize ‘left-right’ equilibria in the income-tax setting.  Section 4 presents an

alternative equilibrium concept, that might seem, a priori, to appeal.   In section 5, we

examine US income-tax data to see how well reality conforms to the model’s predictions.

Section 6 discusses and concludes.  Lengthy proofs are gathered in the appendix.

2.   A concept of political equilibrium in two-party politics

Rather than present the equilibrium concepts for a general model, we specialize

immediately to the case of income taxation.

A.  The policy space

A fiscal policy (or an income tax policy) is a mapping 
 
X : + →  +  which

associates to any pre-tax income h a post-tax-and-transfer income.   We assume that the
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pre-tax income distribution is given by a cdf F  on 
 
 + ;  its mean is µ.  The policy space

ℑ  consists of functions 
 
X : + →  +  such that:

(P0)X  is continuous,
(P1) 0 ≤ α ≤ ′X ≤ 1,  some α, where ever X  is differentiable,

(P2) X(h)dF(h) = µ∫
where α is a number, 0 ≤ α < 1 5.     The two conditions (P1) and (P2) state that the

derivative of X, where it exists, lies between α  and 1, and that X redistributes pre-tax

income fully.   (P0) is best justified as a condition of horizontal equity.

 If the policy is X, then the net taxes paid by an individual h are

t(h;X) = h − X(h) .  Hence the marginal tax rate for h at policy X is 1− ′X (h) , which is

bounded below and above by zero and 1−α , respectively.  Leisure is not an argument of

the utility function for reasons of tractability: the equilibrium analysis would otherwise

become unmanageable.  I attempt to recognize the elasticity of labor supply by requiring

that the marginal tax rate be at most 1−α : political parties agree not to consider policies

that have very high marginal tax rates, because of the deleterious labor-supply effects (α

is a parameter of the model).  Alternatively put, we are assuming that when marginal tax

rates lie in the interval [0,1−α ] , labor-supply elasticity is very small and can be

ignored6.

Obviously, ℑ  is a space of infinite dimension, so chosen to model the idea that

political competition is ruthless, not being constrained by arbitrary mathematical

constraints (such as linearity).

B. Voter behavior

A voter’s predicted utility at a policy X is her post-fisc income, X(h) .

                                                  
5 More precisely, we can eliminate the requirement that X  be continuous and replace the
condition (P1) with a Lipschitz condition on X.
6 Of course, it would be desirable to model labor-supply elasticity explicitly.  In the
models here, that would necessitate solving a ‘double Mirrlees’ optimal tax problem.
Analytical simplicity would be lost.
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However, voters actually behave stochastically.    When voters face the two policies

Xa  and Xb  from parties a  and b,   the share of voters of type (income) h that votes for

Xa  will be S(Xa (h),Xb (h))  where S is a function with these properties:

(S1) 
 
S : +

2 → [0,1] , S continuous

(S2) S is non-decreasing in x and non-increasing in y

(S3) S(x, y) + S(y, x) = 1

Thus, if two policies Xa ,Xb  are competing, the fraction of the vote received by Xa  will

be

σ(Xa ,Xb ) = S(Xa∫ (h),Xb (h))dF(h) .       (2.1)

Condition (S3) implies that S(x, x) = 0.5 , so it is assumed that no income type is biased

towards one party.   This assumption can be weakened, but we choose to keep the model

as simple as possible.

Example 1. Suppose that a particular voter of type h votes for Xa  when Xa (h) > δXb (h) ,

and among voters of type h, the random variable δ  is distributed according to a

distribution function G on 
 
 +  such that for all x ∈(0,1], G(x) +G(1 / x) = 1 .    Then the

share of type-h voters voting for Xa  will be  S(Xa (h),Xb (h)) = G Xa (h)
Xb (h)

⎛
⎝⎜

⎞
⎠⎟

 .  Conditions

(S1)-(S3) are satisfied.   It is easy to generate such distribution functions.

Example 2.  Let S(x, y) =
x

x + y
.  Conditions (S1)-(S3) hold.  This function is useful for

computing examples, although it lacks a stochastic micro-foundation.

C. Political equilibrium

We propose a concept of political equilibrium in which parties are endogenous,

and each party contains political entrepreneurs who adopt different strategies.   One

strategy is to attempt to represent the constituency of the party; the other strategy is to

target swing voters.     The constituency of the party and the swing voters are

endogenous.
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We propose to define the core (constituency) of a party as an historical and

statistical concept.   Suppose in the last election, at date    t −1 ,  the set of voters who

voted for the party is characterized by the function θt-1 defined by

θt−1(h) = S(Xt−1
a (h),Xt−1

b (h)) .

The party at date t identifies its core as the voters so described: that is as a fraction

    θt−1(h)  of voters of type h,  for every h.

We say the swing voters comprise the set of income types{h |θ(h) = 1
2
}.

We now discuss the behavior of political entrepreneurs, who set policy for the

parties.  We assume there are two parties.  Parties exist for a long time; they build a

reputation by representing certain constituencies.    With stochastic voting, the

constituency of a party is hard to define, because one can never be sure exactly who will

vote for the party.  Nevertheless, from a statistical viewpoint, the constituency of a party

may be quite clear, as I have indicated.

   We suppose at the present election (date t) those politicians who attempt to

represent the party’s constituency want to choose the policy X to maximize the function:

θt−1(h)X(h)∫ dF(h) .

That is, they will attempt to maximize the average welfare of their statistical

constituency, by weighting the welfare of every income type by the fraction of that type

that comprise the constituency of the party7.     Formally, they desire to represent every

income type, but with varying weights. We depart from the more familiar formulation

that each party represents a distinct set of voter types.

We model the second faction of politicians, the ‘swing faction,’ as insisting that

the party promise at least as much to the swing voters as the other party is proposing to

give them.  They are battling for the loyalty of the swing voters.

We first propose a concept of a sequence of political equilibria over time.  Note,

from the above, that the party’s constituency is defined by the last election.  We suppose

                                                  
7 Some aggregation principle (i.e., social welfare function) other than summing up could

be used.  The key point is that types are weighted by their historical loyalty to the party.
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that the distribution of types, F, is unchanging over time (i.e., the distribution of types

changes slowly compared to the period of the election cycle).

Definition 1  A history of political equilibria given a function θ0 :H → [0,1]  is a

sequence of policies {(Xt
L ,Xt

R )∈ℑ× ℑ | t = 1,2,...} , and a sequence of functions

{θt :H → [0,1] | t = 1,2,...} such that:

 (1a)  for every t=1,2,…  policy Xt
L  solves the following program:

max
X∈ℑ

θt−1∫ (h)X(h)dF(h)

subj. to  (∀h)(θt−1(h) = 1
2
⇒ X(h) ≥ Xt

R (h) (L1)

(1b) for every t =1,2,…, policy Xt
R  solves the program:

max
X∈ℑ

(1−θt−1∫ (h))X(h)dF(h)

subj. to  (∀h)(θt−1(h) = 1
2
⇒ X(h) ≥ Xt

L (h) (R2)

(2) for every t=1,2,…, and for all h ∈H :

θt (h) = S(Xt
L (h),Xt

R (h)).

From (2),  the function θt  gives the fraction of each type that votes for party L in

the election at date t. The constraints (L1) and (R1) in the two programs are imposed by

the factions concerned with swing voters:  for instance, (L1) says that party L can

propose no policy that provides lower utility to the swing voters than the R party

proposes to provide them.   In words, a history of political equilibria comprises a

sequence of pairs of policies such that, given the party’s conception of its statistical

constituency from the election held at date t −1, the policy of the party at date t cannot

be dominated by any other policy with respect to weighted average welfare of the party’s

historical constituency, subject to providing at least as well as the opposition proposes to

provide for swing voters.
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The datum of the equilibrium concept is the pair of functions (F,θ0 ) .  We may

view θ0 as the initial conjecture of the two parties concerning their statistical

constituencies.

One can ask: Why not model the ‘swing voter faction’ as maximizing vote share?

We will study this alternative in  section 4.

We can expect that there will be many possible histories of political equilibria.

If one is interested in modeling general elections to understand the underlying long-range

political conflicts in a society, then one should be interested in stationary points of these

histories.    An interest in stationary points must, of course, be justified by a view that the

underlying distribution of preferences, represented by F , is changing slowly relative to

the frequency of elections.

I propose a concept of stationarity which entails that the sequence of functions

{θt} in a history of political equilibria converges to a function   θ* : thus, the constituency

of each party becomes stable.

Definition 2  A stationary equilibrium is a function 
 
θ* : + → [0,1]  and a pair of policies

(X*
L ,X*

R )  such that:

(α1a) policy X*
L  solves the program:

max
X∈ℑ

θ*∫ (h)X(h)dF(h)

subj. to  (∀h)(θ*(h) = 1
2
⇒ X(h) ≥ X*

R (h) (L2)

(α1b) policy X*
R  solves the program:

max
X∈ℑ

(1−θ*∫ (h))v(X;h)dF(h)

subj. to (∀h)(θ*(h) = 1
2
⇒ X(h) ≥ X*

L (h) (R2)

(α2) For all h ∈H ,    θ*(h) = S(X*
L (h),X*

R (h)) .

There is a kind of equilibrium which is a refinement of stationary equilibrium and

plays an important role in the analysis:

Definition 3   A 1-stationary equilibrium is a function θ* ,  a pair of policies (X*
L ,X*

R ) ,

and an ordered pair 
 
(h*, y)∈ +

2   such that:
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 (β1a) X*
L  solves the program:

max
X∈ℑ

θ*∫ (h)X(h)dF(h)

subj. to X(h*) ≥ y (L3)

(β2a)  X*
R  solves the program

max
X∈ℑ

(1−θ*∫ (h))X(h)dF(h)

subj. to X(h*) ≥ y (R3)

(β3) For all h ∈H ,  θ*(h) = S(X*
L (h),X*

R (h))

 (β4) X*
L (h*) = y = X*

R (h*) .

In this concept, it is as if the vote-share-seeking faction is concentrating on not

losing the loyalty of one swing voter type, namely h*. What is important is the

relationship of 1-stationary equilibrium to stationary equilibrium.

Proposition 1 Every 1-stationary equilibrium is a stationary equilibrium.

Proof:

  Let (θ*,X*
L ,X*

R ,h*, y)  be a 1-stationary equilibrium.  By (β4), we can write the constraint

(L3) as X(h*) ≥ X*
R (h*) .   But by (β4), it also follows that θ*(h*) =

1
2

.   Therefore,

constraint (L3) is weaker than constraint (L2).  Hence the program in (β1a) has the same

objective function but a larger opportunity set than the program in (α1a).   However, X*
L

is a member of the opportunity set defined by (L2).   It follows that X*
L  solves (α1a).   In

like manner, X*
R solves (α1b), proving the claim.  

Now examine the program in condition (β1a).   It is a concave programming

problem.  There is no interaction between the L and R policies – so in principle it can be

solved.    The same goes for the program in (β1b).    In other words, the refined

equilibrium concept of 1-stationary equilibrium is quite tractable.

I will proceed by applying these equilibrium concepts to the study of income

taxation, and will then argue, by looking at the history of income tax reform, that the

equilibrium concept appears to explain quite well some of its main features.
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3.  Analysis

The first theorem will characterize a two dimensional family of 1-stationary

equilibria.  To do so, we define two families of piece-wise linear functions. Fix a number

h* > 0 . The first family is

 

Ma (h*) =

X ∈ℑ | ∃(xa ,h1) ∈ +
2  such that h1 ≤ h*  and

X(h) =
xa +αh,  if h ≤ h1

xa +αh1 + (h − h1),  if h1 < h ≤ h*

xa +αh1 + (h* − h1) +α(h − h*),  if h > h*

⎧
⎨
⎪

⎩⎪

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

.

A typical function in the family is graphed in figure 1.    Ma (h*)  is a

unidimensional family of functions which we may view as being parameterized by the

value    y ≡ X(h*) ;  that is, fixing the ordered pair   (h*,y) determines at most one policy in

the family   Ma(h*) .   By construction, the policies X ∈Ma (h*)  satisfy (P0) and (P1).

The budget- balance condition (P2)  gives one equation in the two unknowns (xa ,h1) :

hence, the unidimensionality of this family.

The second family is:

 

Mb (h*) =

X ∈ℑ | ∃(xb ,h2 ) ∈ +
2  such that h2 ≥ h*  and

X(h) =
xb + h,  if h ≤ h*

xb + h* +α(h − h*),  if h* < h ≤ h2

xb + h* +α(h2 − h*) + (h − h2 ),  if h > h2

⎧
⎨
⎪

⎩⎪

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

.

Likewise, Mb (h*)  is a unidimensional family of piece-wise linear policies, which is

parameterized by y ≡ X(h*) ;  a typical policy is also graphed in figure 1.

We will be interested in policy pairs (Xa ,Xb )∈Ma (h*) × Mb (h*)  which share a

common value of y = Xa (h*) = X
b (h*) .  The next proposition tells us exactly what the

admissible range is for y.

Proposition 2  Let h* > 0 , and let y lie in the interval

max[(1−α )µ +αh*,h*] ≤ y ≤ h* + (1−α ) (h − h*)
h*

∞

∫ dF(h) .       (3.1)

Then:

A. There exist unique policies Xa ∈Ma (h*) , Xb ∈Mb (h*)  such that
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Xa (h*) = y = Xb (h*) .                     (3.2)

B. Conversely, if  y does not lie in the interval defined by (3.1), then there is no pair of

policies in the two families for which (3.2) holds.

C. The number xa is positive, and the number xb  is non-negative, and positive except in a

singular case.

All longer proofs, beginning with the proof of this proposition, appear in the

Appendix.

Define:

 

Γ = {(h*, y)∈ +
2 | max[(1−α )µ +αh*,h*] ≤ y ≤ h* + (1−α ) (h − h*)

h*

∞

∫ dF(h)}

and

ymin (h*) = max[(1−α )µ +αh*,h*], ymax (h*) = h* + (1−α ) (h − h*)
h*

∞

∫ dF(h) .

Proposition 2 tells us that for any (h*, y)∈Γ , there exists a unique pair of policies

Xa ∈Ma (h*)  and Xb ∈Mb (h*)  such that

Xa (h*) = y = X
b (h*) .

To avoid notational complexity, let us fix (h*, y)∈Γ  and denote these two functions

simply by Xa  and Xb .      Figure 1 displays the graphs of a typical pair of such functions.

Note, in particular, that these two policies coincide on the interval [h1,h2 ] .     Suppose,

now, that these two policies are being proposed by the parties, a and b, and define the

function θ(⋅;Xa ,Xb )  by equation (2.1).   We have:

Proposition 3.   When Xa ≠ Xb , the function θ(⋅;Xa ,Xb )  is decreasing on the interval

[0,h1] , constant and equal to one-half on the interval [h1,h2 ] , and decreasing on the

interval (h2 ,∞) .

Proof:

Easily verified from the definition of the functions Xa  ,Xb , and S.       

We may now state our first main result:

Theorem 1   Let (h*, y)∈Γ , and let Xa ∈Ma (h*), Xb ∈Mb (h*)  such that
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 Xa (h*) = y = X
b (h*) .  Let θ(⋅;Xa ,Xb )  be defined as above.   Then (θ,Xa ,Xb )  is a 1-

stationary equilibrium.

Theorem 1 gives us a stationary equilibrium for each (h*, y)∈Γ : thus, a two-

parameter family of equilibria.   We propose an interpretation of the political nature of

these various equilibria, which follows from the next result.  In Figure 2, we graph the

manifold Γ for the case where F is the lognormal distribution of income with mean 50

and median 40, an approximation of the US household income distribution in 2000, in

units of $1000, and S(x, y) =
x

x + y
.   Note that for h* ≥ µ , the lower envelope of Γ

coincides with the 450  ray.

Theorem 2   A.  Consider a point (h*, ymax (h*))  on the upper envelope of the manifold Γ .

Let the two policies of the 1-stationary equilibrium at this point be denoted XL  and XR .

Then h1 = 0, h2 = ∞  and XL = XR = X* , where X*  is the ideal policy in ℑ  of voter h* .

B.  Consider a point (h*, ymin (h*)) on the lower envelope of Γ , with its associated 1-

stationary equilibrium (XL ,XR ).   If h* ≤ µ then XL  is the ideal policy in ℑ  of Left’s

constituency8, and if h* ≥ µ  then XR is the ideal policy in ℑ  of Right’s constituency.

Fix the ‘pivot type’ h*  and begin at the equilibrium on the upper envelope of Γ  at

h* .  In the stationary equilibrium at this point, both parties propose the ideal policy of the

pivot type, h* .  Each party receives half the vote.  Here we have politics where the

concern for swing voters is very strong in both parties: the factions representing

constituent interests have no pull.  As we start to move vertically down the manifold Γ ,

decreasing y and holding h* fixed, the two policies diverge.   The factions concerned with

core voters become more powerful in intra-party bargaining.  When we reach the

equilibrium on the lower envelope of Γ ,  if h* < µ , then this faction is entirely dominant

in the Left party in the sense that the L party is playing as if it is only concerned with

constituent interests; if h* > µ , then constituent interests are dictating policy in the Right

                                                  
8 That is, XL  maximizes θ(h)X(h)dF(h)∫ , for X ∈ℑ , where θ(h) ≡ θ(h;XL ,XR ) .
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party.   In the singular case that h* = µ , both parties are maximizing over ℑ  the average

utility of their statistical constituencies.

For a policy X,  define the average tax rate at h as:

a(h;X) = h − X(h)
h

.

Define a policy as progressive if it unambiguously redistributes from the rich to the poor,

in the following sense:

Definition 4  A policy X is progressive if there exists ĥ  such that:

h ≤ ĥ⇒ X(h) ≥ h

h > ĥ⇒ X(h) ≤ h

and at least one (some) of these inequalities hold(s) strictly for some h.

 We have:

Proposition 4  Consider any 1-stationary equilibrium (XL ,XR )  of theorem 1. Then:

A.  a(⋅;XL ) is increasing on 
 
 + , and a(⋅;XR )  is increasing on [0,h2 )  and decreasing on

(h2 ,∞) , except in the singular case that XR  is the laissez-faire policy.

B.  Both policies are progressive, except in the singular case that XR  is the laissez-faire

policy.

Proof:

  A. The condition 
d
dh
a(h;X) > 0  is equivalent to h ′X (h) < X(h) .  It is easy to check (for

instance, examine Figure 1) that this condition is true for XL : formally, this follows from

the fact that xa > 0 and xb ≥ 0  (see Prop. 2(c)).  For XR , it is also easy to check that the

condition holds if and only if h < h2 .  Now note that if the segment of the graph of XR

on the domain [h2 ,∞)  is extended into a line, it passes below the origin.  (For if it passed

through or above the origin , the policy XR  would dominate the policy X(h) ≡ h , and

would not be feasible, as it would integrate to more than µ.)      This means that

h ′X > X on [h2 ,∞) .
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B. This follows immediately from the fact that xa > 0  and xb > 0  (except in the laissez-

faire policy)9.                                            

We provide some simulations showing these stationary equilibria.  We choose F

to be the lognormal distribution with mean 50 and median 40.  In figure 3, we graph the

1-stationary equilibrium of theorem 1 for four values of y, holding h* at the mode of the

income distribution.   When y = ymax (h*)  (figure 3a), the two policies coincide at the ideal

policy of h* ;  when y = ymin (h*)  (figure 3c),  Left is playing the ideal policy of its

average constituency,  since h* < µ .    Even on the lower envelope of the manifold, the

policies agree for 16% of the polity.

In Figure 4, we plot the average tax rate functions for the Left and Right policies,

at a point in Γ .    The Right imposes a higher average tax rate up to h1 ; of course average

tax rates of the two policies coincide on the interval [h1,h2 ] ; the Left policy imposes a

higher average tax rate on (h2 ,∞) .   Moreover, the Left average tax rate is monotone

increasing on the whole domain, while the Right average tax rate is increasing until h2 ,

and then monotone decreasing asymptotically to zero thereafter.

We next ask what is the effect of a change in h*  on equilibrium policies.  We

graph some examples to show the contrast.  In figure 5, we present the average tax rate

functions associated with Left and Right policies for two values, h* ∈{20,80} .   In each

case we plot policies for (h*,
ymin (h*) + ymax (h*)

2
)∈Γ .   We see that the effect of increasing

the ‘pivot’ h* is to flatten out the average tax rate functions.   For large values of the

pivot, both parties propose net tax rates of close to zero for middle-income voters. Further

discussion of how to interpret the 2-manifold of equilibria appears in section 5.

We next note the central role of 1-stationary equilibria in the theory.

                                                  
9 Indeed a stronger statement can be made: Every policy in ℑ  except the laissez-faire
policy is progressive.  This is simply a consequence of the fact that the graph of a policy
can only cross the 45°  ray once.
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Definition 5  A left-right stationary equilibrium is a stationary equilibrium where the

function   θ*  is weakly monotone decreasing,  
   
θ*(0) ≥

1
2

, and for sufficiently large h,

    
θ*(h) ≤

1
2

.

In other words, such an equilibrium is one where one party (Left) gives more

weight to voters the poorer they are, the other (Right) gives more weight to voters, the

richer they are.  (We include the case where θ*(h) ≡ 1 / 2  as an instance of ‘Left-Right’

equilibrium only for semantic convenience, to simplify the statement of theorems.)   The

next theorem tells us how 1-stationary equilibria  come about historically:

Theorem 3.  Suppose that    θ0(⋅)  is a weakly monotone decreasing function, and there is a

unique income   h*  such that 
    
θ0(h*) =

1
2

.  Let y ∈[ymin (h*), ymax (h*)]  and let

(X̂ L , X̂ R )∈Ma (h*) × Mb (h*)  be the unique policies associated with the ordered pair

(h*, y)∈Γ .    Then (X̂ L , X̂ R )  is a stationary equilibrium reached at date 1 beginning

from   θ0 in a sequence of historical equilibria.  Conversely, let (XL ,XR ) be any

equilibrium reached at date 1 beginning from θ0 , in a sequence of historical equilibria.

Then (XL ,XR ) are precisely the policies in Ma (h*) × Mb (h*)  associated with the ordered

pair (h*,X
L (h*))∈Γ .

If we assume, in a history of political equilibria, that once a stationary equilibrium

is reached, it continues to be played at all future dates, then theorem 3 says that all

sequences of historical equilibria which begin with a vote share function   θ0  as specified

in the premise end in one period, with a left-right 1-stationary equilibrium, as depicted in

figure 1.

We next will describe the stationary equilibria reached by sequences of historical

equilibria associated with historical share functions   θ0  which are weakly monotone

decreasing and for which there is a non-degenerate interval   [h*,h** ]  upon which 
   
θ0 =

1
2

.
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Let     Z : [h*,h** ]→ +  be an arbitrary, continuous function such that     α ≤ ′Z (h) ≤ 1 .  If

the integral (dF) of Z on   [h*,h** ] is neither too small nor too large, then there exists a left-

right stationary equilibrium, in which both L and R policies coincide with Z on the

interval  [h*,h** ] , and are as depicted in Figure 6a.   On the intervals   [0,h* ]  and    [h**,∞)

the two policies behave just as the policies in a 1-equilibrium (see figure 1).  Note that if

   h** = h* , then figure 6a becomes exactly figure 1.

To be precise:

Theorem 4.  Let   θ0  be weakly monotone decreasing such that 
    
θ0(h) =

1
2

 on [h*,h** ] .  Let

Z be a continuous function defined on   [h*,h** ]  such that

(∀h ∈[h*,h**])(α ≤ ′Z (h) ≤ 1) .

Suppose that there exist numbers h1 ∈[0,h*] and h2 ∈[h**,∞)  and xa ≥ 0, xb ≥ 0  such

that the functions X̂ L  and X̂ R , defined below, are continuous and integrate (dF) to µ:

X̂ L (h) =

xa +αh, 0 ≤ h ≤ h1
xa +αh1 + (h − h1), h1 < h ≤ h*

Z(h), h* < h ≤ h**
Z(h**) +α(h − h**), h > h**

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

X̂ R (h) =

xb + h, 0 ≤ h ≤ h*
Z(h), h* ≤ h ≤ h**

Z(h**) +α(h − h**), h** ≤ h ≤ h2
Z(h**) +α(h2 − h**) + h − h2 , h > h2

⎧

⎨
⎪⎪

⎩
⎪
⎪

Then (X̂ L , X̂ R )  is a left-right stationary equilibrium, reached in one date from the

historical vote share function θ0 .  Conversely, let (XL ,XR )  be any equilibrium beginning

at θ0  which is reached at the first date, and let Z(h) ≡ XL (h) on [h*,h**] .   Then the

functions (X̂ L , X̂ R )  can be defined as in the statement, they integrate (dF) to µ, and

(XL ,XR ) = (X̂ L , X̂ R ) .

Theorems 1 and 4 characterize left-right stationary equilibria.  Obviously, the 1-

stationary equilibria are the simplest; there is a 2-manifold of them.  The manifold of
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equilibria of the form described in theorem 4 is infinite dimensional, for the function Z

can be specified in an essentially arbitrary way.

We can locate a set of equilibria which lie ‘between’ the 1-equilibria and the

equilibria of theorem 4.   Let us define the concept of a 2-stationary equilibrium:

Definition 6   A 2-stationary equilibrium is a tuple   (h*,y*,h**,y**) and a triple of

functions    (θ*,X
L,XR)  such that:

 (γ1a) XL solves

    

max
X∈ℑ

θ*(h)X(h)dF(h)∫
s.t.
X(h*) ≥ y*

X(h**) ≥ y**

(γ2a)XR  solves

    

max
X∈ℑ

(1− θ*(h))X(h)dF(h)∫
s.t.
X(h*) ≥ y*

X(h**) ≥ y**

(γ3)      θ*(h) = S(XL(h),XR(h))

(γ4)    X
L(h*) = y* = XR(h*) and XL(h**) = y** = XR(h**) .

It will not surprise the reader that there is a 4-manifold of 2-stationary equilibria,

parameterized by the choice of the vector   (h*,y*,h**,y**); they comprise  piece-wise

linear policies, where each policy has five pieces.  A typical one is depicted in Figure 6b.

The slopes of the line segments of each policy alternate between α and 1, beginning with

slope α for the L policy and slope 1 for the R policy.   Each of these is, of course, an

equilibrium of the type described in theorem 4, where the function Z is a piece-wise

linear function with two pieces.  The theorem characterizing 2-stationary equilibria is

again proved by the same method as theorem 1.
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It is hard to imagine how the general left-right stationary equilibria of figure 6a

might come about.   In contrast, 1-stationary equilibria are easy to imagine, where the

factions concerned with swing voters in each party concentrate on one voter type   h*  –

perhaps the mode of the income distribution (that’s where the votes are, as Willie Sutton

might have said10).     Even 2-stationary equilibria are imaginable, where the swing-voter

factions are concentrating not on all the swing voters, but on two prominent income

types.    We can easily generalize this concept to n-stationary equilibrium, where the

swing factions concentrate on not losing the loyalty of n voter types: this generates

stationary equilibria where the policies are each piece-wise linear with    2n + 1  pieces.

Thus, in the Eisenhower administration, when the piece-wise linear income-tax schedule

in the United States had 17 pieces, we can imagine that eight income types had sufficient

clout to convince both parties that their votes were up for grabs. 

4. An alternative formulation

One might object to the formulation of the swing voter faction: Why does this

faction not attempt to guarantee that the party win at least half the votes?   In this section,

we study this alternative, and argue, in conclusion, that the model analyzed in section 3

may be a superior formulation, from the empirical viewpoint.

We now append two more requirements on the share function S.  Let

S1(x, y) =
∂S
∂x
(x, y) .   As well as satisfying conditions (S1)-(S3), we require:

(S4)  S1(x, x)  is non-increasing in x;

(S5) S(x, y)  is concave, but not linear, in x.

Example 2 of section 2 satisfies (S1)-(S5).       For example 1 of section 2, it is easy to

construct distribution functions G  such that (S1) through (S5) are satisfied.   Let

 
q :[0,1]→  +  be any increasing differentiable concave function such that

q(0) = 0 and q(1) = 1 / 2  and define

                                                  
10 For non-American readers, the famous bank robber of the 1930s replied to the query
why he robbed banks, “Because that’s where the money is.”
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G(x) =
q(x), 0 ≤ x ≤ 1
1− q(1 / x), x > 1
⎧
⎨
⎩

.

 ( For instance, take q(x) = (.5 − b)x2 + bx  for any number .5 ≤ b ≤ 1 .) It is easy to

check that (S1)-(S5) are satisfied when we define S(x, y) = G(x / y) .

Definition 7  A triple (θ,Xa ,Xb )  is an alternative equilibrium if:

(1) there is no policy X ∈ℑ  such that:

θ(h)X(h)dF(h) ≥∫ θ(h)Xa∫ (h)dF(h),  and

S(X(h),Xb∫ (h))dF(h) ≥ S(Xa∫ (h),Xb (h))dF(h) ≥ 1
2

with at least one of the first two inequalities strict;

(2) there is no policy X ∈ℑ  such that:

(1− θ(h))X(h)dF(h) ≥∫ (1− θ(h))Xb∫ (h)dF(h),  and

S(X(h),Xa∫ (h))dF(h) ≥ S(Xb∫ (h),Xa (h))dF(h) ≥ 1
2

with at least one of the first two inequalities strict;

(3) θ(h) = S(Xa (h),Xb (h))

This is a refinement of the PUNE concept, proposed by this author (Roemer

[1999,2001]).   In PUNE, there are two factions in each party, one of which (the

Guardians) maximizes the average welfare of the constituency, and the other of which

(the Opportunists)  maximizes vote share.  A PUNE satisfies conditions (1) and (2) but

amended not to require that each party win at least half the vote.     Clearly both parties

must win exactly half the vote in an alternative equilibrium.

Definition 8 A strict Condorcet winner is a policy that defeats all policies other than

itself.

Theorem 5    Let the share function S satisfy (S1) – (S5).  Then:

A. The policy

X̂(h) = (1− α)µ + αh
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is a strict Condorcet winner in ℑ .

B. If θ(⋅)  is a (weakly) decreasing function, then X̂  maximizes θ(h)X(h)dF(h)∫  over

X ∈ℑ .

C.  The unique Left-Right alternative equilibrium11 consists in both parties playing X̂ .

It is perhaps surprising that a Condorcet winner exists on this infinite dimensional

space.   Indeed, statement A of the theorem is remarkable, because it is true for any

distribution F of types.  (One might have thought that the highly redistributive policy X̂

would only be a Condorcet winner if F were sufficiently left-skewed.)   This is, of course,

a consequence of the definition of the policy space and the share function S.   In

particular, the proof invokes (S4) and (S5).

Statements B and C say that, in the only Left-Right alternative equilibrium, both

parties play the ideal policy of the Left.  In particular, θ ≡ 1 / 2 .   This is not what we

observe (see the next section); hence the alternative equilibrium appears not to be the

right description of what parties are doing in the US.

Perhaps this adds credibility to the formulation in which parties have factions that

attempt to represent the core and attract for swing voters (our ‘positive’ approach).

Alternatively, one might attempt to develop a model with the alternative equilibrium, but

weakening the conditions on the share function, so that X̂  would not be a strict

Condorcet winner, thus vitiating the results of theorem 5.  A caveat: assumption (S5)

makes our optimization problem concave.     If the function S(⋅; y)  were not concave, then

an faction interested in maximizing vote share would be faced with a non-concave

optimization problem on an infinite dimensional space, a very difficult problem.

5.  Income tax rates in the United States

In this section, we ask how well the model performs in light of the recent

historical record in the United States.   We use the data on income taxation assembled by

Piketty and Saez (2006).   In their research, Piketty and Saez have used the public micro-

file tax data of the IRS, and have computed the sum of four federal taxes for US

taxpayers: the income tax, the social security and medicare payroll taxes, the estate tax,
                                                  
11 That is, an alternative equilibrium in which θ  is weakly monotone decreasing.
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and the corporate tax.   The corporate tax is allocated to households in proportion to their

holdings of corporate equity.   The authors then compile the distribution of taxes paid,

annually for the years 1960 to 2004, and consequently the distribution of post-tax

income.

Post-tax income, so computed, does not correspond exactly to the theoretical

concept that we used in sections 2 and 3 of post-fisc income.      Thus, I have amended

the Piketty-Saez data by including transfer payments, taken from the PSID, for the years

1974 – 2000.  The statistics reported below are the average post-fisc tax rates of US

taxpayers, by pre-fisc income quantile.    This is defined as 
T − t
y

, where T is the sum of

the four taxes of Piketty-Saez, t is the value of transfer payments, and y is pre-fisc

income.  See the appendix for the details of how the Piketty-Saez data were amended.

In recent US fiscal history, the main tax reforms were the following12:

• In 1981, the Economic Reform Tax Act was passed under R. Reagan, which

reduced the top marginal income tax rate from 70 to 50%, and continued to cut

rates over three years;

• In 1986, the Tax Reform Act was signed by Reagan;

• In 1993, the top personal income tax rate was raised under B. Clinton to 39.6%;

• In 1997, the Tax Payer Relief Act cut the top rate on capital gains from 28 to

20%;

• In 2001, under George W. Bush, the Economic Growth and Tax Relief

Reconciliation Act reduced the tax rate in the lowest bracket to 10%, reduced the

highest marginal rate to 35%, and reduced the marriage penalty.  In addition, the

estate tax was to be reduced over a ten year period to the vanishing point.

Our model supposes that each of the two political parties proposes a tax policy as

part of its electoral strategy.  This is, of course, a stylization of reality.  In order to

confront the data, we will assume that when a major tax reform occurs, the policy that is

enacted is the equilibrium policy of the president’s party.   That policy continues to hold

until the next major tax reform.   Thus, for example, we will assume that the policy in

                                                  
12 See Brownlee (2004).
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force prior to 1981 was the Democratic Party’s equilibrium policy; that the policy after

1986 was the Republican Party’s equilibrium policy; that the policy after 1993 was the

Democratic Party’s equilibrium policy; and that the policy after 2001 was the Republican

Party’s equilibrium policy.  Our method will be to examine the de facto changes in the

distribution of average post-fisc tax rates, before and after these major tax reforms,

identifying the results that we observe with equilibrium party policies as described.13

Figure 7 (various panels) presents the average post-fisc tax rates before and after

major tax reforms.   In figure 7a, we present the average tax rates for the various quantile

groups reported by Piketty and Saez, before (1981) and after (1988) the Reagan tax

reforms.   Piketty and Saez are particularly interested in the tax treatment of the very rich;

we see that they disaggregate the top decile of the income distribution into six quantile

groups, where the top group refers to the top 0.01% of the income distribution.

The main observations from figure 7a are that the Reagan tax reforms

substantially reduced the tax rates on the top 0.5% of the income distribution, reduced tax

rates on the top decile, left tax rates on the 60-90th quantile about the same,  increased tax

rates on the two quantiles occupying the 20- 60th  percent, and reduced net taxation of the

bottom quintile.  If we interpret the pre- and post- Reagan reform tax rates as associated

with Democratic and Republican equilibrium policies, respectively, these characteristics

conform to the model’s predictions, except for the treatment of the bottom quintile (due

to the earned income tax credit which was expanded significantly in 1986): in particular,

there is a sizeable group of middle income voters who receive essentially the same tax

treatment by both parties.  While de jure income-tax schedules are indeed piece-wise

linear, we cannot assert that de facto conforms to a piece-wise linear rule.

One characteristic of our equilibrium policies that does not conform to the data is

the predicted decrease in the average tax rate proposed by the Right party for the upper

end of the distribution (incomes greater than h2  ; recall figure 4).     In addition, the

equilibrium policies in our model either tax at the minimal marginal tax rate (zero) or the

maximal marginal tax rate (1−α );  this is not a feature of observed tax rates.

                                                  
13 I am grateful to Kenneth Couch (University of Connecticut) and his research assistants,
who  extracted the transfer-payment data from the PSID for me.
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Figure 7b presents the average post-fisc tax rates by quantile groups in 1988 and

1996, to attempt to capture the effect of the Clinton tax reform of 1993.    Evidently, the

Clinton reforms increased post-fisc tax rates on all quantiles.   The quantiles occupying

the 60-99th centiles had only small changes.

Figure 7c presents the tax rates before and after the G.W. Bush tax bill of 2001.

The Bush tax bill appears to have reduced post-fisc tax rates for all quantiles except the

bottom quintile, whose net tax rate has been increased.    There appears to be no

significant group whose tax treatment has stayed the same as it was in 1996.  This is

consistent with the view that G.W. Bush is not playing the game as it has been played in

recent history, but is instead radically attempting to reduce the role of the federal

government.

As a final contrast, we present in figure 7d tax rates in 1974 and 2004.   These

years are too far apart for us to interpret the tax treatments as a pair of equilibrium

policies.  The figure shows that there has been a large shift of the tax burden from the top

1%  of the income distribution to the bottom 99%.   However, pre-tax income has also

shifted from the bottom 99% to the top 1% over this period, and so the shift in net taxes

paid by the very rich and the rest will not have shifted so dramatically as the figure might

suggest.

In figure 8, we present data on the percentage of voters who voted for the

Democratic presidential candidate, for various election years, by income quantile14.  In

other words, the graphs in figure 8 give us a discrete approximation of the function

θ(⋅;XL ,XR )  for various years.  In 2000, 1996, and 1992, we can say that the swing voter

types occupied a region between the 34th and 95th centiles of the income distribution; in

1980, swing voter types were between the 17th and 33rd centiles of the income

distribution.  It certainly appears from these data that the US is characterized by what we

have called a left-right equilibrium: the function θ is monotone decreasing.  The general

observation seems to be that over this period, the swing voter types have become more

numerous, and have moved up in the income distribution.  At least for the recent

elections (since 1992), the regions of the income distribution where the two parties

                                                  
14 I thank Joseph Bafumi for providing me with these data, which he compiled from the
American National Election Studies (ANES).
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coincide in their tax treatment (from Figure 7) seem to correspond roughly to where the

swing voter types lie.

6.  Discussion and conclusion

I have modeled political competition in a general election between two parties,

incorporating two features of what appears to be American political reality: that parties

compete on a very large policy space, and that their leaders appear to conflict internally

over whether to represent their core voters, or to appeal to voter types sitting on the fence.

In the application of the model to competition over tax policy, we chose the policy space

to consist of all continuous functions restricted only by a budget constraint, and by a

requirement that marginal tax rates lie everywhere in an interval [0,1−α ] .  Choosing

α > 0  was our simple strategy for capturing concerns with labor supply elasticity.  In the

simplest stationary equilibria of the model, the parties propose piece-wise linear post-fisc

distributions of income, with the same treatment for what may be a quite large interval of

middle-income voters.  The more ‘swing-voter’ concerns dominate in the parties, the

larger will this interval be.  But even on the lower envelope of the equilibrium manifold,

the policies will coincide for a non-negligible fraction of the income distribution.

We raise now the issue of multiple equilibria.  A central problem in modeling

political competition is conceiving of it in such a way that equilibria exist when policy

spaces are multi-dimensional.  We have solved that problem, but have instead a plethora

of equilibria.  Indeed, the bi-dimensionality of the equilibrium manifold here arises from

there being, loosely speaking, two payoff functions in each party, associated with its two

‘factions.’  Roemer (1991, Chapter 8) shows that, in the related equilibrium concept of

PUNE, the bi-dimensionality of the equilibrium manifold can be interpreted as due to

there being two missing parameters in the model, which express the relative bargaining

powers of the two factions in the two parties.  (Every PUNE, in that model, can be

generated as an outcome of a Nash-type bargaining game between factions, but with

variable relative bargaining powers.)   A similar interpretation is possible for the

equilibria in this paper; I have not elaborated that here, as the move is similar to the one

in the just-cited book, and because we lack data on these relative bargaining powers.   If

we had such data, we could test the predictions of the model more sharply.
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We characterized left-right stationary equilibria.  We remark that the

characterization was fairly simple, mathematically speaking, because the proofs exploited

heavily the monotonicity of the vote share function  θ .  There may well be non-left-right

stationary equilibria, in which the share function is non - monotonic: for instance, one

party might win more than half the votes of the very poor and the very rich, while the

other wins more than half of the middle income voters.  These equilibria are much more

difficult to study, and I did not attempt to do so here.  In any case, figure 8 indicates that,

in the US,  θ(⋅)  is indeed monotone decreasing.

Finally, we roughly tested the model’s predictions by using the income-tax data

assembled by Piketty and Saez (2006).  Some of the features of our equilibria appear to

hold, and some do not.   Certainly legislated tax policies in the US are piece-wise linear;

however, our model produces equilibrium policies with only two marginal tax rates, zero

and 1−α , and three pieces for each party (although different sets of pieces for the two

parties).   We described how we can generate equilibria with    2n + 1  linear pieces for any

positive interger n.   We found what might be termed mild support for the prediction that

a middle income group receives the same tax treatment from both parties.  It is clear that

the Republican party taxes the rich less than does the Democratic party.  It is not clear,

however, that the Democrats always tax the bottom quintile more lightly (or transfer to

them more heavily) than the Republicans.   The tax treatment of this group is largely due

to the impact of the earned income tax credit, which has been amended frequently.  (It is

also probably the case that labor-supply elasticity is of crucial importance in motivating

legislators in their tax treatment of the poor, and our model almost ignores that issue.)

It is perhaps appealing to view certain aspects of tax policy as being due to

simplicity or inertia: thus, one might conjecture that piece-wise linear policies with a

small number of pieces are adopted for reasons of simplicity, and that policies do not

change much between Left and Right administrations for a large group of middle-income

voters for reasons of both simplicity (costly to change the entire tax code) and inertia.

We have shown, however, that these characteristics of policies derive from political

competition—they are equilibrium characteristics.   We need not appeal to simplicity and

inertia.
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We also examined a model in which the swing-voter faction is replaced by a vote-

share maximizing faction.  We showed that the latter model possesses only one

equilibrium, which is empirically unrealistic.   We suggest that this adds credence to the

main model of the paper.

One could point to many ways in which the model simplifies real politics.  One of

the most important is that actual tax policy is not proposed by parties in general elections:

it is the consequence of legislation, and in particular, of legislative bargaining between

the parties, and between the Congress and the executive branch.  Another is that taxes

and transfer payments are typically dealt with under separate pieces of legislation.

Modeling the problem of tax policy as a legislative bargaining problem could improve

the fit of reality to theory.  Nevertheless, if we take Schumpeter’s dictum seriously, as

stated in the paper’s epigram, and also Riker’s (1982) dictum, that the most important

moment of democracy is the general election, then the investigation reported upon here

may shed some light on the problem.

Appendix

Proof of Proposition 2:

1.  Note that if Xa ∈Ma (h*)  and Xb ∈Mb (h*)  then

    y = xa + αh1 + h* − h1  and    y = xb + h* .

2.  Write the budget constraint for a policy X ∈Ma (h*) :

xa +α hdF(h) +αh1
0

h1

∫ (1− F(h1)) + (h − h1)dF(h) +
h1

h*

∫

(h* − h1)(1− F(h*)) +α (h − h*)dF(h) = µ
h*

∞

∫
.

We can rewrite this equation as:

xa = (1−α ) hdF(h) + (h − h*)dF(h) + h1(1− F(h1))
h*

∞

∫
0

h1

∫
⎛

⎝
⎜

⎞

⎠
⎟ .

3.  Viewing Ma (h*)  as parameterized by h1 , and differentiating the first expression for y

in step 1 w.r.t. h1 , we have:



27

dy
dh1

=
dxa
dh1

− (1−α ) .

Now differentiating the expression derived in step 2 for xa  w.r.t. h1  gives:

dxa
dh1

= (1−α )(1− F(h1)) .

These two equations together tell us that:

dy
dh1

= (α −1)F(h1) < 0.

Therefore the smallest (largest) value of y compatible with a policy’s being in Ma (h*)  is

associated with h1 = h*  (respectively, h1 = 0) .   Using the equation for xa  in step 2, we

have:

xa (h*) = (1−α )µ, xa (0) = (1−α ) (h − h*
h*

∞

∫ )dF(h) ,

and so these two values of y are given by:

ya (h*) = (1−α )µ +αh*, ya (0) = h* + (1−α ) (h − h*)dF(h)
h*

∞

∫ .

4.  We perform a similar analysis of policies in Mb (h*) .   For any such policy, we may

rewrite the budget constraint as:

xb = (1−α ) h
h*

h2

∫ dF(h) + (1−α )h2 (1− F(h2 )) − (1−α )h*(1− F(h*)) .

Differentiating this equation w.r.t. the parameter h2  gives:

dxb
dh2

= (1−α )(1− F(h2 )) > 0 ;

now using the expression for y in step 1, we have:

dy
dh2

=
dxb
dh2

> 0 .

Therefore, the smallest (largest) value of y compatible with a policy’s being in Mb (h*)  is

associated with h2 = h*  (respectively, h2 = ∞ ).   These two values of y are:

yb (h*) = h*, yb (∞) = (1−α ) (h − h*)dF(h) + h*
h*

∞

∫ .
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5.   To summarize, the number y is associated with a policy in Ma (h*)  if and only if

ya (h*) ≤ y ≤ ya (0) ,

and y is associated with a policy in Mb (h*)  if and only if

yb (h*) ≤ y ≤ yb (∞) .

Notice that ya (0) = yb (∞) ; parts A and B of the  proposition follow immediately.

6.  We prove part C.  We have shown that the smallest value of xa is

(1−α ) (h − h*
h*

∞

∫ )dF(h)  which is positive, as long as F has some support on (h*,∞) .  The

argument in step 4 above shows that xb > 0  except in the singular case that h* = h2 .  In

that case, the policy Xb  is the laissez-faire policy Xb (h) = h .     

Proof of Theorem 1:

1.  The theorem will be proved if we can show that Xa  and Xb  solve the programs in

conditions (β2)  and (β3) of definition 2, respectively.    We first address (β2) .  Let the

density function of F be denoted f.  The numbers h1  and h2 come with the functions Xa

and Xb .

2.  Define the number ρ  , the functions r(h)  on [0,h1], s(h) on [h1,h*]  and

t(h) on [h*,∞) , and the number λ as follows.

(i) ρ =
θ(h)dF(h)

0

h1

∫
F(h1)

,

(ii) r(0) = 0 and ′r (h) = (θ(h) − ρ) f (h) on [0,h1] ,

(iii) s(h1) = 0 and ′s (h) = (ρ −θ(h)) f (h) on [h1,h*] ,

(iv) 
t(h*) = ρ(1− F(h*)) − θ(h)dF(h) and 

h*

∞

∫
′t (h) = (θ(h) − ρ) f (h) on [h*,∞)

(v) λ = s(h*) + t(h*) .
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Note that ρ > 0 .   Note, from Proposition 3,  that the function r  is first increasing

and then decreasing.  Compute that r(h1) = r(0) + ′r (h)dh = 0
0

h1

∫ .  Therefore r is a non-

negative function on its domain.  Note from Proposition 3 that s is an increasing function

on its domain: since θ  is constant on [h1,h*] , by Proposition 3, we know that ρ > θ(h)

on this interval.  Therefore s is a non-negative function on its domain, and

s(h*) = ρ(F(h*) − F(h1)) − θ(h)dF(h) > 0
h1

h*

∫ .   Note that t is decreasing on its domain, and

t(∞) = t(h*) + ′t (h)dh = 0
h*

∞

∫ .  Therefore t is non-negative on its domain.  Finally, note that

λ > 0 .

4.  Suppose that Xa  were not the solution to the program (β2) of definition 2, and that the

true solution is some other policy X .  Define the function g by the equation

X(h) = Xa (h) + g(h) .    Now define the function  Δ :→   as follows.

Δ(ε) = (Xa

0

∞

∫ (h) + εg(h))θ(h)dF(h) + Xa′ (h) + ε ′g (h) −α( )
0

h1

∫ r(h)dh +

1− (Xa′ (h) + ε ′g (h))( )
h1

h*

∫ s(h)dh + Xa′ (h) + ε ′g (h) −α( )
h*

∞

∫ t(h)dh +

λ Xa (h*) + εg(h*) − y( ) + ρ µ − (Xa (h) + εg(h))dF(h)
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟

.

Note that Δ is a linear function, and that Δ(0) = Xa

0

∞

∫ (h)θ(h)dF(h) : this is the objective

of program  (β2)  evaluated at the policy Xa .   Note as well that when ε = 1, all the terms

in the expression defining Δ  are non-negative:  this follows from the fact that

r,s,t,λ  and ρ  are all non-negative functions or numbers, and that X ∈ℑ .    Suppose we

can show that ′Δ (0) = 0 : then Δ  will be equal to a constant, and consequently

Δ(0) = Δ(1) .   But this implies that the value of the objective function of (β2) at Xa  is at
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least as large as its value at X: a contradiction.   Thus we will have proved that Xa  solves

program (β2) if we can show that ′Δ (0) = 0 .

5.  Compute that

′Δ (0) = θ(h)g(h)dF(h) + ′g (h)r(h)dh − ′g (h)s(h)dh
h1

h*

∫
0

h1

∫
0

∞

∫

+ ′g (h)t(h)dh + λg(h*
h*

∞

∫ ) − ρ g(h)dF(h)
0

∞

∫
.

Hence, integrating three times by parts, we have:

′Δ (0) = θ(h)g(h)dF(h) + g(h)r(h) 0
h1

0

∞

∫ − ′r (h)g(h)dh − g(h)s(h) h1
h*

0

h1

∫

+ ′s (h)g(h)dh
h1

h*

∫ + g(h)t(h) h*
∞ − ′t (h)g(h)dh + λg(h*

h*

∞

∫ ) − ρ g(h)dF(h).
0

∞

∫

We next re-group terms and write:

′Δ (0) = (θ(h) − ρ) f (h) − ′r (h)( )g(h)dh + ′s (h) − (ρ −θ(h)) f (h)( )
h1

h*

∫
0

h1

∫ g(h)dh +

(θ(h) − ρ) f (h) − ′t (h)( )
h*

∞

∫ g(h)dh + g(h*)(λ − s(h*) − t(h*)) − g(0)r(0) + g(h1)(r(h1) + s(h1))

+t(∞)g(∞).

Now check, by the definitions of r,s,t and λ  that every term on the r.h.s. of this equation

vanishes, which proves that ′Δ (0) = 0 .

6.   We proceed to prove that Xb  is the solution to program (β3)  of definition 2.

Suppose that the true solution is X and now define the function g by X = Xb + g .   We

now define functions R,S, and T, and numbers γ  and δ  as follows:

(i) δ = (1−θ(h))dF(h) / (1− F(h2
h2

∞

∫ )),

(ii) R(0) = 0 and ′R (h) = (δ − (1−θ(h)) f (h) on [0,h*] ,
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(iii)S(h*) = (δ − (1−θ(h))dF(h) and ′S (h) = (1−θ(h) − δ ) f (h) on (h*,h2
h2

h*

∫ ) ,

(iv) T (h2 ) = 0 and ′T (h) = (δ − (1−θ(h)) f (h) on (h2 ,∞) ,

(v) γ = R(h*) + S(h*) .

Since the function 1−θ(h)  is (weakly) increasing (see Proposition 3), it follows

from the definition of δ that ′R ≥ 0, ′S ≤ 0 , and that ′S (h2 ) = 0 .  The functions R,S, and T

are non-negative on their domains.   As well, R(h*),S(h*) and γ  are positive.

7.  We now define the function Φ  by:

Φ(ε) = (1−θ(h))(Xb

0

∞

∫ (h) + εg(h))dF(h) + 1− (Xb′ (h) + ε ′g (h)( )
0

h*

∫ R(h)dh +

Xb′ (h) + ε ′g (h) −α( )
h*

h2

∫ S(h)dh + 1− (Xb′ (h) + εg(h))( )
h2

∞

∫ T (h)dh + γ Xb (h*) + εg(h*)( )

+δ µ − (Xb (h) + εg(h))dF(h)
0

∞

∫
⎛

⎝⎜
⎞

⎠⎟
.

All the terms on the r.h.s. of this equation are non-negative, and so, as we argued above,

if we can demonstrate that ′Φ (0) = 0 , then we will have proved that Xb  solves the

program in condition (β3)of definition 2.

8.  Compute that

′Φ (0) = (1−θ(h))g(h)dF(h)
0

∞

∫ − g(h)R(h) 0
h* + ′R (h)g(h)dh + g(h)S(h) h*

h2

0

h*

∫

− ′S (h)g(h) − g(h)T (h) h2
∞

h*

h2

∫ + ′T (h)g(h)dh + γ g(h*
h2

∞

∫ ) − δ g(h)dF(h).
0

∞

∫

Re-grouping terms, we have:
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′Φ (0) = ((1−θ(h) − δ ) f (h) + ′R (h))
0

h*

∫ g(h)dh + ((1−θ(h) − δ ) f (h) − ′S (h))
h*

h2

∫ g(h)dh +

((1−θ(h) − δ ) f (h) + ′T (h))
h2

∞

∫ g(h)dh + (γ − R(h*) − S(h*)) − g(0)R(0) + g(h2 )(S(h2 ) + T (h2 ))

−g(∞)T (∞).
From the definitions of the functions R,S,T and the numbers δ  and γ , we observe that all

terms on the r.h.s. of this equation vanish, which proves the theorem15.  

Proof of Theorem 2:

1.  It is clear that the ideal policy for a type h*  -- the policy in ℑ  that maximizes its (post-

fisc) income -- has some value y at h* , increases as slowly as possible for h > h* , and

decreases from the (h*, y)  as rapidly as possible for h < h* .   This is the way to spend as

few resources as possible on everyone other than h* .   Thus the ideal policy for h*  is

defined by:

X*(h) =
x0 + h, h ≤ h*

x0 + h* +α(h − h*), h > h*
⎧
⎨
⎩

where x0  is such that this policy integrates to µ .   But this is precisely the policy in

Ma (h*)∩Mb (h*)  when y = ymax (h*) .

2.  If h* ≤ µ  and y = (1−α )µ +αh* then the policy Xa ∈Ma (h*)  is a line of slope α such

that xa = (1−α )µ .   We prove below (see the proof of theorem 5), using the variational

technique of the proof of theorem 1, that this is the policy that maximizes

θ(h)X(h)dF(h)∫  on ℑ .  Moreover, the fact is intuitively clear.  Because θ is a

decreasing function and the objective functional is linear in X, the objective wishes to

push resources as much as possible to the poorest.   The solution is to maximize what is

given to h=0,  which means to increase as slowly as possible (that is, at rate α) on the

                                                  
15 The convention that “ t(∞) = 0 = T (∞) ” is short-hand for a transversality condition.

The proof can be rigorously completed by checking that lim
h→∞

t(h)g(h) = 0  and

lim
h→∞

T (h)g(h) = 0 : these claims are true.
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whole positive line, subject to having given just enough to h=0 so that the policy

integrates to µ.

3.  If h* ≥ µ  and y = ymin (h*) = h*  then the policy Xb ∈Mb (h*) is the laissez-faire policy

X(h) = h .   It is also intuitively clear that this is the policy that maximizes

(1−θ(h))X(h)dF(h)∫ : for now, the objective wishes to push resources to the very rich.

Once it is decided how much the very rich get, the strategy must be to decrease as fast as

possible (i.e., at rate one) for h smaller.  This yields in the limit the laissez-faire policy.

Of course, this can also be proved using the variational technique of theorem 1.   

Proof of Theorem 3:

1.  In the political contest at date 1, the L party  (the one whose constituency is defined by

the function   θ0 ) solves this program:

    

max
X∈ℑ

θ0(h)X(h)dF(h)∫
s.t.

X(h*) ≥ XR(h*)

since the unique swing type at date 0 is   h* .  There is a similar program for the R party.

Thus the political equilibrium at date one is exactly a triple   (X
L,XR,y)such that:

(1)  XL  maximizes 
    
θ0(h)X(h)dF(h)∫  subject to    X(h*) ≥ y ;

(2)  XR  maximizes 
    

(1− θ0(h))X(h)dF(h)∫  subject to    X(h*) ≥ y ;

(3)    X
L(h*) = y = XR(h*) .

This looks almost like a 1-stationary equilibrium, except that the function   θ0  is not

related to the vote shares engendered by the policies XL  and XR .  Now suppose we

choose y ∈[ymin (h*), ymax (h*)]  so that (h*, y)∈Γ .   Note, by examining the proof of

theorem 1, that the only fact invoked about the function   θ*  was that it was weakly

monotone decreasing.  So the argument of theorem will apply just as well if we substitute

the decreasing function θ0  for   θ* .  Hence, by the same argument as in theorem 1, the
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functions  XL  and  XR  which satisfy conditions (1)-(3) above are an ordered pair in the

set    Ma(h*)×Mb(h*) .  This proves the first statement in the theorem.

2. Conversely, let (XL ,XR )  be any equilibrium (stationary or not) at date 1 emanating

from θ0 .  The policies have a common value y = XL (h*) = X
R (h*)  since h*  was the

unique swing voter.  If (h*, y)∈Γ , then again the optimization of each party yields

inexorably to the ordered pair of policies    Ma(h*)×Mb(h*)  associated with the income y

at the pivot h* .

Thus, what must be shown is that y = XL (h*)∈[ymin (h*), ymax (h*)].   Define the

following two functions:

Xmax (h) =
(y −αh*) +αh, 0 ≤ h ≤ h*

y − h* + h, h > h*

⎧
⎨
⎩

Xmin (h) =
y − h* + h, 0 ≤ h ≤ h*
y +α(h − h*), h > h*

⎧
⎨
⎩

Subject to passing through the point (h*, y)and satisfying conditions (P0) and (P1) of the

definition of policies in ℑ , Xmax  is the way of allocating income which consumes the

maximal amount of resource and Xmin  is the way of allocating income which consumes

the minimal amount of resource.  It therefore follows that

Xmax (h)dF(h) ≥ µ  and Xmin (h)dF(h) ≤ µ∫∫ .

But this is precisely the condition for (h*, y)  to be in Γ.     

Proof of Theorem 4:

1.  We prove the converse part first.  Let (XL ,XR )  be the date-1 equilibrium in a

sequence of historical equilibrium beginning with the datum θ0 .   Define for

h ∈[h*,h**], Z(h) ≡ XL (h) .   From the definition of equilibrium, it follows that for

h ∈[h*,h**] , X
R (h) = Z(h)  as well.  Suppose that the functions (X̂ L , X̂ R )  defined in the

theorem’s statement can be defined and integrate to µ.    We show that XL  and XR are

precisely the functions X̂ L  and X̂ R .   Suppose, to the contrary, that XL ≠ X̂ L .   Then

define the (non-zero) function g by XL (h) = X̂ L (h) + g(h) .
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 Let the functions r(⋅), s(⋅),t(⋅),  and u(⋅)  be some non-negative functions, defined

on the intervals given by the limits of the integrals in which they appear below, and let

λ1,λ2  and ρ  be arbitrary non-negative numbers.    Now define the function:

Δ(ε) = θ0 (h)(X̂
L (h) + εg(h))dF(h)

0

∞

∫ + ε ′g (h)r(h)dh − ε ′g (h)s(h)dh
h1

h*

∫
0

h1

∫

+λ1εg(h*) + εg(h)t(h)dh
h*

h**

∫ + λ2εg(h**) + ε ′g (h)u(h)dh − ρ εg(h)dF(h)
0

∞

∫
h**

∞

∫ .

Note that Δ(0) is the value of the L party’s objective at date 1 evaluated at X̂ L  and Δ(1)

is the value of the L party’s objective at XL  plus a series of terms all of which must be

non-negative.  (E.g., in the interval [0,h1], ′g ≥ 0  because (X̂ L ′) (h) ≡ α  on this interval,

and so on for all the other terms.)

Suppose we can choose r, s,t,u,λ1,λ2 ,  and ρ  so that ′Δ (0) = 0 .   Since Δ  is a

linear function, it will follow that it is maximized at ε = 0 ; in particular, Δ(0) ≥ Δ(1) .

This implies, a fortiori,  that the value of the L party’s objective is at least as great at

X̂ L  as at XL , which will be the desired contradiction.

2.  Calculate, using integration by parts, that:

′Δ (0) = θ0 (h)g(h)dF(h) + g(h)r(h) 0
h1

0

∞

∫ − g(h) ′r (h)dh − g(h)s(h) h1
h* +

0

h1

∫

g(h) ′s (h)dh + λ1g(h*) + g(h)t(h)dh + λ2g(h**) + g(h)u(h) h**
∞

h*

h**

∫
h1

h*

∫ − g(h) ′u (h)dh
h**

∞

∫

−ρ g(h)dF(h)
0

∞

∫ ;

now organize the terms above to express:

′Δ (0) = [θ0
0

h1

∫ (h) f (h) − ρ f (h) − ′r (h)]g(h)dh + [θ0 (h) f (h) − ρ f (h) + ′s (h)]g(h)dh
h1

h*

∫ +

[θ0 (h) f (h) − ρ f (h) + t(h)]g(h)dh
h*

h**

∫ + [θ0 (h) f (h) − ρ f (h) − ′u (h)]g(h)dh
h**

∞

∫ + r(0)g(0) +

g(h1)(r(h1) + s(h1)) + g(h*)(λ1 − s(h*)) + g(h**)(λ2 − u(h**)) + g(∞)u(∞),

where f (h) ≡ dF(h) .
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Therefore, we can annihilate all these terms if the ‘Lagrangian functions and multipliers’

are chosen to fulfill the following equations:

(a) ′r (h) = (θ0 (h) − ρ) f (h) on [0,h1]

(b) ′s (h) = (ρ −θ0 (h)) f (h) on [h1,h*]

(c) t(h) = (ρ −θ0 (h)) f (h) on [h*,h**]

(d) ′u (h) = (θ0 (h) − ρ) f (h) on [h*,h**]

(e) r(0) = 0 = r(h1) = s(h1)

(f)  λ1 = s(h*)

(g) λ2 = u(h**)

(h) u(∞) = 0 .

3.  Since r must be zero at its endpoints (statement (e)), using (a), we define:

ρ = θ av[0,h1] ≡
θ0 (h)dF(h)

0

h1

∫
F(h1)

.

Since θ0  is a weakly decreasing function, it follows that r is non-negative on [0,h1] .

Obviously ρ > 0 .   It now follows from statement (b) that ′s ≥ 0 on [h1,h*] , again

invoking the fact that θ0  is decreasing.  Hence, s(h*) = ′s (h)dh ≥ 0
0

h1

∫   (here we use the

fact that we choose s(h1) = 0 ).   Hence from (f), λ1 ≥ 0  and s is a non-negative function

on its domain.  From (c), t(h)  is a non-negative function, again invoking the fact that θ0
is decreasing.   Now from (d), u must be a decreasing function on [h**,∞)  and must

converge to zero at infinity, so we define:

u(h**) = (ρ −θ0 (h))dh > 0
h**

∞

∫ .

Hence from (g), λ2 > 0 .
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Hence the Lagrangian functions and multipliers have been defined, to be non-

negative, and to fulfill the conditions (a) – (h), proving the claim16.

A similar argument shows that XR = X̂ R .

4.  Finally, we remark that indeed the functions (X̂ L , X̂ R )  can be defined and integrate to

µ: this argument is just like the one presented in the proof of theorem 3.

5. We have shown that any date-1 equilibrium with the historical vote-share function θ0

is of the form (X̂ L , X̂ R ) .   The first statement in the theorem is clearly proved by the same

technique.  That is, if the functions (X̂ L , X̂ R )  can be defined (which is true if the integral

of Z on its domain is not to small or too large) then they comprise a stationary

equilibrium reached at date 1.   To show stationarity, we need only observe that the vote

share function θ̂(⋅)  defined by (X̂ L , X̂ R )  is itself monotone decreasing, and the same

optimization proof works. 

Proof of theorem 5:

Part A.

1.  We show that X̂ maximizes vote share when competing against X̂ .    Suppose this

were false.   Then there exists a policy X = (X̂ + g)∈ℑ such that

S(X̂(h) + g(h), X̂(h))dF(h) > 0.5∫ .

To show this is impossible, we define the function:

Δ(ε) = S(X̂(h) + εg(h), X̂(h))dF(h) + ρ(µ − (X̂(h) + εg(h))dF(h)) +∫
0

∞

∫
( ˆ ′X (h) + ε ′g (h) − α)r(h)dh.∫

By premise (S5), Δ  is concave.  It follows that if we can choose ρ ≥ 0 and r ≥ 0  such

that ′Δ (0) = 0 , then Δ  is maximized at ε = 0 , a contradiction.

Compute, using integration by parts, that:

                                                  
16 As we remarked in the proof of theorem 1, the statement "u(∞) = 0"  is short-hand for
the statement lim

h→∞
g(h)u(h) = 0 , which is true.
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′Δ (0) = S1∫ (X̂(h), X̂(h))g(h)dF(h) − ρ g(h)dF(h) + g(h)r(h)∫ 0

∞

− ′r (h)g(h)dh =∫ (S1(X̂(h), X̂(h)) − ρ) f (h) − ′r (h)⎡⎣ ⎤⎦∫ g(h)dh + gr 0
∞ .

Hence it is only necessary to choose r(⋅) and ρ  so that:

′r (h) = (S1(X̂(h), X̂(h)) − ρ) f (h) and r(0) = 0 = r(∞) .

Choose r(0) = 0  and define ρ = S1∫ (X̂(h), X̂(h))dF(h) ; then r(∞) = 0  by integration.

Moreover, since S1(X̂(h), X̂(h))  is a (weakly) decreasing function of h (see postulate

(S4)), it follows that  ′r  is initially non-negative and finally non-positive, so that, because

of the end-point conditions, r is a non-negative function.  This shows that X̂  maximizes

vote share against itself.

2.  Furthermore, X̂  is the unique vote-share maximizer against X̂ , since S(x, y)  is

concave but not linear in x.  Hence any other policy running against X̂  receives less than

half the vote, proving that X̂  is a strict Condorcet winner.

Part B.   Here we define the function:

Δ(ε) = θ(h)(X̂(h) + εg(h))dF(h) + ρ µ − (X̂(h) + εg(h))dF(h)∫( )
0

∞

∫ +

ˆ ′X (h) + ε ′g (h) − α( )
0

∞

∫ r(h)dh.

If we can choose r and ρ non-negative such that ′Δ (0) = 0 , then part B is shown.

Compute that ′Δ (0) = [ θ(h) − ρ( )
0

∞

∫ f (h) − ′r (h)]g(h)dh + gr 0
∞ .   Define

′r (h) = (θ(h) − ρ) f (h)  and r(0) = 0 and ρ = θ(h)dF(h).∫    Then r(∞) = 0  by integration.

Since θ is weakly decreasing, it follows that r ≥ 0 , and part B is proved.

Part C.

1.  Suppose that (θ,XL ,XR )  is a Left-Right alternative equilibrium and θ  is not

identically equal to one-half (i.e., XL ≠ XR ).  Since both parties must win one-half the

vote, we have XL ≠ X̂ ≠ XR , since X̂  is a strict Condorcet winner.    By Parts  B and A,
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X̂  maximizes θ(h)X(h)dF(h)∫ , and achieves more than half the vote against XR .

Hence the Left party should deviate to X̂ ; hence, this is not an equilibrium.

2.  Suppose that (1
2
,X,X)  is an alternative equilibrium and X ≠ X̂ .   Then either party

should deviate to X̂ : the average income of its constituency will remain unchanged at µ,

but vote share will increase.

3.  Finally, it is obvious that (1
2
, X̂, X̂) is an alternative equilibrium.     

Amending the Piketty – Saez (2006) data to include transfer payments

I explain how we amended the Piketty-Saez data to attain the average post-fisc tax rate

for a quantile – here, for the bottom quintile.  Let:

x20 =  post-tax income of bottom quintile
y20 =  pre-tax income of bottom quintile
x =  average post-tax income of whole sample
y =  average pre-tax income of whole sample
T20 =  average taxes paid by bottom quintile
t20 =  average transfers received by bottom quintile
T =  average taxes paid, whole sample
t =  average transfers received, whole sample

We wish to compute

 q20 =  average post-fisc tax rate of bottom quintile =T20 − t20

y20

.

Piketty-Saez (2006) give us the pre-tax income share

r20 =
.20y20
y

    (1),

and  the average tax rate for the bottom quintile

u20 =
T20
y20

 (2).

Table A0 of Piketty-Saez gives the average nominal income, which is y .
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Hence, from (1), we can compute y20 ; from (3) we can compute T20 . We extract t20  from

the PSID, and thus compute q20 .

For 1974,  Piketty-Saez (2006) does not provide  the necessary data for the

quantiles in the bottom 90% of the income distribution.  We proceeded as follows.  First,

we calculated the income shares from the Current Population Survey in 2001 for the

quantiles in the bottom 90%, and also those shares from the same source in 2004.   Then

we applied the factors by which those shares changed to the income shares provided by

Piketty-Saez (2006) for 2001.   This gave us the necessary income shares for all quantiles

in 2004, which permitted us to compute the values shown in figure 7c.
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Figure 1   Policies Xa ∈Ma (h*) [thin line] and Xb ∈Mb (h*)  [bold line] which share a
common value y at h*

y

h

Xa , Xb

h1 h* h2

xa

xb
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Figure 2  Graphs of the functions ymax (⋅), ymin (⋅) and the ray y = h* .  The manifold Γ is the

set bounded by the two bold curves.

Figure 3a  L and R policies on the upper envelope of the manifold Γ
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Figure 3b.     Graphs of stationary equilibria as y decreases in Γ at constant h*
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Figure 3c.  Stationary equilibrium on the lower envelope of the Γ, where Left plays the

ideal policy of its average constituency

Figure 4  The average tax rate functions for a pair of equilibrium policies
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Figure 5a.  Average tax rates, Left policy, at h* = 20 (plain) and h* = 80 (bold)

Figure 5b.  Average tax rates, Right policy, at h* = 20 (plain) and h* = 80 (bold)
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X

h
h2h1

  h**  h*

Figure 6a Left-Right stationary equilibrium where
  XL  and XR coincide with arbitrary Z on   [h*,h** ]  and

coincide on   [h1,h2 ] .  R policy in bold, L policy in plain
face.
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h

X

  h**  h*

Right policy is bold
Left policy is plain face

Figure 6b  A generic 2-stationary
equilibrium.  Policies coincide on
an interval including   [h*,h** ]
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Average post- fisc tax rates byincome quantile,1981 & 1988

Figure 7a.   Light bars are 1981 (Carter); dark bars are 1988 (Reagan).   Lower panel
excises the bottom quintile and re-scales.
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Average post- fisc tax rates byincome quantiles, 1988 & 1996
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Average post- fisc tax rates byincome quantile, 1988 & 1996

Figure 7b.  Dark bars are 1988 (Reagan), light bars are 1996 (Clinton).  Lower panel
excises bottom quintile and re-scales.
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Average post- fisc tax rates byincome quantile, 1996 & 2004

Figure 7c  Dark bars, 2004 (G.W. Bush), light bars, 1996 (Clinton).
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Figure 7d.   Light bars, 1974; dark bars, 2004.
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Figure 8    The empirical function θ: Democratic presidential candidate vote share, by
voter income quantile, various years
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