Computer Graphics using OpenGL,
3'd Edition
F. S. Hill, Jr. and S. Kelley

PSS Chapter 2

9@ Initial Steps in Drawing
Figures

S. M. Lea
University of North Carolina at Greensboro
© 2007, Prentice Hall

Using Open-GL

* Files: .h, .lib, .dll

— The entire folder gl is placed in the Include
directory of Visual C++

— The individual lib files are placed in the lib
directory of Visual C++

— The individual dll files are placed in
C:\Windows\System32

Using Open-GL (2)

 Includes:
— <windows.h>
— <gl/gl.h>
— <gl/glu.h>
— <gl/glut.h>
— <gl/glui.h> (if used)
* Include in order given. If you use capital

letters for any file or directory, use them In
your include statement also.

Using Open-GL (3)

e Changing project settings: Visual C++ 6.0

— Project menu, Settings entry

— In Object/library modules move to the end of
the line and add glui32.lib glut32.lib glu32.lib
opengl32.lib (separated by spaces from last
entry and each other)

— In Project Options, scroll down to end of box
and add same set of .lib files

— Close Project menu and save workspace

Using Open-GL (3)

e Changing Project Settings: Visual C++
NET 2003
— Project, Properties, Linker, Command Line

— In the white space at the bottom, add
glui32.lib glut32.lib glu32.lib opengl32.lib

— Close Project menu and save your solution

Getting Started Making Pictures

o Graphics display: Entire screen (a);
windows system (b); [both have usual
screen coordinates, with y-axis downl];
windows system [inverted coordinates] (c)

bi |
- w s ™ .~ "y
(100, 500 ——— ———

y 3
2 (150,800 7 =
P) W L o b

Y
\ (0, 290)

i

Basic System Drawing Commands

o setPixel(x, y, color)

— Pixel at location (X, y) gets color specified by
color

— Other names: putPixel(), SetPixel(), or
drawPoint()

* line(x1, y1, x2, y2)
— Draws a line between (x1, yl1) and (x2, y2)
— Other names: drawLine() or Line().

Alternative Basic Drawing

e current position (cp), specifies where the
system Is drawing now.

 moveTo(x,y) moves the pen invisibly to the
location (X, y) and then updates the
current position to this position.

 [IneTo(x,y) draws a straight line from the
current position to (X, y) and then updates
the cp to (X, y).

moveTo(4, 4); //move

Example: A Square

to starting corner

Ine
Ine
Ine

To(-2, 4);
To(-2, -2);
To(4, -2);

Ine’

0(4, 4);

the square

/Iclose

{_Er 4]

4,

4)

(-2,-2)

{41 _2]

Device Independent Graphics and
OpenGL

* Allows same graphics program to be run
on many different machine types with
nearly identical output.

— .dll files must be with program
 OpenGL is an API: it controls whatever
hardware you are using, and you use Iits

functions instead of controlling the
hardware directly.

 OpenGL Is open source (free).

Event-driven Programs

Respond to events, such as mouse click
or move, key press, or window reshape or
resize. System manages event queue.

Programmer provides “call-back” functions
to handle each event.

Call-back functions must be registered
with OpenGL to let it know which function
handles which event.

Registering function does *not* call it!

Skeleton Event-driven Program

// Include OpenGL libraries
void main()

{

glutDisplayFunc(myDisplay); // reqgister the redraw function

glutReshapeFunc(myReshape); // register the reshape
function

glutMouseFunc(myMouse); // register the mouse action
function

glutMotionFunc(myMotionFunc); // register the mouse motion
function

glutKeyboardFunc(myKeyboard); // register the keyboard action
function

...perhaps initialize other things...
glutMainLoop(); // enter the unending main loop

..all of the callback functions are defined here

Callback Functions

 glutDisplayFunc(myDisplay);
— (Re)draws screen when window opened or another
window moved off it.

 glutReshapeFunc(myReshape);

— Reports new window width and height for reshaped
window. (Moving a window does not produce a
reshape event.)

 glutldleFunc(myldle);

— when nothing else is going on, simply redraws display
using void myldle() {glutPostRedisplay();}

Callback Functions (2)

e glutMouseFunc(myMouse);

— Handles mouse button presses. Knows
mouse location and nature of button (up or
down and which button).

 glutMotionFunc(myMotionFunc);

— Handles case when the mouse Is moved with
one or more mouse buttons pressed.

Callback Functions (3)

e glutPassiveMotionFunc(myPassiveMotionFunc)

— Handles case where mouse enters the window
with no buttons pressed.

 glutkeyboardFunc(myKeyboardFunc);

— Handles key presses and releases. Knows which
key was pressed and mouse location.

e glutMainLoop()

— Runs forever waiting for an event. When one occurs,
It is handled by the appropriate callback function.

Libraries to Include

GL, for which the commands begin with GL;

GLUT, the GL Utility Toolkit, opens windows,
develops menus, and manages events.

GLU, the GL Utility Library, which provides high
level routines to handle complex mathematical
and drawing operations.

GLUI, the User Interface Library, which is

completely integrated with the GLUT library.

— The GLUT functions must be available for GLUI to
operate properly.

— GLUI provides sophisticated controls and menus to
OpenGL applications.

A GL Program to Open a Window

/[appropriate #includes go here — see Appendix 1
void main(int argc, char** argv)
{

glutinit(&argc, argv); // initialize the toolkit

glutinitDisplayMode(GLUT_SINGLE |
GLUT_RGB); /] set the display mode

glutinitWindowSize(640,480); // set window size
glutinitWindowPosition(100, 150);
// set window upper left corner position on screen
glutCreateWindow("my first attempt");,
// open the screen window (Title: my first attempt)
// continued next slide

Q Q Q

g

Part 2 of Window Program

// register the callback functions
utDisplayFunc(myDisplay);
utReshapeFunc(myReshape);
utMouseFunc(myMouse);
utKeyboardFunc(myKeyboard);

myInit(); // additional initializations as necessary
glutMainLoop(); // go into a perpetual loop

}

e Terminate program by closing window(s) It Is
using.

What the Code Does

 glutinit (&argc, argv) initializes Open-GL
Toolkit
e glutinitDisplayMode (GLUT_SINGLE |

GLUT RGB) allocates a single display
buffer and uses colors to draw

o glutinitWindowsSize (640, 480) makes the
window 640 pixels wide by 480 pixels high

What the Code Does (2)

 glutinitWindowPosition (100, 150) puts
upper left window corner at position 100
pixels from left edge and 150 pixels down
from top edge

e glutCreateWindow (“my first attempt”)
opens and displays the window with the
title “my first attempt”

 Remaining functions register callbacks

What the Code Does (3)

* The call-back functions you write are
registered, and then the program enters

an endless loop, waiting for events to
occur.

e \WWhen an event occurs, GL calls the
relevant handler function.

Effect of Program

-ll.

'

my first attempt

SN

479

639 e

Drawing Dots In OpenGL

* We start with a coordinate system based

on the window just created: 0 to 679 In X
and 0to479invy.

 OpenGL drawing is based on vertices
(corners). To draw an object in OpenGL,
you pass it a list of vertices.

— The list starts with glBegin(arg); and ends with
glEnd();

— Arg determines what is drawn.

— glEnd() sends drawing data down the
OpenGL pipeline.

Example

glBegin (GL_POINTS);
— glVertex2i (100, 50);

— glVertex2i (100, 130);
— glVertex2i (150, 130);

glEnd();

GL _POINTS is constant built-into Open-
GL (also GL_LINES, GL _POLYGON, ...)

Complete code to draw the 3 dots Is In Fig.
2.11.

Display for Dots

-ll]

A

my first attempt

What Code Does: GL Function
Construction

Ll’% r:rlr:f’n }

/ hasic numhr:r of type of

ibrary command arguments argument

Example of Construction

o glVertex2i (...) takes integer values
o glVertex2d (...) takes floating point values

 OpenGL has its own data types to make
graphics device-independent

— Use these types instead of standard ones

Open-GL Data Types

number

unsigned long

suffix | data type C/C++ type OpenGL type name
b 8-bit integer signed char GLbyte
S 16-bit integer Short GLshort
i 32-bit integer int or long GLint, GLsizei
f 32-bit float Float GLfloat, GLclampf
d 64-bit float Double GLdouble,GLclampd
ub 8-bit unsigned unsigned char | GLubyte,GLboolean
number
us 16-bit unsigned |unsigned short | GLushort
number
ui 32-bit unsigned |unsigned int or | GLuint,Glenum,GLDbitfield

Setting Drawing Colors in GL

» glColor3f(red, green, blue);

// set drawing color
or3f(1.0, 0.0, 0.0);
or3f(0.0, 1.0, 0.0);
or3f(0.0, 0.0, 1.0);
or3f(0.0, 0.0, 0.0);
or3f(1.0, 1.0, 1.0);
or3f(1.0, 1.0, 0.0);
or3f(1.0, 0.0, 1.0);

// red

/[green

// blue

// black

// bright white
// bright yellow
/[magenta

Setting Background Color in GL

» glClearColor (red, green, blue, alpha);

— Sets background color.

— Alpha is degree of transparency; use 0.0 for

NOW.

e glClear(GL COLOR_BUFFER_BI
— clears window to background color

);

Setting Up a Coordinate System

void myinit(void)

{

giMatrixMode(GL_PROJECTION);
glLoadldentity();

gluOrtho2D(0, 640.0, 0, 480.0);

}

/[sets up coordinate system for window from
(0,0) to (679, 479)

Drawing Lines

glBegin (GL_LINES); //draws one line

— glVertex2i (40, 100); // between 2 vertices
— glVertex2i (202, 96);

glENnd ();

glFlush();

If more than two vertices are specified
between glBegin(GL _LINES) and glEnd()
they are taken In pairs, and a separate line
IS drawn between each pair.

Line Attributes

e Color, thickness, stippling.
« glColor3f() sets color.

e glLineWidth(4.0) sets thickness. The default
thickness is 1.0.

a). thin lines Db). thick lines c). stippled lines

Setting Line Parameters

* Polylines and Polygons: lists of vertices.

* Polygons are closed (right); polylines need
not be closed (left).

al b

X

Polyline/Polygon Drawing

glBegin (GL_LINE_STRIP);

[/ GL_LINE LOOP to close polyline (make
It a polygon)

— /I glVertex2i () calls go here

glENnd ();

glFlush ();

A GL _LINE_LOOP cannot be filled with
color

Examples

* Drawing line graphs: connect each pair of
(X, f(x)) values

e Must scale and shift

jWANAN

VY

Examples (2)

 Drawing polyline from vertices Iin a file
— # polylines
— # vertices In first polyline
— Coordinates of vertices, X y, one pair per line
— Repeat last 2 lines as necessary

e File for dinosaur available from Web site

e Code to draw polylines/polygons in Fig.
2.24.

Examples (3)

_

T)

Examples (4)

 Parameterizing Drawings: allows making
them different sizes and aspect ratios

 Code for a parameterized house Is In Fig.
2.27.

Examples (5)

Examples (6)

e Polyline Drawing

e Code to set up an array of vertices Is In
Fig. 2.29.

e Code to draw the polyline is in Fig. 2.30.

Relative Line Drawing

Requires keeping track of current position on
screen (CP).

moveTo(x, y); set CP to (x, V)

lineTo(x, y); draw a line from CP to (X, y), and
then update CP to (X, y).

Code is in Fig. 2.31.

Caution! CP Is a global variable, and therefore
vulnerable to tampering from instructions at
other points in your program.

Drawing Aligned Rectangles

* glRecti (GLint x,, GLint y,, GLint x,, GLint
y,); I opposite corners; filled with current
color; later rectangles are drawn on top of
previous ones

b

Aspect Ratio of Aligned Rectangles

e Aspect ratio = width/height

d . b
11V8.5 4
C
landscape LV screen i
Golden Rectangle
e
d
1 2511]
suare portrait
Lidp

Filling Polygons with Color

* Polygons must be convex: any line from
one boundary to another lies inside the
polygon; below, only D, E, F are convex

X&O
e

Filling Polygons with Color (2)

e glBegin (GL_POLYGON);
— /lglVertex2f (...); calls go here
* glEnd ();

* Polygon is filled with the current drawing
color

Other Graphics Primitives

+ GL TRIANGLES, GL TRIANGLE STRIP,
GL TRIANGLE FAN

« GL QUADS, GL QUAD STRIP

OL_TRIANGLES GOL_TREIANGLE STRIFP GL TRIANGLE FAM
GL_OUADS GL OQUAT STEIP

0y (i

Simple User Interaction with Mouse
and Keyboard

e Register functions:
— glutMouseFunc (myMouse);
— glutkeyboardFunc (myKeyboard);

o Write the function(s)

« NOTE that any drawing you do when you
use these functions must be done IN the
mouse or keyboard function (or in a
function called from within mouse or
keyboard callback functions).

Example Mouse Function

e void myMouse(int button, int state, Int X, Int

y);

e Buttonisone of GLUT LEFT BUTTON,
GLUT MIDDLE _BUTTON, or
GLUT RIGHT BUTTON.

o State Is GLUT_UP or GLUT DOWN.

« X and y are mouse position at the time of
the event.

Example Mouse Function (2)

The x value Is the number of pixels from the left
of the window.

The y value Is the number of pixels down from
the top of the window.

In order to see the effects of some activity of the
mouse or keyboard, the mouse or keyboard
handler must call either myDisplay() or
glutPostRedisplay().

Code for an example myMouse() Is in Fig. 2.40.

Polyline Control with Mouse

 Example use:

" R

Mext chick here

f o Chck here first

Code for Mouse-controlled Polyline

void myMocuse(int button, int state, int x, iat y)
[
f#define HUM 20
gtatic GLintPoint List [HUM]
gatatic int laet = -1: Ff last index used =a far

ff test for mouse button as well ae for a full array

if{button == GLUT_LEFT_RUTTOM && state == GLUT_DOWH && laet <€ (HUM -1])
[

List [++laet] .x = x; £ add new point to list

List[1laet].y gereenHeight - oy

glclesar (GL_COLOR_BUFFEE_EIT) ; ff clear the screan

glBegin(GL_LINE_STRIF); ff redraw the polylines

forfdnt 4 = 0; 4 <= last; i++)
glvertex2i(List[i].x, List[i].yJ:
alEnd (] ;
glFlushil ;

]

elge ifi{button == GLUT_RIGHT_EBUTTON && state == GLUT_DOWH)

last = -1; /f reset the liet to empty

Using Mouse Motion Functions

* glutMotionFunc(myMovedMouse); //
moved with button held down

o glutPassiveMotionFunc(myMovedMouse);
// moved with buttons up

* myMovedMouse(int x, inty); X and y are
the position of the mouse when the event
occurred.

« Code for drawing rubber rectangles using
these functions is in Fig. 2.41.

Example Keyboard Function

void myKeyboard(unsigned char theKey, int
mouseX, int mouseY)

{
GLint X = mouseX:

GLint y = screenHeight - mouseY:; // flip y value
switch(theKey)

{case ‘p’: drawDot(x, y); break;
/[draw dot at mouse position
case ‘E’: exit(-1); [terminate the program
default: break; // do nothing

}
}

Example Keyboard Function (2)

e Parameters to the function will always be
(unsigned char key, int mouseX, Int
mouseY).

 The y coordinate needs to be flipped by
subtracting it from screenHeight.

* Body Is a switch with cases to handle
active keys (key value i1s ASCII code).

e Remember to end each case with a break!

Using Menus

e Both GLUT and GLUI make menus
available.

e GLUT menus are simple, and GLUI menus
are more powerful.

 We will build a single menu that will allow
the user to change the color of a triangle,
which is undulating back and forth as the

application proceeds.

GLUT Menu Callback Function

* Int glutCreateMenu(myMenu); returns menu ID
« void myMenu(int num); //handles choice num

 void glutAddMenuEntry(char* name, int value); //
value used in myMenu switch to handle choice

» void glutAttachMenu(int button); // one of
GLUT_RIGHT _BUTTON,

GLUT _MIDDLE _BUTTON, or

GLUT LEFT BUTTON

— Usually GLUT _RIGHT BUTTON

GLUT subMenus

* Create a subMenu first, using menu commands,
then add it to main menu.

— A submenu pops up when a main menu item is
selected.
e glutAddSubMenu (char* name, int menulD); //
menulD is the value returned by glutCreateMenu
when the submenu was created

« Complete code for a GLUT Menu application is
In Fig. 2.44. (No submenus are used.)

GLUI Interfaces and Menus

: GLUI S[=] B3
Static Text | Listbox 1 [Option 3 5] " Rollout (open) — |
~Panel - | Listbox 2 [Option 1+ Edittext| Hi there!

- Radio Group Edittext (int)l 123

¢~ Radio Button 1 _ _
" Radio Button 2 @\i |\‘ Edittext (ﬂoat)l 23.124

(¢ Radio Button 3 _ _ —
| Rotation 1 Rotation 2 Spinner (|nt)|2935 =l

[v Checkbox 1
|

e 4 _‘ Spinner (ﬂoat)|984.56 =
=
) V- ,
Button \'/- | \/ : .
T e - — - Rollout {closed) + H
Another Button ranslation XY Translation Z
' i [© Another closed rollout +
Yet Another Button : I
N—
N/

Translation X Translation Y

GLUI Interfaces

 An example program illustrating how to

use GLUI interface options is available on
book web site.

 Most of the work has been done for you;

you may cut and paste from the example
programs in the GLUI distribution.

