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More on Coordinate SystemsMore on Coordinate Systems

• We have been using the coordinateWe have been using the coordinate 
system of the screen window (in pixels).

• The range is from 0 (left) to some value• The range is from 0 (left) to some value 
screenWidth – 1 in x, and from 0 (usually 
top) to some value screenHeight 1 in ytop) to some value screenHeight –1 in y.  
– We can use only positive values of x and y.

Th l t h l ( l– The values must have a large range (several 
hundred pixels) to get a reasonable size 
drawingdrawing.



Coordinate Systems (2)Coordinate Systems (2)

• It may be much more natural to think in terms ofIt may be much more natural to think in terms of 
x varying from, say, -1 to 1, and y varying from  
–100.0 to 20.0. 

• We want to separate the coordinates we use in a 
program to describe the geometrical object from 
the coordinates we use to size and position the 
pictures of the objects on the display. 
D i i i ll f d d li• Description is usually referred to as a modeling
task, and displaying pictures as a viewing task. 



Coordinate Systems (3)Coordinate Systems (3)

• The space in which objects are describedThe space in which objects are described 
is called world coordinates (the numbers 
used for x and y are those in the worldused for x and y are those in the world, 
where the objects are defined). 

• World coordinates use the Cartesian xy• World coordinates use the Cartesian xy-
coordinate system used in mathematics, 
based on whatever units are convenientbased on whatever units are convenient.



Coordinate Systems (4)Coordinate Systems (4)

• We define a rectangular world window inWe define a rectangular world window in 
these world coordinates. 

• The world window specifies which part ofThe world window specifies which part of 
the world should be drawn: whichever part 
lies inside the window should be drawn, 
and whichever part lies outside should be 
clipped away and not drawn.  

• OpenGL does the clipping automatically. 



Coordinate Systems (5)Coordinate Systems (5)
• In addition, we define a rectangular viewport in , g p

the screen window on the display. 
• A mapping (consisting of scalings [change size] 

d l i [ bj ]) b hand translations [move object]) between the 
world window and the viewport is established by 
OpenGLOpenGL.  

• The objects inside the world window appear 
automatically at proper sizes and locations 
inside the viewport (in screen coordinates,
which are pixel coordinates on the display). 



Coordinate Systems ExampleCoordinate Systems Example

• We want to graphWe want to graph

sinc( ) sin( )x x
x





• Sinc(0) = 1 by 

definition Interesting

x

definition.  Interesting 
parts of the function 
are in -4.0 ≤ x ≤ 4.0.



Coordinate Systems Example (2)Coordinate Systems Example (2)

• The program which graphs this function isThe program which graphs this function is 
given in Fig. 3.3.

• The function setWindow sets the worldThe function setWindow sets the world 
window size:

void setWindow(GLdouble left, GLdoublevoid setWindow(GLdouble left, GLdouble 
right, GLdouble bottom, GLdouble top)

{ glMatrixMode(GL PROJECTION);{           glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(left right bottom top);}gluOrtho2D(left, right, bottom, top);}



Coordinate Systems Example (3)Coordinate Systems Example (3)

• The function setViewport sets the screenThe function setViewport sets the screen 
viewport size:

void setViewport(GLint left GLint right GLintvoid setViewport(GLint left, GLint right, GLint 
bottom, GLint top)

{ lVi t(l ft b tt i ht l ft t{ glViewport(left, bottom, right - left, top -
bottom);}

• Calls: setWindow(-5.0, 5.0, -0.3, 1.0);
• setViewport(0, 640, 0, 480);p ( , , , );



Windows and ViewportsWindows and Viewports
• We use natural coordinates for what we are 

drawing (the world window).
• OpenGL converts our coordinates to screen 

di h i dcoordinates when we set up a screen window 
and a viewport. The viewport may be smaller 
than the screen window The default viewport isthan the screen window. The default viewport is 
the entire screen window.

• The conversion requires scaling and shifting: 
mapping the world window to the screen window 
and the viewport.



Windows and ViewportWindows and Viewport



Mapping WindowsMapping Windows

• Windows are described by their left, top, right,Windows are described by their left, top, right, 
and bottom values, w.l, w.t, w.r, w.b.

• Viewports are described by the same values: v.l, p y ,
v.t, v.r, v.b, but in screen window coordinates.



Mapping (2)Mapping (2)

• We can map any aligned rectangle to anyWe can map any aligned rectangle to any 
other aligned rectangle.

If the aspect ratios of the 2 rectangles are not– If the aspect ratios of the 2 rectangles are not 
the same, distortion will result.

 y V.rV l

W l W

W.t 
V.rV.l 

V.t

sx

x
W.l W.r

viewport
V.b

sx
sy Screen windowwindowW.b 



Window-to-Viewport MappingWindow to Viewport Mapping

• We want our mapping to be proportional:We want our mapping to be proportional: 
for example, if x is ¼ of the way between 
the left and right world window boundariesthe left and right world window boundaries, 
then the screen x (sx) should be ¼ of the 
way between the left and right viewportway between the left and right viewport 
boundaries.



Window-to-Viewport Mapping (2)Window to Viewport Mapping (2)

• This requirement forces our mapping to beThis requirement forces our mapping to be 
linear.

sx= Ax + C sy = B y + D– sx= Ax + C, sy = B y + D
– We require (sx – V.l)/(V.r – V.l) =                       

(x – W l)/(W r – W l) giving(x W.l)/(W.r W.l), giving
• sx = x*[(V.r-V.l)/(W.r-W.l)] + {V.l – W.l*[(V.r-

V.l)/(W.r-W.l)]}, or A = (V.r-V.l)/(W.r-W.l), CV.l)/(W.r W.l)]}, or A  (V.r V.l)/(W.r W.l), C 
= V.l – A*w.l



Window-to-Viewport Mapping (3)Window to Viewport Mapping (3)

– We likewise require (sy – V.b)/(V.t – V.b) =We likewise require (sy V.b)/(V.t V.b)             
(y – W.b)/(W.t – W.b), giving
• B = (V.t-V.b)/(W.t-W.b), D = V.b – B*W.b( ) ( ),

• Summary: sx = A x + C, sy = B y + D, 
with V V lwith 

A V r V l
W r W l

C V l A W l



  
. .
. .

, . .

B V t V b
W t W b

D V b B W b



  
. .
. .

, . .
W t W b. .



GL Functions To Create the MapGL Functions To Create the Map

• World window: void gluOrtho2D(GLdoubleWorld window: void gluOrtho2D(GLdouble 
left, GLdouble right, GLdouble bottom, 
GLdouble top);GLdouble top);

• Viewport: void glViewport(GLint x, GLint y, 
GLint width GLint height);GLint width, GLint height);
– This sets the lower left corner of the viewport, 

along with its width and heightalong with its width and height.



GL Functions To Create the Map 
(2)(2)

• Because OpenGL uses matrices to set up all its p p
transformations, the call to gluOrtho2D() must be 
preceded by two setup functions:  
glMatrixMode(GL PROJECTION);glMatrixMode(GL_PROJECTION);
and glLoadIdentity();

• setWindow() and setViewport() are useful code• setWindow() and setViewport() are useful code 
“wrappers”.
– They simplify the process of creating the ey s p y t e p ocess o c eat g t e

window and viewport.



FIG3_7.CPP

//--------------- setWindow ---------------------

void setWindow(GLdouble left, Gldouble right, GLdouble bottom, GLdouble top)
{
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(left, right, bottom, top); 
}

//---------------- setViewport ------------------

void setViewport(GLdouble left, Gldouble right, GLdouble bottom, GLdouble top)
{
glViewport(left, bottom, right – left, top - bottom);
}
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Application:Tiling with ViewportsApplication:Tiling with Viewports 



Applications (continued)Applications (continued)
• Tiling A was set up by the following code:g p y g

setWindow(0, 640.0, 0, 440.0); // set a fixed window
for (int i = 0; i < 5; i++) // for each column

for (int j = 0; j < 5; j++){ // for each row
{glViewport (i*64, j*44,64, 44); // set the next 

viewportviewport
drawPolylineFile("dino.dat"); // draw it again

}}
• Tiling B requires more effort: you can only turn a 

window upside down, not a viewport. 



Applications (continued)Applications (continued)
• Code for Tiling Bg

for (int i = 0; i < 5; i++) // for each column
for (int j = 0; j < 5; j++){ // for each row

if ((i + j) % 2 == 0){
setWindow(0.0, 640.0, 0.0, 440.0);

} l {} else {
setWindow(0.0, 640.0, 440.0, 0.0); // upside-down

}}
glViewport (i*64, j*44,64, 44); // no distortion
drawPolylineFile("dino.dat"); }drawPolylineFile( dino.dat );   }



Application: Clip Zoom and PanApplication: Clip, Zoom and Pan
Clipping refers to viewing only the parts ofClipping refers to viewing only the parts of 
an image that are in the window.



Application (continued)Application (continued)

• The figure is a collection of concentricThe figure is a collection of concentric 
hexagons of various sizes, each rotated 
slightly with respect to the previous one Itslightly with respect to the previous one.  It 
is drawn by a function called hexSwirl ();

• The figure showed 2 choices of world• The figure showed 2 choices of world 
windows.
W l ld i d f• We can also use world windows for 
zooming and roaming (panning). 



Zooming and PanningZooming and Panning

• To zoom we pick a concentric set ofTo zoom, we pick a concentric set of 
windows of decreasing size and display 
them from outside inthem from outside in.



FIG3_13.CPP
float cx = 0.3, cy = 0.2;       //center of the window
float H, W = 1.2, aspect = 0.7; // window properties

set the viewport

for(int frame = 0; frame < NumFrames; frame++) // for each frame
{

clear the screen                   // erase the previous figure

  W *= 0.7;            // reduce the window width

 H = W * aspect;                    // maintain the same aspect ratio

setWindow(cx - W, cx + W, cy - H, cy + H); //set the next window

hexSwirl();                        // draw the object

 }

Page 1



Zooming and Roaming (2)Zooming and Roaming (2)

• The animation of the zoom will probablyThe animation of the zoom will probably 
not be very smooth.  We want to look at 
one drawing while the next one is drawnone drawing while the next one is drawn, 
and then switch to the new drawing.

We use glutInitDisplayMode (GLUT DOUBLE– We use glutInitDisplayMode (GLUT_DOUBLE 
| GLUT_RGB); //gives us 2 buffers, one to 
look at and one to draw in

– We add glutSwapBuffers(); after the call to 
hexSwirl (); // change to the new drawing() g g



Roaming (Panning)Roaming (Panning)

• To roam or pan we move a viewportTo roam, or pan, we move a viewport 
through various portions of the world. This 
is easily accomplished by translating theis easily accomplished by translating the 
window to a new position.

• What sequence of windows would you• What sequence of windows would you 
want in order to roam through the image?



Resizing the Screen WindowResizing the Screen Window

• Users are free to alter the size and aspectUsers are free to alter the size and aspect 
ratio of the screen window.  

• You may want GL to handle this event soYou may want GL to handle this event so 
that your drawing does not get distorted.

• Register the reshape function:Register the reshape function:
glutReshapeFunc (myReshape);

• Void myReshape (GLsizei W GLsizei H);• Void myReshape (GLsizei W, GLsizei H);
collects the new width and height for the 
window.window.



Preserving Aspect RatioPreserving Aspect Ratio

• We want the largest viewport which preservesWe want the largest viewport which preserves 
the aspect ratio R of the world window. 

• Suppose the screen window has width W and pp
height H:
– If R > W/H, the viewport should be width W , p

and height W/R
– If R < W/H, the viewport should be width H*R 

and height H
– What happens if R = W/H?



Automatic Aspect Ratio 
P i f ViPreservation for Viewports



Clipping LinesClipping Lines
• We want to draw only y

the parts of lines that 
are inside the world 
windowwindow.

• To do this, we need to 
replace line portionsreplace line portions 
outside the window by 
lines along the 

i d b d iwindow boundaries.  
The process is called 
clipping the lines.c pp g t e es



Clipping (2)Clipping (2)
• The method we will 

use is called Cohen-
Sutherland clipping.
Th 2 i i l• There are 2 trivial 
cases: a line AB 
totally inside thetotally inside the 
window, which we 
draw all of, and a line 
CD t t ll t id thCD totally outside the 
window, which we do 
not draw at all.ot d a at a



Clipping (3)Clipping (3)

• For all lines, we give each endpoint of the line aFor all lines, we give each endpoint of the line a 
code specifying where it lies relative to the 
window W:



Clipping (4)Clipping (4)

• The diagram below shows Boolean codes forThe diagram below shows Boolean codes for 
the 9 possible regions the endpoint lies in (left, 
above, below, right).



Clipping (5)Clipping (5)
• A line consists of 2 

endpoints 
(vertices), P1 and 
P If we do notP2.  If we do not 
have a trivial case, 
we must alter the 
vertices to the 
points where the 
line intersects theline intersects the 
window boundaries 
(replace P1 by A).



Clipping (6)Clipping (6)

• In the diagram, d/delyIn the diagram, d/dely 
= e/delx (similar 
triangles).

• Obviously, A.x = W.r.
• Also, delx = p1.x –, p1

p2.x, dely = p1.y – p2.y 
and e = p1.x – W.r.

• So A.y = p1.y – d.



A Line Needing 4 ClipsA Line Needing 4 Clips
• The equation of the line is q

y = x * (p1.y – p2.y)/(p1.x –
p2.x) + p2.y = mx + p2.y.
Th i t ti B ith• The intersection B with 
the top window boundary 
is at x where y = W.t, or x 
= (W.t – p2.y)/m.

• The intersection A with 
the right boundary is ythe right boundary is y 
where x = W.r, or y = 
m*W.r + p2.y.



Clipping PseudocodeClipping Pseudocode

• Complete pseudocode for the Cohen-Complete pseudocode for the Cohen
Sutherland Line Clipper is shown in Fig. 
3 213.21.







Drawing Regular Polygons, Circles, 
d Aand Arcs

• A polygon is regular if it is simple, if all its sides p yg g p ,
have equal length, and if adjacent sides meet at 
equal interior angles.  
A l i i l if f i d• A polygon is simple if no two of its edges cross 
each other. More precisely, only adjacent edges 
can touch and only at their shared endpointcan touch and only at their shared endpoint. 

• We give the name n-gon to a regular polygon 
having n sides; familiar examples are the 4-gon 
(a square), an 8-gon (a regular octagon) and so 
on. 



Regular PolygonsRegular Polygons



Drawing Circles and ArcsDrawing Circles and Arcs

• Two methods:Two methods: 
– The center is given, along with a point on 

the circlethe circle.
• Here drawCircle( IntPoint center, int radius)

can be used as soon as the radius iscan be used as soon as the radius is 
known. If c is the center and p is the given 
point on the circle, the radius is simply the 
distance from c to p, found using the usual 
Pythagorean Theorem.



Drawing Circles and ArcsDrawing Circles and Arcs

– Three points are given through which theThree points are given through which the 
circle must pass.
• It is known that a unique circle passes q p

through any three points that don't lie in a 
straight line. 

• Finding the center and radius of this circle 
is discussed in Chapter 4.



Successive Refinement of CurvesSuccessive Refinement of Curves

• Very complex curves can be fashionedVery complex curves can be fashioned 
recursively by repeatedly “refining” a 
simple curvesimple curve. 

• Example: the Koch curve, which produces 
an infinitely long line within a region ofan infinitely long line within a region of 
finite area.  



Koch CurvesKoch Curves

• Successive generations of the Koch curveSuccessive generations of the Koch curve 
are denoted K0, K1, K2,…

• The 0-th generation shape K0 is just aThe 0 th generation shape K0 is just a 
horizontal line of length 1. 

• The curve K1 is created by dividing the lineThe curve K1 is created by dividing the line 
K0 into three equal parts, and replacing the 
middle section with a triangular bump g p
having sides of length 1/ 3. The total line 
length is evidently 4 / 3. 



Koch Curves (2)Koch Curves (2)

• The second-order curve K2 is formed byThe second order curve K2 is formed by 
building a bump on each of the four line 
segments of K1segments of K1.

K2:

60°

K1:

1

60°

1





Koch Snowflake (3 joined curves)Koch Snowflake (3 joined curves)

• Perimeter: the i-th generation shape Si is three g p i
times the length of a simple Koch curve, 3(4/3)i, 
which grows forever as i increases. 
A i id h K h fl k i• Area inside the Koch snowflake: grows quite 
slowly, and in the limit, the area of S∞ is only 8/5 
the area of S0the area of S0.

S0 S1 S2



Fifth-generation Koch SnowflakeFifth generation Koch Snowflake



Parametric CurvesParametric Curves

• Three forms of equation for a given curve:Three forms of equation for a given curve:
– Explicit: e.g., y = m*x + b

Implicit: F(x y) = 0; e g y m*x b = 0– Implicit: F(x, y) = 0; e.g., y – m x –b = 0
– Parametric: x = x(t), y = y(t), t a parameter; 

frequently 0 ≤ t ≤ 1 E g P = P *(1-t) + P *tfrequently, 0 ≤ t ≤ 1.  E.g., P = P1 (1-t) + P2 t.
• P1 and P2 are 2D points with x and y 

values The parametric form is x = x1*(1-t) +values. The parametric form is x  x1 (1 t) + 
x2*t and y = y1*(1-t) + y2*t.



Specific Parametric FormsSpecific Parametric Forms

• line: x = x1*(1-t) + x2*t and y = y1*(1-t) +line: x = x1 (1 t) + x2 t and y = y1 (1 t) + 
y2*t

• circle: x = r*cos(2π t) y = r*sin(2π t)• circle: x = r*cos(2π t), y = r*sin(2π t)
• ellipse: x = W*r*cos(2π t), y = H*r*sin(2π t)

– W and H are half-width and half-height.



Finding Implicit Form from 
P i FParametric Form

• Combine the x(t) and y(t) equations toCombine the x(t) and y(t) equations to 
eliminate t.  

• Example: ellipse: x = W*r*cos(2π t) y =• Example: ellipse: x = W*r*cos(2π t), y = 
H*r*sin(2π t)

X2 W2 2 2(2 t) 2 H2 2 i 2(2 t)– X2 = W2r2cos2(2π t), y2 = H2r2sin2(2π t).
– Dividing by the W or H factors and adding 

gives (x/W)2 + (y/H)2 = 1 the implicit formgives (x/W)2 + (y/H)2 = 1, the implicit form.



> restart;

IMPLICITIZATION in MAPLE
Load the package "algcurves":
> with(algcurves);

Siegel Weierstrassform algfun_series_sol differentials genus homogeneous homology implicitize integral_basis is_hyperelliptic, , , , , , , , , ,[
j_invariant monodromy parametrization periodmatrix plot_knot plot_real_curve puiseux singularities, , , , , , , ]

Define parametric equations of an ellipse:
> param_eqs := x = W*cos(theta), y = H*sin(theta);

 := param_eqs ,x W ( )cos  y H ( )sin 
Find the implicit equation of an ellipse:
> implicitize([param_eqs],[theta=0..Pi],2,symbolic=true,useFNV=false);

{ }  W2 W2 y2

H2 x2

Define parametric equations of the unit circle:
> param_eqs := x = 1/sqrt(t^2+1), y = t/sqrt(t^2+1);

 := param_eqs ,x
1

t2 1
y

t

t2 1
Find the implicit equation of the unit circle:
> implicitize([param_eqs],[t=0..1],2,symbolic=true,useFNV=false);

{ }  1 y2 x2

> 



Drawing Parametric CurvesDrawing Parametric Curves

• For a curve C with the parametric form P(t)For a curve C with the parametric form P(t) 
= (x(t), y(t)) as t varies from 0 to T, we use 
samples of P(t) at closely spaced instantssamples of P(t) at closely spaced instants. 

)
Pm@ t = Ta). b).

P2

@ t  T

P1P(t) = (x(t), y(t))
@ t = 0



Drawing Parametric Curves (2)Drawing Parametric Curves (2)

– The position Pi = P(ti) = (x(ti), y(ti)) isThe position Pi  P(ti)   (x(ti), y(ti)) is 
calculated for a sequence {ti} of times. 

– The curve P(t) is approximated by the polyline ( ) pp y p y
based on this sequence of points Pi.

Pm
a). b).

Pm

P2

@ t = T

P1

2

P(t) = (x(t), y(t))
@ t = 0



Drawing Parametric Curves (3)Drawing Parametric Curves (3)

• Code:Code:
// draw the curve (x(t), y(t)) using 
// th t[0] t[ 1] f l ti// the array t[0],..,t[n-1] of sample times
glBegin(GL_LINES);

for(int i = 0; i < n; i++)
glVertex2f((x(t[i]) y(t[i]));glVertex2f((x(t[i]), y(t[i]));

glEnd();



Parametric Curves: AdvantagesParametric Curves: Advantages

• For drawing purposes parametric formsFor drawing purposes, parametric forms 
circumvent all of the difficulties of implicit 
and explicit formsand explicit forms. 

• Curves can be multi-valued, and they can 
self intersect any number of timesself-intersect any number of times.

• Verticality presents no special problem: 
(t) i l b t tx(t) simply becomes constant over some 

interval in t. 



Polar Coordinates Parametric FormPolar Coordinates Parametric Form

• x = f(θ)*cos(θ) y = f(θ)*sinθx = f(θ) cos(θ), y = f(θ) sinθ
– cardioid: f(θ) = K*(1 + cos(θ)), 0 ≤ θ ≤ 2π

rose: f(θ) = K cos(n*θ) 0 ≤ θ ≤ 2nπ where n– rose: f(θ) = K cos(n θ), 0 ≤ θ ≤ 2nπ, where n 
is number of petals (n odd) or twice the 
number of petals (n even)number of petals (n even)

– spirals: Archimedean, f(θ) = Kθ; logarithmic, 
f(θ) = Keaθ( )

• K is a scale factor for the curves.



Polar coordinates Parametric Form 
(2)(2)

– conic sections (ellipse hyperbola circleconic sections (ellipse, hyperbola, circle, 
parabola): f(θ) = (1 ± e cos θ)-1

• e is eccentricity:• e is eccentricity: 
1 : parabola; 
0 : circle;0 : circle; 
between 0 and 1, ellipse; 

t th 1 h b lgreater than 1, hyperbola



Example for EllipseExample for Ellipse



ShapesShapes

• Cardioid, 2 roseCardioid, 2 rose 
curves, Archimedean 
spiral


