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Representing Lines

• A line passes through 2 points and is infinitely 
long.

• A line segment has 2 endpoints.
• A ray has a single endpoint.



Representing Lines (2)
• There are 2 useful 

line representations:
• Parametric form: we 

have 2 points, B and 
C, on the line. P(x, y) 
is on the line when P 
= C + bt, where b = B 
– C.
– 0 ≤ t ≤ 1: line segment; 

-∞≤ t ≤ ∞: line; -∞≤ t ≤ 
0 or 0 ≤ t ≤ ∞: ray.



Representing Lines (3)
• As t varies so does the 

position of L(t) along the 
line. (Let t be time.) 

• If t = 0, L(0) = C so at t = 
0 we are at point C.

• At  t = 1, L(1) = C + (B -
C) = B. 

• If t > 1 this point lies 
somewhere on the 
opposite side of B from C, 
and when t < 0 it lies on 
the opposite side of C
from B.



Representing Lines (4)

• L(t) lies fraction t of the way between C
and B when t lies between 0 and 1. 

• When t = 1/2 the point L(0.5) is the 
midpoint between C and B, and when t = 
0.3 the point L(0.3) is 30% of the way from 
C to B: |L(t) – C| = |b| |t| and |B - C| = |b|, 
so the value of |t| is the ratio of the 
distances |L(t) - C| to |B - C|. 



Representing Lines (5)

• The speed with which the point L(t) moves along 
line L is given by distance |b| t divided by time t, 
so it is moving at constant speed |b|.  

• There is a significant difference between a 
parametric form for a curve (p(t)) and a motion 
path for the same curve.  
– Given p(t) swept out as t increases gives no 

information as to how fast the point moves along that 
path. (The picture for p(t) is the same as that for p(t2) 
or p(t3).) 



Representing Lines (6)

• Point-normal (implicit) 
form: (this works in 
2D only; the 3D 
version requires 2 
equations.)
– fx + gy = 1 gives   

(f, g)·(x, y) = 1.

– Given B and C on 
the line, b = B – C 
gives b┴ = n, 
which is 
perpendicular to    
R – C.  (R is any 
point (x, y) on the 
line.)

– The equation is n ·
(R – C) = 0.



Changing Representations

• From  f x + g y = 1 to point-normal form: 
Writing (f, g) · (x, y) = 1, n is (f, g) (or any 
multiple thereof).

• From point normal form n · (P - C) = 0 to 
parametric form: L(t) = C + n┴t



Representing Planes: Point-Normal 
Form

• Point-normal form: n·(P – B) = 0; where B 
is a given point on the plane, and P = (x, y, 
z, 1)T.



Planes: Parametric Form

• A plane can be infinite 
in 2 directions, semi-
infinite, or finite.
– Parametric form: 

requires 3 non-
collinear points on 
the plane, A, B, 
and C. 

– P(s, t) = C + sa + 
tb, where a = A – C 
and b = B – C.

– -∞≤ s ≤ ∞ and -∞≤ t 
≤ ∞: infinite plane.

– 0 ≤ s ≤ 1 and 0 ≤ t 
≤ 1: a finite plane, 
or patch. 



Planes: Parametric Form (2)

• We can rewrite P(s,t) = C + sa + tb, 
where a = A – C and b = B – C, as an 
affine combination of points: P(s, t) =  s A
+ t B + (1 - s - t)C.



Planes: Parametric Form (3)

• The figure shows the available range of s
and t as a square in parameter space, 
and the patch that results from this 
restriction in object space. 



Patches

• Mapping textures onto faces involves finding a 
mapping from a portion of parameter space onto 
object space, as we shall see later.  

• Each point (s, t) in parameter space corresponds 
to one 3D point in the patch P(s, t) = C + as + bt. 

• The patch is a parallelogram whose corners 
correspond to the four corners of parameter 
space and are situated at P(0, 0) = C;  P(1, 0) = 
C + a; P(0, 1) = C + b; P(1, 1) = C + a + b.



Patches (2)

• The vectors a and b determine both the 
size and the orientation of the patch. 

• If a and b are perpendicular, the grid will 
become rectangular.

• If in addition a and b have the same 
length, the grid will become square.

• Changing C just translates the patch 
without changing its shape or orientation.



Finding the Intersection of 2 Line 
Segments

• They can miss each other (a and b), overlap in 
one point (c and d), or even overlap over some 
region (e). They may or may not be parallel. 



Intersection of 2 Line Segments (2)

• Every line segment has a parent line, the 
infinite line of which it is part. Unless two parent 
lines are parallel, they will intersect at some 
point in 2D. We locate this point.

• Using parametric representations for each of the 
line segments in question, call AB the segment 
from A to B. Then AB(t) = A + b t, where for 
convenience we define b = B - A. 

• As t varies from 0 to 1 each point on the finite 
line segment is crossed exactly once. 



Intersection of 2 Line Segments (3)

• AB(t) = A + bt, CD(u) = C + du, where b = 
B – A and d = C – D.

• At the intersection, A + bt = C + du, or bt = 
c + du, with c = C – A.

• Taking dot product with d┴ gives b·d┴ t = 
c·d┴ .

• Taking dot product with b┴ gives - c·b┴  = 
d·b┴ u. 



Intersection of 2 Line Segments (4)

• Case1: b·d┴ = 0 means d·b┴ = 0 and the 
lines are either the same line or parallel 
lines.  There is no intersection.

• Case 2: b·d┴ ≠ 0 gives t = c·d┴ / b·d┴  
and u = - c·b┴/ d·b┴ .  

• In this case, the line segments intersect if 
and only if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, at P = A 
+ b(c·d┴ / b·d┴).



Finding A Circle through 3 Points

• We want to find the center and the radius of the 
circle.
– The 3 points make a triangle, and the center S is 

where the perpendicular bisectors of two of the sides 
of the triangle meet.

– The radius is r = |A – S|.



Circle through 3 Points (2)

• The perpendicular 
bisector passes 
through the 
midpoint M = ½ (A 
+ B) of the line AB, 
in the direction     
(B – A)┴.

• Let a = B – A, b = C –
B, and c = A - C.

A

B

M

S

L



Circle through 3 Points (3)

– Midpoint of AB: A + a / 2; direction 
perpendicular to AB: a┴. 

– The perpendicular bisector of AB is A + a / 2 + 
a┴ t, and for AC, A - c / 2 + c┴ u, using 
parameter u.

– Point S lies where these meet, at the solution 
of a┴t = b / 2 + c┴ u (where we have used a +
b + c = 0). 

– Radius R = |S – A|, or radius 
a
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Clipping a Polygon

• “To clip a polygon against a window” 
means to find which part of the polygon is 
inside the window and thus will be drawn.  



Clipping a Polygon (2)

• In Chapter 3, we looked at Cohen-
Sutherland clipping of lines in a 
rectangular window, which involves the 
intersection of 2 lines.

• Here we will focus the Cyrus-Beck clipping 
algorithm, which clips polygons against 
lines and planes.



Intersections of Lines and Planes

• Intersections of a line and a line or plane are 
used in ray-tracing and 3D clipping: we want to 
find the “hit point”.



Intersections of Lines and Planes 
(2)

• Suppose the ray hits at t = thit, the hit time. 
• At this value of t the ray and line or plane 

must have the same coordinates, so A + c
thit must satisfy the equation of the point 
normal form for the line or plane, n·(P –
B)= 0.

• When the ray intersects (hits) the line or 
plane, A + cthit = P, giving n·(A + cthit – B) 
= 0.



Intersections of Lines and Planes 
(3)

• Expanding and solving for thit gives          
thit = n·(B - A)/n·c, if n·c ≠ 0.
– If n·c = 0, the line is parallel to the plane and 

there is no intersection.
• To find the hit point Phit, substitute thit into 

the representation of the ray: Phit = A + cthit 
= = A + c(n·(B - A)/n·c). 



Direction of Ray
• If n·c = 0, the ray is parallel to the line.
• If n·c > 0, c and n make an angle of less than 

90o with each other.
• If n·c < 0, c and n make an angle of more than 

90o with each other.



Polygon Intersection Problems
• Is a given point inside or outside the polygon?
• Where does a given ray first intersect the 

polygon?
• Which part of a given line L lies inside the object, 

and which outside?



Polygon Intersection Problems (2)

• Convex Polygons and Polyhedra: a simple case
• They are described by a set of bounding 

lines/planes, and the entire polygon/polyhedron 
is on one side of the line/plane.



Polygon Intersection Problems (3)

– The line/plane divides space into two halves: 
the outside space, which shares no points 
with the polyhedron, and the inside half 
space, where the polyhedron lies. 

– The polyhedron is the intersection of all the 
inside half spaces.



Ray Intersection Problem

• Where does the ray A + ct hit convex polygon 
P? 

• For each bounding line, we find the (point-
normal form of the) equation and the outside 
normal to this line.
– If we traverse vertices counterclockwise, the outside 

normal will always be the clockwise normal, (vy, -vx).
• Because of convexity, each line hits the polygon 

twice: going in, and coming out.



Ray Intersection Problem (2)
• For a line A + ct, find its intersections with each 

of the boundary lines: thit = n·(B - A)/n·c, if n·c ≠ 
0. 

• If n·c > 0, the line is entering the polygon. Set tin
= max(thit, tin).

• If n·c < 0, the line is leaving the polygon.  Set tout
= min(thit, tout).

• If tin > tout the ray misses the polygon entirely.  
Otherwise, the ray is inside the polygon during 
[tin, tout].



Example

L1 L3

L0 L4

L5
@0

@1

@.2

@.28

@.83

@.66

intersects L2
@3.4

intersects L3
@ -4.7

A

C



Example (2)

• The sequence of 
updates to Tin
and Tout as the 
various line 
intersections are 
tested.

Line 
tested

Tin Tout

0 0 0.83

1 0 0.66

2 0 0.66

3 0 0.66

4 0.2 0.66

5 0.28 0.66



Inside-Outside Tests

• Is point P inside or outside the polygon?
– Form a vector u = D – P, where D is any point outside 

the polygon, and u intersects no vertices of the 
polygon.

– Create n normal to u.  Let w = 0 be an int (the winding 
number.)

– Let E be the vector along an edge crossed by u. 
Calculate d = E·n: if d > 0, add 1 to w; if d < 0, 
subtract 1 from w.  

– Repeat for each edge crossed by u.  If at the end, w = 
0, P is outside; else P is inside.



Inside-Outside Tests (2)

• Equivalent method: create u as before.
– Calculate tin, tout, and tP (time u reaches P).
– If tin ≤ tP ≤ tout, P is inside; else it is outside.



Cyrus-Beck Clipping
• Cyrus-Beck clipping clips a line segment against any 

convex polygon P: 
• int CyrusBeckClip(Line& seg, LineList& L) uses 

parameters seg (the line segment to be clipped, which 
contains the first and second endpoints named seg.first 
and seg.second), and the list L of bounding lines of the 
polygon. 

• It clips seg against each line in L, and places the clipped 
segment back in seg. (This is why seg must be passed 
by reference.)

• The routine returns 0 if no part of the segment lies in P
or 1 if some part of the segment does lie in P.



Cyrus-Beck Pseudo-code (2D)

• Variables numer and denom hold the numerator 
and denominator for thit:
– Numer = n·(B – A), denom = n·c

int CyrusBeckClip(LineSegment& seg, LineList& L)
{ double numer, denom; 

double tIn = 0.0, tOut = 1.0; 
Vector2 c, tmp;
<form vector: c = seg.second - seg.first>



Cyrus-Beck Pseudo-code (2)

for(int i = 0; i < L.num; i++) // chop at each 
bounding line
{  <form vector tmp = L.line[i].pt - first>

numer = dot(L.line[i].norm, tmp);
denom = dot(L.line[i].norm, c);
if (!chopCI(numer, denom, tIn, tOut)) return 0; 

// early out
}

// adjust the endpoints of the segment; do second 
one 1st.



Cyrus-Beck Pseudo-code (3)
if (tOut < 1.0 ) // second endpoint was altered
{ seg.second.x  = seg.first.x + c.x * tOut;

seg.second.y  = seg.first.y + c.y * tOut;
}
if (tIn > 0.0)  // first endpoint was altered
{ seg.first.x  = seg.first.x + c.x * tIn;

seg.first.y  = seg.first.y + c.y * tIn;
}
return 1; // some segment survives

}



Cyrus-Beck Pseudo-code (4)

• The routine chopCI() uses numer and 
denom to calculate the hit time at which 
the ray hits a bounding line, determines 
whether the ray is entering or exiting the 
polygon, and chops off the piece of the 
candidate interval CI that is thereby found 
to be outside the polygon.



Cyrus-Beck Pseudo-code (5)

int chopCI(double& tIn, double& tOut, double 
numer, double denom)

{ double tHit;
if (denom < 0) // ray is entering 
{ tHit = numer / denom;

if (tHit > tOut) return 0;  // early out
else if (tHit > tIn) tIn = tHit; // take larger t

}



Cyrus-Beck Pseudo-code (6)
else if (denom > 0)          // ray is exiting

{ tHit = numer / denom;
if(tHit < tIn) return 0;      // early out
if(tHit < tOut) tOut = tHit; // take smaller t

}
else             // denom is 0: ray is parallel 
if (numer <= 0) return 0;   // missed the line
return 1; // CI is still non-empty

}



3D Cyrus-Beck Clipping
• The Cyrus Beck clipping algorithm works in 

three dimensions in exactly the same way. 
• In 3D the edges of the window become planes 

defining a convex region in three dimensions, 
and the line segment is a line in 3D space.

• ChopCI() needs no changes at all (since it uses 
only the values of dot products). 

• The data types in  CyrusBeckClip() must of 
course be extended to 3D types, and when the 
endpoints of the line are adjusted the z-
component must be adjusted as well.



More Advanced Clipping
Algorithm OpenGL 

Yes/No?
Description

Cohen 
Sutherland 

Yes Line segments against a 
rectangle or cube (2D: 
square) 

Cyrus-Beck Tries; poor 
results

Line against a convex 
polygon 

Sutherland–
Hodgman 

No Any polygon (convex or non-
convex) against any convex 
polygon

Weiler–
Atherton 

No Any polygon against any 
polygon



Sutherland-Hodgman Clipping
• The Sutherland–Hodgman clipper is similar to 

the Cyrus–Beck method, clipping against a 
convex polygon. 

• It clips an entire polygon (which need not be 
convex) against the convex polygon. Its output is 
a polygon (or a set of polygons). 

• It can be important to retain the polygon 
structure during clipping, since the clipped 
polygons may need to be filled with a pattern or 
color. 

• This is not possible if the edges of the polygon 
are clipped individually.



Weiler-Atherton Clipping
• The Weiler–Atherton clipping algorithm clips 

any polygon, P, against any other polygon, W, 
convex or not. 

• It can output the part of P that lies inside W
(interior clipping) or the part of P that lies 
outside W (exterior clipping). 

• In addition, both P and W can have holes in 
them. 

• This algorithm is much more complex than the 
others and a thorough discussion is beyond the 
scope of this course. 



Clipping for Arbitrary Polygons

• Much harder than for convex polygons.
– Line may intersect polygon any even number of 

times, in in/out pairs.
– If a line passes through a vertex, the vertex is counted 

as a pair of points (preferred) or as no intersection.



Clipping for Arbitrary Polygons (2)

• We create a list of hit times for the given 
line, A + ct, with the polygon edges: the 
edge from Pi+1 to Pi is given by Pi + eiu, 
where ei = Pi+1 – Pi, and 0 ≤ i ≤ N.

• Because the polygon is closed, PN = P0.
• thit = ei┴ ·bi/ ei┴ ·c, where bi = Pi – A.
• u = c┴ ·bi/ ei┴ ·c
• True hits occur only for 0 ≤ u ≤ 1.



Clipping for Arbitrary Polygons (3)

• We sort the list of hits by increasing thit times and 
take successive pairs as representing an in/out 
time.  (In other words, the line is inside between 
the first pair of times, the second pair of times, 
etc.)


