
Computer Graphics using OpenGL,
3rd Edition

F. S. Hill, Jr. and S. Kelley

Chapter 4.4-8
Vector Tools for Graphics

S. M. Lea
University of North Carolina at Greensboro

© 2007, Prentice Hall

Representing Lines

• A line passes through 2 points and is infinitely
long.

• A line segment has 2 endpoints.
• A ray has a single endpoint.

Representing Lines (2)
• There are 2 useful

line representations:
• Parametric form: we

have 2 points, B and
C, on the line. P(x, y)
is on the line when P
= C + bt, where b = B
– C.
– 0 ≤ t ≤ 1: line segment;

-∞≤ t ≤ ∞: line; -∞≤ t ≤
0 or 0 ≤ t ≤ ∞: ray.

Representing Lines (3)
• As t varies so does the

position of L(t) along the
line. (Let t be time.)

• If t = 0, L(0) = C so at t =
0 we are at point C.

• At t = 1, L(1) = C + (B -
C) = B.

• If t > 1 this point lies
somewhere on the
opposite side of B from C,
and when t < 0 it lies on
the opposite side of C
from B.

Representing Lines (4)

• L(t) lies fraction t of the way between C
and B when t lies between 0 and 1.

• When t = 1/2 the point L(0.5) is the
midpoint between C and B, and when t =
0.3 the point L(0.3) is 30% of the way from
C to B: |L(t) – C| = |b| |t| and |B - C| = |b|,
so the value of |t| is the ratio of the
distances |L(t) - C| to |B - C|.

Representing Lines (5)

• The speed with which the point L(t) moves along
line L is given by distance |b| t divided by time t,
so it is moving at constant speed |b|.

• There is a significant difference between a
parametric form for a curve (p(t)) and a motion
path for the same curve.
– Given p(t) swept out as t increases gives no

information as to how fast the point moves along that
path. (The picture for p(t) is the same as that for p(t2)
or p(t3).)

Representing Lines (6)

• Point-normal (implicit)
form: (this works in
2D only; the 3D
version requires 2
equations.)
– fx + gy = 1 gives

(f, g)·(x, y) = 1.

– Given B and C on
the line, b = B – C
gives b┴ = n,
which is
perpendicular to
R – C. (R is any
point (x, y) on the
line.)

– The equation is n ·
(R – C) = 0.

Changing Representations

• From f x + g y = 1 to point-normal form:
Writing (f, g) · (x, y) = 1, n is (f, g) (or any
multiple thereof).

• From point normal form n · (P - C) = 0 to
parametric form: L(t) = C + n┴t

Representing Planes: Point-Normal
Form

• Point-normal form: n·(P – B) = 0; where B
is a given point on the plane, and P = (x, y,
z, 1)T.

Planes: Parametric Form

• A plane can be infinite
in 2 directions, semi-
infinite, or finite.
– Parametric form:

requires 3 non-
collinear points on
the plane, A, B,
and C.

– P(s, t) = C + sa +
tb, where a = A – C
and b = B – C.

– -∞≤ s ≤ ∞ and -∞≤ t
≤ ∞: infinite plane.

– 0 ≤ s ≤ 1 and 0 ≤ t
≤ 1: a finite plane,
or patch.

Planes: Parametric Form (2)

• We can rewrite P(s,t) = C + sa + tb,
where a = A – C and b = B – C, as an
affine combination of points: P(s, t) = s A
+ t B + (1 - s - t)C.

Planes: Parametric Form (3)

• The figure shows the available range of s
and t as a square in parameter space,
and the patch that results from this
restriction in object space.

Patches

• Mapping textures onto faces involves finding a
mapping from a portion of parameter space onto
object space, as we shall see later.

• Each point (s, t) in parameter space corresponds
to one 3D point in the patch P(s, t) = C + as + bt.

• The patch is a parallelogram whose corners
correspond to the four corners of parameter
space and are situated at P(0, 0) = C; P(1, 0) =
C + a; P(0, 1) = C + b; P(1, 1) = C + a + b.

Patches (2)

• The vectors a and b determine both the
size and the orientation of the patch.

• If a and b are perpendicular, the grid will
become rectangular.

• If in addition a and b have the same
length, the grid will become square.

• Changing C just translates the patch
without changing its shape or orientation.

Finding the Intersection of 2 Line
Segments

• They can miss each other (a and b), overlap in
one point (c and d), or even overlap over some
region (e). They may or may not be parallel.

Intersection of 2 Line Segments (2)

• Every line segment has a parent line, the
infinite line of which it is part. Unless two parent
lines are parallel, they will intersect at some
point in 2D. We locate this point.

• Using parametric representations for each of the
line segments in question, call AB the segment
from A to B. Then AB(t) = A + b t, where for
convenience we define b = B - A.

• As t varies from 0 to 1 each point on the finite
line segment is crossed exactly once.

Intersection of 2 Line Segments (3)

• AB(t) = A + bt, CD(u) = C + du, where b =
B – A and d = C – D.

• At the intersection, A + bt = C + du, or bt =
c + du, with c = C – A.

• Taking dot product with d┴ gives b·d┴ t =
c·d┴ .

• Taking dot product with b┴ gives - c·b┴ =
d·b┴ u.

Intersection of 2 Line Segments (4)

• Case1: b·d┴ = 0 means d·b┴ = 0 and the
lines are either the same line or parallel
lines. There is no intersection.

• Case 2: b·d┴ ≠ 0 gives t = c·d┴ / b·d┴
and u = - c·b┴/ d·b┴ .

• In this case, the line segments intersect if
and only if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, at P = A
+ b(c·d┴ / b·d┴).

Finding A Circle through 3 Points

• We want to find the center and the radius of the
circle.
– The 3 points make a triangle, and the center S is

where the perpendicular bisectors of two of the sides
of the triangle meet.

– The radius is r = |A – S|.

Circle through 3 Points (2)

• The perpendicular
bisector passes
through the
midpoint M = ½ (A
+ B) of the line AB,
in the direction
(B – A)┴.

• Let a = B – A, b = C –
B, and c = A - C.

A

B

M

S

L

Circle through 3 Points (3)

– Midpoint of AB: A + a / 2; direction
perpendicular to AB: a┴.

– The perpendicular bisector of AB is A + a / 2 +
a┴ t, and for AC, A - c / 2 + c┴ u, using
parameter u.

– Point S lies where these meet, at the solution
of a┴t = b / 2 + c┴ u (where we have used a +
b + c = 0).

– Radius R = |S – A|, or radius
a
2

b c
a c

2

1

Clipping a Polygon

• “To clip a polygon against a window”
means to find which part of the polygon is
inside the window and thus will be drawn.

Clipping a Polygon (2)

• In Chapter 3, we looked at Cohen-
Sutherland clipping of lines in a
rectangular window, which involves the
intersection of 2 lines.

• Here we will focus the Cyrus-Beck clipping
algorithm, which clips polygons against
lines and planes.

Intersections of Lines and Planes

• Intersections of a line and a line or plane are
used in ray-tracing and 3D clipping: we want to
find the “hit point”.

Intersections of Lines and Planes
(2)

• Suppose the ray hits at t = thit, the hit time.
• At this value of t the ray and line or plane

must have the same coordinates, so A + c
thit must satisfy the equation of the point
normal form for the line or plane, n·(P –
B)= 0.

• When the ray intersects (hits) the line or
plane, A + cthit = P, giving n·(A + cthit – B)
= 0.

Intersections of Lines and Planes
(3)

• Expanding and solving for thit gives
thit = n·(B - A)/n·c, if n·c ≠ 0.
– If n·c = 0, the line is parallel to the plane and

there is no intersection.
• To find the hit point Phit, substitute thit into

the representation of the ray: Phit = A + cthit
= = A + c(n·(B - A)/n·c).

Direction of Ray
• If n·c = 0, the ray is parallel to the line.
• If n·c > 0, c and n make an angle of less than

90o with each other.
• If n·c < 0, c and n make an angle of more than

90o with each other.

Polygon Intersection Problems
• Is a given point inside or outside the polygon?
• Where does a given ray first intersect the

polygon?
• Which part of a given line L lies inside the object,

and which outside?

Polygon Intersection Problems (2)

• Convex Polygons and Polyhedra: a simple case
• They are described by a set of bounding

lines/planes, and the entire polygon/polyhedron
is on one side of the line/plane.

Polygon Intersection Problems (3)

– The line/plane divides space into two halves:
the outside space, which shares no points
with the polyhedron, and the inside half
space, where the polyhedron lies.

– The polyhedron is the intersection of all the
inside half spaces.

Ray Intersection Problem

• Where does the ray A + ct hit convex polygon
P?

• For each bounding line, we find the (point-
normal form of the) equation and the outside
normal to this line.
– If we traverse vertices counterclockwise, the outside

normal will always be the clockwise normal, (vy, -vx).
• Because of convexity, each line hits the polygon

twice: going in, and coming out.

Ray Intersection Problem (2)
• For a line A + ct, find its intersections with each

of the boundary lines: thit = n·(B - A)/n·c, if n·c ≠
0.

• If n·c > 0, the line is entering the polygon. Set tin
= max(thit, tin).

• If n·c < 0, the line is leaving the polygon. Set tout
= min(thit, tout).

• If tin > tout the ray misses the polygon entirely.
Otherwise, the ray is inside the polygon during
[tin, tout].

Example

L1 L3

L0 L4

L5
@0

@1

@.2

@.28

@.83

@.66

intersects L2
@3.4

intersects L3
@ -4.7

A

C

Example (2)

• The sequence of
updates to Tin
and Tout as the
various line
intersections are
tested.

Line
tested

Tin Tout

0 0 0.83

1 0 0.66

2 0 0.66

3 0 0.66

4 0.2 0.66

5 0.28 0.66

Inside-Outside Tests

• Is point P inside or outside the polygon?
– Form a vector u = D – P, where D is any point outside

the polygon, and u intersects no vertices of the
polygon.

– Create n normal to u. Let w = 0 be an int (the winding
number.)

– Let E be the vector along an edge crossed by u.
Calculate d = E·n: if d > 0, add 1 to w; if d < 0,
subtract 1 from w.

– Repeat for each edge crossed by u. If at the end, w =
0, P is outside; else P is inside.

Inside-Outside Tests (2)

• Equivalent method: create u as before.
– Calculate tin, tout, and tP (time u reaches P).
– If tin ≤ tP ≤ tout, P is inside; else it is outside.

Cyrus-Beck Clipping
• Cyrus-Beck clipping clips a line segment against any

convex polygon P:
• int CyrusBeckClip(Line& seg, LineList& L) uses

parameters seg (the line segment to be clipped, which
contains the first and second endpoints named seg.first
and seg.second), and the list L of bounding lines of the
polygon.

• It clips seg against each line in L, and places the clipped
segment back in seg. (This is why seg must be passed
by reference.)

• The routine returns 0 if no part of the segment lies in P
or 1 if some part of the segment does lie in P.

Cyrus-Beck Pseudo-code (2D)

• Variables numer and denom hold the numerator
and denominator for thit:
– Numer = n·(B – A), denom = n·c

int CyrusBeckClip(LineSegment& seg, LineList& L)
{ double numer, denom;

double tIn = 0.0, tOut = 1.0;
Vector2 c, tmp;
<form vector: c = seg.second - seg.first>

Cyrus-Beck Pseudo-code (2)

for(int i = 0; i < L.num; i++) // chop at each
bounding line
{ <form vector tmp = L.line[i].pt - first>

numer = dot(L.line[i].norm, tmp);
denom = dot(L.line[i].norm, c);
if (!chopCI(numer, denom, tIn, tOut)) return 0;

// early out
}

// adjust the endpoints of the segment; do second
one 1st.

Cyrus-Beck Pseudo-code (3)
if (tOut < 1.0) // second endpoint was altered
{ seg.second.x = seg.first.x + c.x * tOut;

seg.second.y = seg.first.y + c.y * tOut;
}
if (tIn > 0.0) // first endpoint was altered
{ seg.first.x = seg.first.x + c.x * tIn;

seg.first.y = seg.first.y + c.y * tIn;
}
return 1; // some segment survives

}

Cyrus-Beck Pseudo-code (4)

• The routine chopCI() uses numer and
denom to calculate the hit time at which
the ray hits a bounding line, determines
whether the ray is entering or exiting the
polygon, and chops off the piece of the
candidate interval CI that is thereby found
to be outside the polygon.

Cyrus-Beck Pseudo-code (5)

int chopCI(double& tIn, double& tOut, double
numer, double denom)

{ double tHit;
if (denom < 0) // ray is entering
{ tHit = numer / denom;

if (tHit > tOut) return 0; // early out
else if (tHit > tIn) tIn = tHit; // take larger t

}

Cyrus-Beck Pseudo-code (6)
else if (denom > 0) // ray is exiting

{ tHit = numer / denom;
if(tHit < tIn) return 0; // early out
if(tHit < tOut) tOut = tHit; // take smaller t

}
else // denom is 0: ray is parallel
if (numer <= 0) return 0; // missed the line
return 1; // CI is still non-empty

}

3D Cyrus-Beck Clipping
• The Cyrus Beck clipping algorithm works in

three dimensions in exactly the same way.
• In 3D the edges of the window become planes

defining a convex region in three dimensions,
and the line segment is a line in 3D space.

• ChopCI() needs no changes at all (since it uses
only the values of dot products).

• The data types in CyrusBeckClip() must of
course be extended to 3D types, and when the
endpoints of the line are adjusted the z-
component must be adjusted as well.

More Advanced Clipping
Algorithm OpenGL

Yes/No?
Description

Cohen
Sutherland

Yes Line segments against a
rectangle or cube (2D:
square)

Cyrus-Beck Tries; poor
results

Line against a convex
polygon

Sutherland–
Hodgman

No Any polygon (convex or non-
convex) against any convex
polygon

Weiler–
Atherton

No Any polygon against any
polygon

Sutherland-Hodgman Clipping
• The Sutherland–Hodgman clipper is similar to

the Cyrus–Beck method, clipping against a
convex polygon.

• It clips an entire polygon (which need not be
convex) against the convex polygon. Its output is
a polygon (or a set of polygons).

• It can be important to retain the polygon
structure during clipping, since the clipped
polygons may need to be filled with a pattern or
color.

• This is not possible if the edges of the polygon
are clipped individually.

Weiler-Atherton Clipping
• The Weiler–Atherton clipping algorithm clips

any polygon, P, against any other polygon, W,
convex or not.

• It can output the part of P that lies inside W
(interior clipping) or the part of P that lies
outside W (exterior clipping).

• In addition, both P and W can have holes in
them.

• This algorithm is much more complex than the
others and a thorough discussion is beyond the
scope of this course.

Clipping for Arbitrary Polygons

• Much harder than for convex polygons.
– Line may intersect polygon any even number of

times, in in/out pairs.
– If a line passes through a vertex, the vertex is counted

as a pair of points (preferred) or as no intersection.

Clipping for Arbitrary Polygons (2)

• We create a list of hit times for the given
line, A + ct, with the polygon edges: the
edge from Pi+1 to Pi is given by Pi + eiu,
where ei = Pi+1 – Pi, and 0 ≤ i ≤ N.

• Because the polygon is closed, PN = P0.
• thit = ei┴ ·bi/ ei┴ ·c, where bi = Pi – A.
• u = c┴ ·bi/ ei┴ ·c
• True hits occur only for 0 ≤ u ≤ 1.

Clipping for Arbitrary Polygons (3)

• We sort the list of hits by increasing thit times and
take successive pairs as representing an in/out
time. (In other words, the line is inside between
the first pair of times, the second pair of times,
etc.)

