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3D Affine Transformations3D Affine Transformations

• Again we use coordinate frames andAgain we use coordinate frames, and 
suppose that we have an origin O and 
three mutually perpendicular axes in thethree mutually perpendicular axes in the 
directions i, j, and k (see Figure 5.8). Point 
P in this frame is given by P = O + P i + P jP in this frame is given by P  O + Pxi + Pyj
+ Pzk, and vector V by Vxi + Vyj + Vzk. 
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3-D Affine Transformations3 D Affine Transformations 

• The matrix representing a transformationThe matrix representing a transformation 
is now 4 x 4, with Q = M P as before.

 mmmm











 24232221

14131211

mmmm
mmmm

M








 1000
34333231 mmmm

M

• The fourth row of the matrix is a string of 
zeroes followed a lone one



zeroes followed a lone one. 



Translation and ScalingTranslation and Scaling

• Translation and scaling transformationTranslation and scaling transformation 
matrices are given below. The values Sx, 
S and S cause scaling about the originSy, and Sz cause scaling about the origin 
of the corresponding coordinates. 
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ShearShear

• The shear matrix is given belowThe shear matrix is given below. 
– a: y along z; b: z along x; c: x along y; d: z 

along y; e: x along z; f: y along zalong y; e: x along z; f: y along z
• Usually only one of {a,…,f} is non-zero.
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RotationsRotations

• Rotations are more complicated We startRotations are more complicated.  We start 
by defining a roll (rotation counter-
clockwise around an axis looking towardclockwise around an axis looking toward
the origin):



Rotations (2)Rotations (2)

• z-roll: the x-axis rotates to the y-axis.z roll: the x axis rotates to the y axis. 
• x-roll: the y-axis rotates to the z-axis. 
• y roll: the z axis rotates to the x axis• y-roll: the z-axis rotates to the x-axis.
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Rotations (3)Rotations (3)
• Note that 12 of the terms in each matrix are the 

zeros and ones of the identity matrix. 
• They occur in the row and column that 

correspond to the axis about which the rotationcorrespond to the axis about which the rotation 
is being made (e.g., the first row and column for 
an x-roll). 
Th t th t th di• They guarantee that the corresponding 
coordinate of the point being transformed will not 
be altered. 

• The cos and sin terms always appear in a 
rectangular pattern in the other rows and 
columnscolumns.



ExampleExample

• A barn in its original orientation and afterA barn in its original orientation, and after 
a -70° x-roll,  a 30° y-roll, and a -90° z-roll.

a). the barn b). -700 x-roll 

c). 300 y-roll d). -900 z-roll 



Composing 3D Affine 
T f iTransformations

• 3D affine transformations can be composed, and p ,
the result is another 3D affine transformation. 

• The matrix of the overall transformation is the 
d f h i di id l i M d M hproduct of the individual matrices M1 and M2 that 

perform the two transformations, with M2 pre-
multiplying M1: M = M2M1multiplying M1: M  M2M1

• Any number of affine transformations can be 
composed in this way, and a single matrix 
results that represents the overall 
transformation. 



ExampleExample

• A barn is firstA barn is first 
transformed using 
some M1, and the 
transformed barn is 
again transformed 

i M Th ltusing M2. The result 
is the same as the 
barn transformedbarn transformed 
once using M2M1.



Building RotationsBuilding Rotations

• All 2D rotations are Rz. Two rotations combine toAll 2D rotations are Rz. Two rotations combine to 
make a rotation given by the sum of the rotation 
angles, and the matrices commute. 

• In 3D the situation is much more complicated, 
because rotations can be about different axes. 

• The order in which two rotations about different 
axes are performed does matter: 3D rotation 

i dmatrices do not commute. 



Building Rotations (2)Building Rotations (2)

• We build a rotation in 3D by composingWe build a rotation in 3D by composing 
three elementary rotations: an x-roll 
followed by a y-roll, and then a z-roll. The y y
overall rotation is given by M = Rz(β3)Ry( 
β2)Rx(β1).

• In this context the angles β1, β2, and β3 are 
often called Euler angles.



Building Rotations (3)Building Rotations (3)
• Euler’s Theorem: Any rotation (or sequence y ( q

of rotations) about a point is equivalent to a 
single rotation about some axis through that 
pointpoint.

• Any 3D rotation around an axis (passing through 
the origin) can be obtained from the product ofthe origin) can be obtained from the product of 
five matrices for the appropriate choice of Euler 
angles; we shall see a method to construct the 

t imatrices.  
• This implies that three values are required (and 

only three) to completely specify a rotation!only three) to completely specify a rotation!



Rotating about an Arbitrary AxisRotating about an Arbitrary Axis
• We wish to rotate z

around axis u to make 
P coincide with Q.

• u can have any

z

u

Q• u can have any 
direction; it appears 
difficult to find a matrix 
th t t h

P

Q





that represents such a 
rotation. 

• But it can be found in 



But it can be found in 
two ways, a classic way 
and a constructive way.

x y




Rotating about an Arbitrary Axis (2)Rotating about an Arbitrary Axis (2)

• The classic way. Decompose the requiredThe classic way. Decompose the required 
rotation into a sequence of known steps:
– Perform two rotations so that u becomes aligned with 

the z-axis. 
– Do a z-roll through angle β. 

U d th t li t t ti t t t it– Undo the two alignment rotations to restore u to its 
original direction.

• R (β) = R ( -θ) R ( -Φ) R (β) R (Φ) R (θ) is the• Ru(β) = Rz( -θ) Ry( -Φ) Rz(β) Ry(Φ) Rz(θ) is the 
desired rotation.



Rotating about an Arbitrary Axis (3)Rotating about an Arbitrary Axis (3)

• The constructive way. Using someThe constructive way. Using some 
vector tools we can obtain a more 
revealing expression for the matrix Ru(b).g p u( )

• We wish to express the operation of 
rotating point P through angle b into pointg p g g p
Q.  

• The method, given in Case Study 5.5, g y
effectively establishes a 2D coordinate 
system in the plane of rotation as shown. 



Rotating about an Arbitrary Axis (4)Rotating about an Arbitrary Axis (4)

• This defines two orthogonal vectors a and bThis defines two orthogonal vectors a and b 
lying in the plane, and as shown in Figure 5.25b 
point Q is expressed as a linear combination of 
them. The expression for Q involves dot 
products and cross products of various 
i di t i th blingredients in the problem. 

• But because each of the terms is linear in the 
coordinates of P it can be rewritten as P times acoordinates of P, it can be rewritten as P times a 
matrix.



Rotating about an Arbitrary Axis (5)Rotating about an Arbitrary Axis (5)
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Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• c = cos(β) s = sin(β) and u u u are thec = cos(β), s = sin(β), and ux, uy, uz are the 
components of u.

• Then• Then 
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Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• Open-GL provides a rotation about anOpen GL provides a rotation about an 
arbitrary axis:

glRotated (beta ux uy uz);glRotated (beta, ux, uy, uz);
• beta is the angle of rotation.
• ux, uy, uz are the components of a vector 

u normal to the plane containing P and Q.



Summary of Properties of 3D Affine 
T f iTransformations

• Affine transformations preserve affine p
combinations of points. 

• Affine transformations preserve lines 
d land planes.

• Parallelism of lines and planes is 
preservedpreserved. 

• The columns of the matrix reveal the 
transformed coordinate frametransformed coordinate frame.

• Relative ratios are preserved.



Summary of Properties of 3D Affine 
T f i (2)Transformations (2)

• The effect of transformations on the volumesThe effect of transformations on the volumes 
of objects. If 3D object D has volume V, then 
its image T(D) has volume |det M | V, where |det
M| is the absolute value of the determinant of M.

• Every affine transformation is composed of 
elementary operations. A 3D affine 
transformation may be decomposed into a 
composition of elementary transformations Seecomposition of elementary transformations. See  
Case Study 5.3.



Transforming Coordinate SystemsTransforming Coordinate Systems 

• We have a 2D 
coordinate frame #1, 
with origin O and 
axes  i and j.  j

• We have an affine 
transformation T(.) 
with matrix M wherewith matrix M, where 
T(.) transforms 
coordinate frame #1 
into coordinateinto coordinate 
frame #2, with new 
origin O’ = T(O), and 
new axes i’ = T(i)new axes i   T(i) 
and j’ = T(j).



Transforming Coordinate Systems 
(2)(2)

• Now let P be a point with representationNow let P be a point with representation 
(c, d, 1)T in the new system #2. 

• What are the values of a and b in its• What are the values of a and b in its 
representation (a, b, 1)T in the original 
system #1?system #1? 

• The answer: simply premultiply (c, d, 1)T

b Mby M: 
(a, b, 1)T = M (c, d, 1)T



Transforming Coordinate Systems 
(3)(3)

• We have the following theorem:We have the following theorem: 
• Suppose coordinate system #2 is formed 

from coordinate system #1 by the affinefrom coordinate system #1 by the affine 
transformation M. Further suppose that 
point P = (P P P 1) are the coordinatespoint P = (Px, Py, Pz,1) are the coordinates 
of a point P expressed in system #2. Then 
the coordinates of P expressed in systemthe coordinates of P expressed in system 
#1 are MP.



Successive TransformationsSuccessive Transformations

• Now consider forming a transformation byNow consider forming a transformation by 
making two successive changes of the 
coordinate system. What is the overall y
effect? 

• System #1 is converted to system #2 by y y y
transformation T1(.), and system #2 is then 
transformed to system #3 by 
t f ti T ( ) N t th t t #3transformation T2(.). Note that system #3 
is transformed relative to #2.



Successive Transformations (2)Successive Transformations (2)

• Point P has yPoint P has 
representation (e, 
f,1)T with respect to 

P

f
b

system #3.  What are 
its coordinates (a, 
b 1)T ith t t

system #3

f

e
d

T2b,1)T with respect to 
the original system 
#1?

system #2

c

T1
#1?

x

a

system #1



Successive Transformations (3)Successive Transformations (3)
• To answer this, collect the effects of each ,

transformation: In terms of system #2 the point P
has coordinates (c, d, 1)T = M2(e, f, 1)T. And in 
terms of system #1 the point (c d 1)T hasterms of system #1 the point (c, d, 1)T has 
coordinates (a, b, 1)T = M1( c, d, 1)T.  So            
(a, b, 1)T = M1(d, c, 1)T = M1M2(e, f, 1)T( , , ) 1( , , ) 1 2( , , )

• The essential point is that when determining the 
desired coordinates (a, b, 1)T from (e, f, 1)T we 
fi t l M d th M j t th itfirst apply M2 and then M1, just the opposite
order as when applying transformations to 
points. po ts



Successive Transformations (4)Successive Transformations (4)
• To transform points. To apply a sequence of p pp y q

transformations T1(), T2(), T3() (in that order) to a 
point P, form the matrix  M = M3 x M2 x M1.

• Then P is transformed to MP; pre-multiply by MiThen P is transformed to MP; pre-multiply by Mi.   
• To transform the coordinate system. To apply 

a sequence of transformations T1(), T2(), T3() (in 
th t d ) t th di t t f ththat order) to the coordinate system, form the 
matrix M = M1 x M2 x M3.

• Then P in the transformed system has e t e t a s o ed syste as
coordinates MP in the original system. To 
compose each additional transformation Mi you 
must post-multiply by Mimust post multiply by Mi.



Open-GL TransformationsOpen GL Transformations

• Open-GL actually transforms coordinateOpen GL actually transforms coordinate 
systems, so in your programs you will 
have to apply the transformations inhave to apply the transformations in 
reverse order.

• E g if you want to translate the 3 vertices• E.g., if you want to translate the 3 vertices 
of a triangle and then rotate it, your 
program will have to do rotate and thenprogram will have to do rotate and then 
translate. 



Using Affine Transformations in 
O GLOpen-GL

• glScaled (sx, sy, sz); // 2-d: sz = 1.0g ( , y, );
• glTranslated (tx, ty, tz); //2-d: tz = 0.0
• glRotated (angle, ux, uy, uz); // 2-d: ux = uy = g ( g , , y, ); y

0.0; uz = 1.0
• The sequence of commands is

– glLoadIdentity();
– glMatrixMode (GL_MODELVIEW);
– // transformations 1 2 3 (in reverse order)// transformations 1, 2, 3, .... (in reverse order)

• This method makes Open-GL do the work of 
transforming for you.g y



ExampleExample

• We have version 1 of • The easy way lets GLWe have version 1 of 
the house defined 
(vertices set), but 

The easy way lets GL 
do the transforming.

a).

what we really want to 
draw is version 2.

y

• We could write 
routines to transform 
the coordinates this

23
the coordinates – this 
is the hard way. #1

#2
x

32



Example: the Easy Way (2)
• We cause the desired transformation to be 

Example: the Easy Way (2)

applied automatically to each vertex. Just as we 
know the window to viewport mapping is quietly 
applied to each vertex as part of the graphicsapplied to each vertex as part of the graphics 
pipeline, we can have an additional 
transformation be applied as well. pp

• It is often called the current transformation,
CT. We enhance moveTo() and lineTo() so that 
th fi t l thi t f ti t ththey first apply this transformation to the 
argument vertex, and then apply the window to 
viewport mapping. e po t app g



Example (3)Example (3)
• When glVertex2d()is called with argument V, the vertex g () g ,

V is first transformed by the CT to form point Q. 
• Q is then passed through the window to viewport 

mapping to form point S in the screen window.



Example (4)Example (4)

• How do we extend moveTo() and lineTo() soHow do we extend moveTo() and lineTo() so 
they carry out this additional mapping?

• The transform is done automatically by OpenGL! y y p
OpenGL maintains a so-called modelview 
matrix, and every vertex that is passed down 
the graphics pipeline is multiplied by this 
modelview matrix. 
W d l h d l i i• We need only set up the modelview matrix once 
to embody the desired transformation. 



Example (5)Example (5)
• The principal routines for altering the modelview p p g

matrix are glRotated(), glScaled(), and 
glTranslated().
Th d ’ h CT di l i d h• These don’t set the CT directly; instead each 
one postmultiplies the CT (the modelview matrix) 
by a particular matrix say M and puts the resultby a particular matrix, say M, and puts the result 
back into the CT. 

• That is, each of these routines creates a matrix 
M as required for the new transformation, and 
performs: CT = CT *M.



Example (6)Example (6)

• glScaled (sx sy sz); // 2-d: sz = 1 0glScaled (sx, sy, sz); // 2 d: sz = 1.0
• glTranslated (tx, ty, tz); //2-d: tz = 0.0

lR t t d ( l ) // 2 d• glRotated (angle, ux, uy, uz); // 2-d: ux = 
uy = 0.0; uz = 1.0

• This method makes Open-GL do the work 
of transforming for you.



Example (7)Example (7)

• Of course we have to start with someOf course, we have to start with some 
MODELVIEW matrix: 

• The sequence of commands is• The sequence of commands is
– glMatrixMode (GL_MODELVIEW);

lL dId tit ()– glLoadIdentity();
– // transformations 1, 2, 3, .... (in reverse order)

• Wrapper code for routines to manipulate 
the CT is in Figure 5.33.



Example (8)Example (8)
• Code to draw house #2: note translate is done 

before rotate (reverse order).
• setWindow(...);  
• setViewport(..);  // set window to viewport 

// mapping
i itCT() // t t t d ith id tit• initCT(); // get started with identity 

// transformation
• translate2D(32 25); // CT includes translation• translate2D(32, 25); // CT includes translation
• rotate2D(-30.0);     // CT includes translation and 

// rotation
• house();       // draw the transformed house



Example 2: StarExample 2: Star
• A star made of “interlocking” stripes: starMotif() draws a g p ()

part of the star, the polygon shown in part b. (Help on 
finding polygon’s vertices in Case Study 5.1.) 

• To draw the whole star we draw the motif five times,To draw the whole star we draw the motif five times, 
each time rotating the motif through an additional 72°.

a). b).

(x1,y1)



Example 3: SnowflakeExample 3: Snowflake

• The motif and the figure are shown belowThe motif and the figure are shown below.  
glScaled() is used to reflect the motif to get 
a complete branch and then to restore thea complete branch and then to restore the 
original axis.  Rotate by 60o between 
branches a). b)branches. ) b).

30 o line30 e



Example 4: Dino PatternsExample 4: Dino Patterns

• The dinosaurs are distributed around aThe dinosaurs are distributed around a 
circle in both versions.  Left: each dinosaur 
is rotated so that its feet point toward theis rotated so that its feet point toward the 
origin; right: all the dinosaurs are upright. 



Example 4 (2)Example 4 (2)
• drawDino() draws an upright dinosaur centered () p g

at the origin. 
• In a) the coordinate system for each motif is 

rotated about the origin through a suitable anglerotated about the origin through a suitable angle, 
and then translated along its y-axis by H units. 

• Note that the CT is reinitialized each time 
th h th l th t th t f tithrough the loop so that the transformations 
don’t accumulate. 

• An easy way to keep the motifs upright (as in easy ay to eep t e ot s up g t (as
part b) is to pre-rotate each motif before 
translating it. 



Affine Transformations StackAffine Transformations Stack

• It is also possible to push/pop the currentIt is also possible to push/pop the current 
transformation from a stack in OpenGL, using 
the commands 

glMatrixMode (GL_MODELVIEW); 
glPushMatrix(); //or glPopMatrix();



Affine Transformations Stack (2)Affine Transformations Stack (2)

• The implementation of pushCT() and popCT()The implementation of pushCT() and popCT()
uses OpenGL routines glPushMatrix() and 
glPopMatrix().

• Caution: Note that each routine must inform 
OpenGL which matrix stack is being affected.  

• In OpenGL, popping a stack that contains only 
one matrix is an error; test the number of 

i i O GL’ f imatrices using OpenGL’s query function  
glGet(G L_MODELVIEW_STACK_DEPTH).



Affine Transformations Stack (3)Affine Transformations Stack (3)
pushCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPushMatrix();           // push a copy of the top matrix 
}}
checkStack(void)
{ if (glGet (GL_MODELVIEW_STACK_DEPTH) ≤ 1) )

// do something// do something
else  popCT();

}
popCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPopMatrix(); // pop the top matrix from the stackglPopMatrix();            // pop the top matrix from the stack
}



Example 5: MotifExample 5: Motif

• Tilings are based on the repetition of aTilings are based on the repetition of a 
basic motif both horizontally and vertically.

• Consider tiling the window with some• Consider tiling the window with some 
motif, drawn centered in its own 
coordinate system by routine motif()coordinate system by routine motif().

• Copies of the motif are drawn L units apart 
i th di ti d D it t i thin the x-direction, and D units apart in the 
y-direction, as shown in part b).



Example 5 (2)Example 5 (2)

• The motif is translated horizontally andThe motif is translated horizontally and 
vertically to achieve the tiling.


