
Computer Graphics using Open GLComputer Graphics using Open GL,
3rd Edition

F S Hill J d S K llF. S. Hill, Jr. and S. Kelley

Chapter 5.3-5Chapter 5.3 5
Transformations of
ObjectsObjects

S. M. Lea
University of North Carolina at GreensboroUniversity of North Carolina at Greensboro

© 2007, Prentice Hall

3D Affine Transformations3D Affine Transformations

• Again we use coordinate frames andAgain we use coordinate frames, and
suppose that we have an origin O and
three mutually perpendicular axes in thethree mutually perpendicular axes in the
directions i, j, and k (see Figure 5.8). Point
P in this frame is given by P = O + P i + P jP in this frame is given by P O + Pxi + Pyj
+ Pzk, and vector V by Vxi + Vyj + Vzk.

 VP

 , y

x

y

x

V
V
V

V
P
P
P

P

 01

zz VP

3-D Affine Transformations3 D Affine Transformations

• The matrix representing a transformationThe matrix representing a transformation
is now 4 x 4, with Q = M P as before.

 mmmm

 24232221

14131211

mmmm
mmmm

M

 1000
34333231 mmmm

M

• The fourth row of the matrix is a string of
zeroes followed a lone one

zeroes followed a lone one.

Translation and ScalingTranslation and Scaling

• Translation and scaling transformationTranslation and scaling transformation
matrices are given below. The values Sx,
S and S cause scaling about the originSy, and Sz cause scaling about the origin
of the corresponding coordinates.

000
000

010
001

y

x

y

x

s
s

S
t
t

T

1000
000

,

1000
100 z

y

z

y

s
S

t
T

 10001000

ShearShear

• The shear matrix is given belowThe shear matrix is given below.
– a: y along z; b: z along x; c: x along y; d: z

along y; e: x along z; f: y along zalong y; e: x along z; f: y along z
• Usually only one of {a,…,f} is non-zero.

01
01

dc
ba

H

1000
01fe

H

 1000

RotationsRotations

• Rotations are more complicated We startRotations are more complicated. We start
by defining a roll (rotation counter-
clockwise around an axis looking towardclockwise around an axis looking toward
the origin):

Rotations (2)Rotations (2)

• z-roll: the x-axis rotates to the y-axis.z roll: the x axis rotates to the y axis.
• x-roll: the y-axis rotates to the z-axis.
• y roll: the z axis rotates to the x axis• y-roll: the z-axis rotates to the x-axis.

 0010
0sin0cos

0sincos0
0001

 ,

1000
0cos0sin
0010

,

1000
0cossin0
0sincos0

yx RR

00cossin
00sincos

R

1000
0100zR

Rotations (3)Rotations (3)
• Note that 12 of the terms in each matrix are the

zeros and ones of the identity matrix.
• They occur in the row and column that

correspond to the axis about which the rotationcorrespond to the axis about which the rotation
is being made (e.g., the first row and column for
an x-roll).
Th t th t th di• They guarantee that the corresponding
coordinate of the point being transformed will not
be altered.

• The cos and sin terms always appear in a
rectangular pattern in the other rows and
columnscolumns.

ExampleExample

• A barn in its original orientation and afterA barn in its original orientation, and after
a -70° x-roll, a 30° y-roll, and a -90° z-roll.

a). the barn b). -700 x-roll

c). 300 y-roll d). -900 z-roll

Composing 3D Affine
T f iTransformations

• 3D affine transformations can be composed, and p ,
the result is another 3D affine transformation.

• The matrix of the overall transformation is the
d f h i di id l i M d M hproduct of the individual matrices M1 and M2 that

perform the two transformations, with M2 pre-
multiplying M1: M = M2M1multiplying M1: M M2M1

• Any number of affine transformations can be
composed in this way, and a single matrix
results that represents the overall
transformation.

ExampleExample

• A barn is firstA barn is first
transformed using
some M1, and the
transformed barn is
again transformed

i M Th ltusing M2. The result
is the same as the
barn transformedbarn transformed
once using M2M1.

Building RotationsBuilding Rotations

• All 2D rotations are Rz. Two rotations combine toAll 2D rotations are Rz. Two rotations combine to
make a rotation given by the sum of the rotation
angles, and the matrices commute.

• In 3D the situation is much more complicated,
because rotations can be about different axes.

• The order in which two rotations about different
axes are performed does matter: 3D rotation

i dmatrices do not commute.

Building Rotations (2)Building Rotations (2)

• We build a rotation in 3D by composingWe build a rotation in 3D by composing
three elementary rotations: an x-roll
followed by a y-roll, and then a z-roll. The y y
overall rotation is given by M = Rz(β3)Ry(
β2)Rx(β1).

• In this context the angles β1, β2, and β3 are
often called Euler angles.

Building Rotations (3)Building Rotations (3)
• Euler’s Theorem: Any rotation (or sequence y (q

of rotations) about a point is equivalent to a
single rotation about some axis through that
pointpoint.

• Any 3D rotation around an axis (passing through
the origin) can be obtained from the product ofthe origin) can be obtained from the product of
five matrices for the appropriate choice of Euler
angles; we shall see a method to construct the

t imatrices.
• This implies that three values are required (and

only three) to completely specify a rotation!only three) to completely specify a rotation!

Rotating about an Arbitrary AxisRotating about an Arbitrary Axis
• We wish to rotate z

around axis u to make
P coincide with Q.

• u can have any

z

u

Q• u can have any
direction; it appears
difficult to find a matrix
th t t h

P

Q

that represents such a
rotation.

• But it can be found in

But it can be found in
two ways, a classic way
and a constructive way.

x y

Rotating about an Arbitrary Axis (2)Rotating about an Arbitrary Axis (2)

• The classic way. Decompose the requiredThe classic way. Decompose the required
rotation into a sequence of known steps:
– Perform two rotations so that u becomes aligned with

the z-axis.
– Do a z-roll through angle β.

U d th t li t t ti t t t it– Undo the two alignment rotations to restore u to its
original direction.

• R (β) = R (-θ) R (-Φ) R (β) R (Φ) R (θ) is the• Ru(β) = Rz(-θ) Ry(-Φ) Rz(β) Ry(Φ) Rz(θ) is the
desired rotation.

Rotating about an Arbitrary Axis (3)Rotating about an Arbitrary Axis (3)

• The constructive way. Using someThe constructive way. Using some
vector tools we can obtain a more
revealing expression for the matrix Ru(b).g p u()

• We wish to express the operation of
rotating point P through angle b into pointg p g g p
Q.

• The method, given in Case Study 5.5, g y
effectively establishes a 2D coordinate
system in the plane of rotation as shown.

Rotating about an Arbitrary Axis (4)Rotating about an Arbitrary Axis (4)

• This defines two orthogonal vectors a and bThis defines two orthogonal vectors a and b
lying in the plane, and as shown in Figure 5.25b
point Q is expressed as a linear combination of
them. The expression for Q involves dot
products and cross products of various
i di t i th blingredients in the problem.

• But because each of the terms is linear in the
coordinates of P it can be rewritten as P times acoordinates of P, it can be rewritten as P times a
matrix.

Rotating about an Arbitrary Axis (5)Rotating about an Arbitrary Axis (5)

z
a). b).

z
u

Q b Qa'

P

Q

a'

Qh
a

x y

P

a
P

p

y

Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• c = cos(β) s = sin(β) and u u u are thec = cos(β), s = sin(β), and ux, uy, uz are the
components of u.

• Then• Then

 0)1()1()1(2 suuucsuuucucc

0)1()1()1(
0)1()1()1(
0)1()1()1(

)(2

2
xyzyzyx

yxzzxyx

u uccsuuucsuuuc
suuucuccsuuuc
suuucsuuucucc

R

1000
0)1()1()1(zxzyyzx uccsuuucsuuuc

Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• Open-GL provides a rotation about anOpen GL provides a rotation about an
arbitrary axis:

glRotated (beta ux uy uz);glRotated (beta, ux, uy, uz);
• beta is the angle of rotation.
• ux, uy, uz are the components of a vector

u normal to the plane containing P and Q.

Summary of Properties of 3D Affine
T f iTransformations

• Affine transformations preserve affine p
combinations of points.

• Affine transformations preserve lines
d land planes.

• Parallelism of lines and planes is
preservedpreserved.

• The columns of the matrix reveal the
transformed coordinate frametransformed coordinate frame.

• Relative ratios are preserved.

Summary of Properties of 3D Affine
T f i (2)Transformations (2)

• The effect of transformations on the volumesThe effect of transformations on the volumes
of objects. If 3D object D has volume V, then
its image T(D) has volume |det M | V, where |det
M| is the absolute value of the determinant of M.

• Every affine transformation is composed of
elementary operations. A 3D affine
transformation may be decomposed into a
composition of elementary transformations Seecomposition of elementary transformations. See
Case Study 5.3.

Transforming Coordinate SystemsTransforming Coordinate Systems

• We have a 2D
coordinate frame #1,
with origin O and
axes i and j. j

• We have an affine
transformation T(.)
with matrix M wherewith matrix M, where
T(.) transforms
coordinate frame #1
into coordinateinto coordinate
frame #2, with new
origin O’ = T(O), and
new axes i’ = T(i)new axes i T(i)
and j’ = T(j).

Transforming Coordinate Systems
(2)(2)

• Now let P be a point with representationNow let P be a point with representation
(c, d, 1)T in the new system #2.

• What are the values of a and b in its• What are the values of a and b in its
representation (a, b, 1)T in the original
system #1?system #1?

• The answer: simply premultiply (c, d, 1)T

b Mby M:
(a, b, 1)T = M (c, d, 1)T

Transforming Coordinate Systems
(3)(3)

• We have the following theorem:We have the following theorem:
• Suppose coordinate system #2 is formed

from coordinate system #1 by the affinefrom coordinate system #1 by the affine
transformation M. Further suppose that
point P = (P P P 1) are the coordinatespoint P = (Px, Py, Pz,1) are the coordinates
of a point P expressed in system #2. Then
the coordinates of P expressed in systemthe coordinates of P expressed in system
#1 are MP.

Successive TransformationsSuccessive Transformations

• Now consider forming a transformation byNow consider forming a transformation by
making two successive changes of the
coordinate system. What is the overall y
effect?

• System #1 is converted to system #2 by y y y
transformation T1(.), and system #2 is then
transformed to system #3 by
t f ti T () N t th t t #3transformation T2(.). Note that system #3
is transformed relative to #2.

Successive Transformations (2)Successive Transformations (2)

• Point P has yPoint P has
representation (e,
f,1)T with respect to

P

f
b

system #3. What are
its coordinates (a,
b 1)T ith t t

system #3

f

e
d

T2b,1)T with respect to
the original system
#1?

system #2

c

T1
#1?

x

a

system #1

Successive Transformations (3)Successive Transformations (3)
• To answer this, collect the effects of each ,

transformation: In terms of system #2 the point P
has coordinates (c, d, 1)T = M2(e, f, 1)T. And in
terms of system #1 the point (c d 1)T hasterms of system #1 the point (c, d, 1)T has
coordinates (a, b, 1)T = M1(c, d, 1)T. So
(a, b, 1)T = M1(d, c, 1)T = M1M2(e, f, 1)T(, ,) 1(, ,) 1 2(, ,)

• The essential point is that when determining the
desired coordinates (a, b, 1)T from (e, f, 1)T we
fi t l M d th M j t th itfirst apply M2 and then M1, just the opposite
order as when applying transformations to
points. po ts

Successive Transformations (4)Successive Transformations (4)
• To transform points. To apply a sequence of p pp y q

transformations T1(), T2(), T3() (in that order) to a
point P, form the matrix M = M3 x M2 x M1.

• Then P is transformed to MP; pre-multiply by MiThen P is transformed to MP; pre-multiply by Mi.
• To transform the coordinate system. To apply

a sequence of transformations T1(), T2(), T3() (in
th t d) t th di t t f ththat order) to the coordinate system, form the
matrix M = M1 x M2 x M3.

• Then P in the transformed system has e t e t a s o ed syste as
coordinates MP in the original system. To
compose each additional transformation Mi you
must post-multiply by Mimust post multiply by Mi.

Open-GL TransformationsOpen GL Transformations

• Open-GL actually transforms coordinateOpen GL actually transforms coordinate
systems, so in your programs you will
have to apply the transformations inhave to apply the transformations in
reverse order.

• E g if you want to translate the 3 vertices• E.g., if you want to translate the 3 vertices
of a triangle and then rotate it, your
program will have to do rotate and thenprogram will have to do rotate and then
translate.

Using Affine Transformations in
O GLOpen-GL

• glScaled (sx, sy, sz); // 2-d: sz = 1.0g (, y,);
• glTranslated (tx, ty, tz); //2-d: tz = 0.0
• glRotated (angle, ux, uy, uz); // 2-d: ux = uy = g (g , , y,); y

0.0; uz = 1.0
• The sequence of commands is

– glLoadIdentity();
– glMatrixMode (GL_MODELVIEW);
– // transformations 1 2 3 (in reverse order)// transformations 1, 2, 3, (in reverse order)

• This method makes Open-GL do the work of
transforming for you.g y

ExampleExample

• We have version 1 of • The easy way lets GLWe have version 1 of
the house defined
(vertices set), but

The easy way lets GL
do the transforming.

a).

what we really want to
draw is version 2.

y

• We could write
routines to transform
the coordinates this

23
the coordinates – this
is the hard way. #1

#2
x

32

Example: the Easy Way (2)
• We cause the desired transformation to be

Example: the Easy Way (2)

applied automatically to each vertex. Just as we
know the window to viewport mapping is quietly
applied to each vertex as part of the graphicsapplied to each vertex as part of the graphics
pipeline, we can have an additional
transformation be applied as well. pp

• It is often called the current transformation,
CT. We enhance moveTo() and lineTo() so that
th fi t l thi t f ti t ththey first apply this transformation to the
argument vertex, and then apply the window to
viewport mapping. e po t app g

Example (3)Example (3)
• When glVertex2d()is called with argument V, the vertex g () g ,

V is first transformed by the CT to form point Q.
• Q is then passed through the window to viewport

mapping to form point S in the screen window.

Example (4)Example (4)

• How do we extend moveTo() and lineTo() soHow do we extend moveTo() and lineTo() so
they carry out this additional mapping?

• The transform is done automatically by OpenGL! y y p
OpenGL maintains a so-called modelview
matrix, and every vertex that is passed down
the graphics pipeline is multiplied by this
modelview matrix.
W d l h d l i i• We need only set up the modelview matrix once
to embody the desired transformation.

Example (5)Example (5)
• The principal routines for altering the modelview p p g

matrix are glRotated(), glScaled(), and
glTranslated().
Th d ’ h CT di l i d h• These don’t set the CT directly; instead each
one postmultiplies the CT (the modelview matrix)
by a particular matrix say M and puts the resultby a particular matrix, say M, and puts the result
back into the CT.

• That is, each of these routines creates a matrix
M as required for the new transformation, and
performs: CT = CT *M.

Example (6)Example (6)

• glScaled (sx sy sz); // 2-d: sz = 1 0glScaled (sx, sy, sz); // 2 d: sz = 1.0
• glTranslated (tx, ty, tz); //2-d: tz = 0.0

lR t t d (l) // 2 d• glRotated (angle, ux, uy, uz); // 2-d: ux =
uy = 0.0; uz = 1.0

• This method makes Open-GL do the work
of transforming for you.

Example (7)Example (7)

• Of course we have to start with someOf course, we have to start with some
MODELVIEW matrix:

• The sequence of commands is• The sequence of commands is
– glMatrixMode (GL_MODELVIEW);

lL dId tit ()– glLoadIdentity();
– // transformations 1, 2, 3, (in reverse order)

• Wrapper code for routines to manipulate
the CT is in Figure 5.33.

Example (8)Example (8)
• Code to draw house #2: note translate is done

before rotate (reverse order).
• setWindow(...);
• setViewport(..); // set window to viewport

// mapping
i itCT() // t t t d ith id tit• initCT(); // get started with identity

// transformation
• translate2D(32 25); // CT includes translation• translate2D(32, 25); // CT includes translation
• rotate2D(-30.0); // CT includes translation and

// rotation
• house(); // draw the transformed house

Example 2: StarExample 2: Star
• A star made of “interlocking” stripes: starMotif() draws a g p ()

part of the star, the polygon shown in part b. (Help on
finding polygon’s vertices in Case Study 5.1.)

• To draw the whole star we draw the motif five times,To draw the whole star we draw the motif five times,
each time rotating the motif through an additional 72°.

a). b).

(x1,y1)

Example 3: SnowflakeExample 3: Snowflake

• The motif and the figure are shown belowThe motif and the figure are shown below.
glScaled() is used to reflect the motif to get
a complete branch and then to restore thea complete branch and then to restore the
original axis. Rotate by 60o between
branches a). b)branches.) b).

30 o line30 e

Example 4: Dino PatternsExample 4: Dino Patterns

• The dinosaurs are distributed around aThe dinosaurs are distributed around a
circle in both versions. Left: each dinosaur
is rotated so that its feet point toward theis rotated so that its feet point toward the
origin; right: all the dinosaurs are upright.

Example 4 (2)Example 4 (2)
• drawDino() draws an upright dinosaur centered () p g

at the origin.
• In a) the coordinate system for each motif is

rotated about the origin through a suitable anglerotated about the origin through a suitable angle,
and then translated along its y-axis by H units.

• Note that the CT is reinitialized each time
th h th l th t th t f tithrough the loop so that the transformations
don’t accumulate.

• An easy way to keep the motifs upright (as in easy ay to eep t e ot s up g t (as
part b) is to pre-rotate each motif before
translating it.

Affine Transformations StackAffine Transformations Stack

• It is also possible to push/pop the currentIt is also possible to push/pop the current
transformation from a stack in OpenGL, using
the commands

glMatrixMode (GL_MODELVIEW);
glPushMatrix(); //or glPopMatrix();

Affine Transformations Stack (2)Affine Transformations Stack (2)

• The implementation of pushCT() and popCT()The implementation of pushCT() and popCT()
uses OpenGL routines glPushMatrix() and
glPopMatrix().

• Caution: Note that each routine must inform
OpenGL which matrix stack is being affected.

• In OpenGL, popping a stack that contains only
one matrix is an error; test the number of

i i O GL’ f imatrices using OpenGL’s query function
glGet(G L_MODELVIEW_STACK_DEPTH).

Affine Transformations Stack (3)Affine Transformations Stack (3)
pushCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPushMatrix(); // push a copy of the top matrix
}}
checkStack(void)
{ if (glGet (GL_MODELVIEW_STACK_DEPTH) ≤ 1))

// do something// do something
else popCT();

}
popCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPopMatrix(); // pop the top matrix from the stackglPopMatrix(); // pop the top matrix from the stack
}

Example 5: MotifExample 5: Motif

• Tilings are based on the repetition of aTilings are based on the repetition of a
basic motif both horizontally and vertically.

• Consider tiling the window with some• Consider tiling the window with some
motif, drawn centered in its own
coordinate system by routine motif()coordinate system by routine motif().

• Copies of the motif are drawn L units apart
i th di ti d D it t i thin the x-direction, and D units apart in the
y-direction, as shown in part b).

Example 5 (2)Example 5 (2)

• The motif is translated horizontally andThe motif is translated horizontally and
vertically to achieve the tiling.

