
Computer Graphics using OpenGLComputer Graphics using OpenGL,
3rd Edition

F S Hill J d S K llF. S. Hill, Jr. and S. Kelley

Chapter 5.6Chapter 5.6
Transformations of
ObjectsObjects

S. M. Lea
University of North Carolina at GreensboroUniversity of North Carolina at Greensboro

© 2007, Prentice Hall

Drawing 3D Scenes in OpenGLDrawing 3D Scenes in OpenGL

• We want to transform objects in order to orientWe want to transform objects in order to orient
and position them as desired in a 3D scene.

• OpenGL provides the necessary functions to p p y
build and use the required matrices.

• The matrix stacks maintained by OpenGL make y p
it easy to set up a transformation for one object,
and then return to a previous transformation, in

i f f i h bjpreparation for transforming another object.

The Camera in OpenGLThe Camera in OpenGL

• The camera is created with a matrixThe camera is created with a matrix.
– We will study the details of how this is done in

Chapter 7Chapter 7.
• For now, we just use an OpenGL tool to

set up a reasonable camera so that weset up a reasonable camera so that we
may pay attention primarily to transforming
objectsobjects.

Interactive ProgramsInteractive Programs

• In addition we show how to make theseIn addition, we show how to make these
programs interactive so that at run time
the user can alter key properties of thethe user can alter key properties of the
scene and its objects.

• The camera can be altered using the• The camera can be altered using the
mouse and keyboard so that the display
can be made to change dramatically incan be made to change dramatically in
real time. (Case Study 5.3.)

The Viewing Process and the
G hi Pi liGraphics Pipeline

• The 2D drawing so far is a special case ofThe 2D drawing so far is a special case of
3D viewing, based on a simple parallel
projectionprojection.

• The eye is looking along the z-axis at the
world window a rectangle in the xy planeworld window, a rectangle in the xy-plane.

The Viewing Process and the
G hi Pi li (2)Graphics Pipeline (2)

• Eye is simply a point in 3D spaceEye is simply a point in 3D space.
• The “orientation” of the eye ensures that

the view volume is in front of the eyethe view volume is in front of the eye.
• Objects closer than near or farther than far

t bl d tare too blurred to see.

The Viewing Process and the
G hi Pi li (3)Graphics Pipeline (3)

• The view volume of the camera is aThe view volume of the camera is a
rectangular parallelepiped.

• Its side walls are fixed by the window• Its side walls are fixed by the window
edges; its other two walls are fixed by a
near plane and a far planenear plane and a far plane.

The Viewing Process and the
G hi Pi li (4)Graphics Pipeline (4)

• Points inside the view volume are projected ontoPoints inside the view volume are projected onto
the window along lines parallel to the z-axis.

• We ignore their z-component, so that the 3D g p ,
point (x1 y1, z1) projects to (x1, y1, 0).

• Points lying outside the view volume are clipped y g pp
off.

• A separate viewport transformation maps the
projected points from the window to the viewport
on the display device.

The Viewing Process and the
G hi Pi li ()Graphics Pipeline (5)

• In 3D the only change we make is to allowIn 3D, the only change we make is to allow
the camera (eye) to have a more general
position and orientation in the scene inposition and orientation in the scene in
order to produce better views of the scene.

The Viewing Process and the
G hi Pi li (6)Graphics Pipeline (6)

• The z axis points toward the eye X and yThe z axis points toward the eye. X and y
point to the viewer’s right and up,
respectivelyrespectively.

• Everything outside the view volume is
clippedclipped.

• Everything inside it is projected along lines
ll l t th t th i d lparallel to the axes onto the window plane

(parallel projection).

The Viewing Process and the
G hi Pi li ()Graphics Pipeline (7)

• OpenGL provides functions for definingOpenGL provides functions for defining
the view volume and its position in the
scene using matrices in the graphicsscene, using matrices in the graphics
pipeline.

The Viewing Process and the
G hi Pi li (8)Graphics Pipeline (8)

• Each vertex of an object is passed throughEach vertex of an object is passed through
this pipeline using glVertex3d(x, y, z).

• The vertex is multiplied by the variousThe vertex is multiplied by the various
matrices, clipped if necessary, and if it
survives, it is mapped onto the viewport.pp p

• Each vertex encounters three matrices:
– The modelview matrix;;
– The projection matrix;
– The viewport matrix;

The Modelview MatrixThe Modelview Matrix
• The modelview matrix is the CT (current (

transformation).
• It combines modeling transformations on objects

d h f i h i d i iand the transformation that orients and positions
the camera in space (hence modelview).

• It is a single matrix in the actual pipeline• It is a single matrix in the actual pipeline.
– For ease of use, we will think of it as the product of

two matrices: a modeling matrix M, and a viewing
i V Th d li i i li d fi dmatrix V. The modeling matrix is applied first, and

then the viewing matrix, so the modelview matrix is in
fact the product VM.

The Modelview Matrix (M)The Modelview Matrix (M)

• A modeling transformation M scalesA modeling transformation M scales,
rotates, and translates the cube into the
blockblock.

The Modelview Matrix (V)The Modelview Matrix (V)
• The V matrix rotates and translates the

block into a new position.
• The camera moves from its position in the

t it i iti (t thscene to its generic position (eye at the
origin and the view volume aligned with
the z-axis)the z axis).

• The coordinates of the block’s vertices are
changed so that projecting them onto a g p j g
plane (e.g., the near plane) displays the
projected image properly.

The Modelview Matrix (V)The Modelview Matrix (V)

• The matrix V changes the coordinates• The matrix V changes the coordinates
of the scene vertices into the

’ di t t i tcamera’s coordinate system, or into
eye coordinates.

• To inform OpenGL that we wish it to
operate on the modelview matrix weoperate on the modelview matrix we
call glMatrixMode(GL_MODELVIEW);

The Projection MatrixThe Projection Matrix
• The projection matrix scales and translates each p j

vertex so that those inside the view volume will be
inside a standard cube that extends from -1 to 1 in
each dimension (Normalized Device Coordinates)each dimension (Normalized Device Coordinates).

• This cube is a particularly efficient boundary against
which to clip objects.

• The image is distorted, but the viewport
transformation will remove the distortion.

• The projection matrix also reverses the sense of the• The projection matrix also reverses the sense of the
z-axis; increasing values of z now represent
increasing values of depth from the eye.

The Projection Matrix (2)The Projection Matrix (2)

• Setting the Projection Matrix:Setting the Projection Matrix:
– glMatrixMode(GL_PROJECTION);
– glLoadIdentity (); // initialize projection matrixglLoadIdentity (); // initialize projection matrix
– glOrtho (left, right, bottom, top, near, far); //

sets the view volume parellelpiped. (All
arguments are glDouble ≥ 0.0.)

• left ≤ vv.x ≤ right, bottom ≤ vv.y ≤ top, and
≤ ≤ f (t th i i-near ≤ vv.z ≤ -far (camera at the origin

looking along -z).

The Viewport MatrixThe Viewport Matrix
• The viewport matrix maps the standard p p

cube into a 3D viewport whose x and y
values extend across the viewport (in
screen coordinates) and whose zscreen coordinates), and whose z-
component extends from 0 to 1 (a
measure of the depth of each point). p p)

• This measure of depth makes hidden
surface removal (do not draw surfaces
hidd b bj t l t th)hidden by objects closer to the eye)
particularly efficient.

The Viewport Matrix (2)The Viewport Matrix (2)

Setting Up the CameraSetting Up the Camera
• We shall use a jibWe shall use a jib

camera.
• The photographer

rides at the top of
the tripod.
Th• The camera
moves through the
scene bobbing upscene bobbing up
and down to get
the desired shots.

Setting Up the Scene (2)Setting Up the Scene (2)

glMatrixMode (GL MODELVIEW);glMatrixMode (GL_MODELVIEW);
// set up the modelview matrix

lL dId tit ()glLoadIdentity ();
// initialize modelview matrix
// set up the view part of the matrix
// do any modeling transformations on the// do any modeling transformations on the
scene

Setting Up the ProjectionSetting Up the Projection
glMatrixMode(GL PROJECTION); g (_);

// make the projection matrix current
glLoadIdentity();g y();

// set it to the identity matrix
glOrtho(left, right, bottom, top, near, far);

// multiply it by the new matrix
– Using 2 for near places the near plane at z = -2, that

is 2 units in front of the eyeis, 2 units in front of the eye.
– Using 20 for far places the far plane at -20, 20 units

in front of the eye.

Setting Up the Camera
(Vi M i)(View Matrix)

glMatrixMode (GL MODELVIEW);glMatrixMode (GL_MODELVIEW);
// make the modelview matrix current

glLoadIdentity();glLoadIdentity();
// start with identity matrix
// position and aim the camera// position and aim the camera

gluLookAt (eye.x, eye.y, eye.z, // eye position
look x look y look z // the “look at” pointlook.x, look.y, look.z, // the look at point
0, 1, 0) // approximation to true up direction

// N d th d li t f ti// Now do the modeling transformations

Setting Up the Camera (2)Setting Up the Camera (2)

• What gluLookAt does is create a cameraWhat gluLookAt does is create a camera
coordinate system of three mutually
orthogonal unit vectors: u v and northogonal unit vectors: u, v, and n.

• n = eye - look; u = up x n; v = n x u
N li (i th t)• Normalize n, u, v (in the camera system)
and let e = eye - O in the camera system,

h O i th i iwhere O is the origin.

Setting Up the Camera (3)Setting Up the Camera (3)

• Then gluLookAt () sets up the view matrixThen gluLookAt () sets up the view matrix

dvvv
duuu xzyx

1000
dnnn
dvvv

 V
zzyx

yzyx

where d = (-e·u, -e·v, -e·n)
• up is usually (0 1 0) (along the y axis) look is

 1000

• up is usually (0, 1, 0) (along the y-axis), look is
frequently the middle of the window, and eye
frequently looks down on the scenefrequently looks down on the scene.

The gluLookAt Coordinate SystemThe gluLookAt Coordinate System

• Camera in world coordinates:Camera in world coordinates:

ExampleExample
glMatrixMode (GL PROJECTION); g (_);

// set the view volume (world coordinates)
glLoadIdentity();g y();
glOrtho (-3.2, 3.2, -2.4, 2.4, 1, 50);
glMatrixMode (GL_MODELVIEW);

// place and aim the camera
glLoadIdentity ();
gluLookAt (4, 4, 4, 0, 1, 0, 0, 1, 0);

// modeling transformations go here

Changing Camera OrientationChanging Camera Orientation

• We can think of the jib camera asWe can think of the jib camera as
behaving like an airplane.

It can pitch roll or yaw from its position– It can pitch, roll, or yaw from its position.

Changing Camera Orientation (2)Changing Camera Orientation (2)

• Pitch – the angle between the longitudinalPitch the angle between the longitudinal
axis and world horizontal.

• Roll the angle between the transverse• Roll – the angle between the transverse
axis and the world.
Y ti f th l it di l i• Yaw – motion of the longitudinal axis
causing a change in the direction of the
l ’ fli htplane’s flight.

Drawing 3D Shapes in OpenGLDrawing 3D Shapes in OpenGL
• GLUT provides several 3D objects: a sphere, a p j p ,

cone, a torus, the five Platonic solids, and the
teapot.
E h i il bl i f d l (• Each is available as a wireframe model (one
appearing as a collection of wires connected
end to end) and as a solid model with faces thatend to end) and as a solid model with faces that
can be shaded.

• All are drawn by default centered at the origin.
• To use the solid version, replace Wire by Solid in

the functions.

Drawing 3D Shapes in OpenGL (2)Drawing 3D Shapes in OpenGL (2)

• cube: glutWireCube (GLdouble size);cube: glutWireCube (GLdouble size);
– Each side is of length size.

• sphere: glutWireSphere (GLdoublesphere: glutWireSphere (GLdouble
radius, GLint nSlices, GLint nStacks);
– nSlices is the number of “orange sections”nSlices is the number of orange sections

and nStacks is the number of disks.
– Alternately, nSlices boundaries are longitude

lines and nStacks boundaries are latitude
lines.

Drawing 3D Shapes in OpenGL (3)Drawing 3D Shapes in OpenGL (3)

• torus: glutWireTorus (GLdouble• torus: glutWireTorus (GLdouble
inRad, GLdouble outRad, GLint

Sli GLi t St k)nSlices, GLint nStacks);
• teapot: glutWireTeapot (GLdouble p g p (

size);
– Why teapots? A standard graphics challengeWhy teapots? A standard graphics challenge

for a long time was both making a teapot look
realistic and drawing it quickly.

Drawing 3D Shapes in OpenGL (4)Drawing 3D Shapes in OpenGL (4)

• tetrahedron: glutWireTetrahedron ();tetrahedron: glutWireTetrahedron ();
• octahedron: glutWireOctahedron ();

d d h d l tWi D d h d ()• dodecahedron: glutWireDodecahedron ();
• icosahedron: glutWireIcosahedron ();
• cone: glutWireCone (GLdouble

baseRad, GLdouble height, GLint nSlices, , g , ,
GLint nStacks);

Drawing 3D Shapes in OpenGL (5)Drawing 3D Shapes in OpenGL (5)

• tapered cylinder: gluCylinder (GLUquadricObjtapered cylinder: gluCylinder (GLUquadricObj
* qobj, GLdouble baseRad, GLdouble topRad,
GLdouble height, GLint nSlices, GLint nStacks);

• The tapered cylinder is actually a family of
shapes, distinguished by the value of topRad.
– When topRad is 1, there is no taper; this is the

classic cylinder.
– When topRad is 0, the tapered cylinder is

identical to the cone.

Drawing 3D Shapes in OpenGL (6)Drawing 3D Shapes in OpenGL (6)

• To draw the tapered cylinder in OpenGL, you p y p , y
must 1) define a new quadric object, 2) set the
drawing style (GLU_LINE: wireframe,
GLU FILL: solid) and 3) draw the object:GLU_FILL: solid), and 3) draw the object:

GLUquadricObj * qobj = gluNewQuadric ();
// make a quadric object// make a quadric object

gluQuadricDrawStyle (qobj,GLU_LINE);
// set style to wireframe// set style to wireframe

gluCylinder (qobj, baseRad, topRad, nSlices,
nStacks); // draw the cylinder); y

ExampleExample

Code for Example (Fig 5 57)Code for Example (Fig. 5.57)
• The main() routine initializes a 640 by 480 pixel () y p

screen window, sets the viewport and
background color, and specifies the drawing
function as displayWire().p y ()

• In displayWire() the camera shape and position
are established and each object is drawn using
its own modeling matrixits own modeling matrix.

• Before each modeling transformation, a
glPushMatrix() is used to remember the current

f i d f h bj h btransformation, and after the object has been
drawn, this prior current transformation is
restored with a glPopMatrix().g p ()

Code for Example (2)Code for Example (2)

• Thus the code to draw each object is imbeddedThus the code to draw each object is imbedded
in a glPushMatrix(), glPopMatrix() pair.

• To draw the x-axis, the z-axis is rotated 90o,
about the y-axis to form a rotated system, and
the axis is redrawn in its new orientation.

• This axis is drawn without immersing it in a
glPushMatrix(), glPopMatrix() pair, so the

i d h i k l i hrotation to produce the y-axis takes place in the
already rotated coordinate system.

Solid 3D Drawing in OpenGLSolid 3D Drawing in OpenGL

• A solid object scene is rendered withA solid object scene is rendered with
shading. The light produces highlights on
the sphere teapot and jackthe sphere, teapot, and jack.

Solid 3D Drawing in OpenGL (2)Solid 3D Drawing in OpenGL (2)

• The scene contains three objects restingThe scene contains three objects resting
on a table in the corner of a room.

• The three walls are made by flattening a• The three walls are made by flattening a
cube into a thin sheet and moving it into
positionposition.

• The jack is composed of three stretched
h i t d t i ht l l ispheres oriented at right angles plus six

small spheres at their ends.

Solid 3D Drawing in OpenGL (3)Solid 3D Drawing in OpenGL (3)

• The table consists of a table top and fourThe table consists of a table top and four
legs.

• Each of the table’s five pieces is a cube• Each of the table s five pieces is a cube
that has been scaled to the desired size
and shape (next slide)and shape (next slide).

• The table is based on four parameters that
h t i th i f it t t Widthcharacterize the size of its parts: topWidth,

topThick, legLen, and legThick.

Table ConstructionTable Construction

Solid 3D Drawing in OpenGL (4)Solid 3D Drawing in OpenGL (4)

• A routine tableLeg() draws each leg and isA routine tableLeg() draws each leg and is
called four times within the routine table()
to draw the legs in the four different g
locations.

• The different parameters used produce p p
different modeling transformations within
tableLeg(). As always, a glPushMatrix(),
lP M t i () i d th d liglPopMatrix() pair surrounds the modeling

functions to isolate their effect.

Code for the Solid Example
(Fi 60)(Fig. 5.60)

• The solid version of each shape, such asThe solid version of each shape, such as
glutSolidSphere(), is used.

• To create shaded images, the position and g , p
properties of a light source and certain
properties of the objects’ surfaces must be
specified, in order to describe how they reflect
light (Ch. 8).
W j h i f i ll h• We just present the various function calls here;
using them as shown will generate shading.

Scene Description Language (SDL)Scene Description Language (SDL)

• Previous scenes were described throughPrevious scenes were described through
specific OpenGL calls that transform and
draw each object, as in the following code:j g

glTranslated (0.25, 0.42, 0.35);
glutSolidSphere (0.1, 15, 15); // draw aglutSolidSphere (0.1, 15, 15); // draw a

sphere
• The objects were “hard-wired” into theThe objects were hard wired into the

program. This method is cumbersome and
error-prone. p

SDL (2)SDL (2)

• We want the designer to be able to specifyWe want the designer to be able to specify
the objects in a scene using a simple
language and place the description in alanguage and place the description in a
file.

• The drawing program becomes a general• The drawing program becomes a general-
purpose program:

It d fil t ti d d– It reads a scene file at run-time and draws
whatever objects are encountered in the file.

SDL (3)SDL (3)

• The Scene Description Language (SDL)The Scene Description Language (SDL),
described in Appendix 3, provides a Scene
class also described in Appendix 3 and onclass, also described in Appendix 3 and on
the book’s web site, that supports the
reading of an SDL file and the drawing ofreading of an SDL file and the drawing of
the objects described in the file.

Using SDLUsing SDL

• A global Scene object is created:A global Scene object is created:
Scene scn; // create a scene object
R d i fil i th d• Read in a scene file using the read
method of the class:
scn.read("example.dat"); // read the scene
file & build an object list

Example SDL SceneExample SDL Scene
! example.dat: simple scene: 1 light and 4 shapesp p g p
! beginning ! is a comment; extends to end of line
background 0 0 1 ! create a blue backgroundg g
light 2 9 8 1 1 1 ! put a white light at (2, 9, 8)
diffuse .9 .1 .1 ! make following objects reddish
translate 3 5 –2 sphere ! put a sphere at 3 5 –2
translate –4 –6 8 cone ! put a cone in the scene
translate 1 1 1 cube ! add a cube
diffuse 0 1 0 ! make following objects green
translate 40 5 2 scale .2 .2 .2 sphere ! tiny sphere

The SDL SceneThe SDL Scene
• The scene has a bright blue background color (red, g g (,

green, blue) = (0, 0, 1), a bright white (1, 1, 1) light
situated at (2, 9, 8), and four objects: two spheres, a
cone and a cubecone and a cube.

• The light field points to the list of light sources, and
the obj field points to the object list.

• Each shape object has its own affine transformation
M that describes how it is scaled, rotated, and
positioned in the scene It also contains various datapositioned in the scene. It also contains various data
fields that specify its material properties. Only the
diffuse field is shown in the example.

SDL Data StructureSDL Data Structure

The SDL Scene (2)The SDL Scene (2)
• Once the light list and object list have been built, the

li ti d thapplication can render the scene:
scn.makeLightsOpenGL(),
scn.drawSceneOpenGL(); // render scene with OpenGLp () p
• The first instruction passes a description of the light

sources to OpenGL. The second uses the method
drawSceneOpenGL() to draw each object in the object
list.

• The code for this method is very simple:
void Scene :: drawSceneOpenGL()p ()
{ for(GeomObj* p = obj; p ; p = p->next)

p->drawOpenGL(); // draw it
}}

The SDL Scene (3)The SDL Scene (3)
• The function moves a pointer through the object p g j

list, calling drawOpenGL() for each object in
turn.

• Each different shape can draw itself; it has aEach different shape can draw itself; it has a
method drawOpenGL() that calls the appropriate
routine for that shape (next slide).
E h fi t th bj t’ t i l ti• Each first passes the object’s material properties
to OpenGL, then updates the modelview matrix
with the object’s specific affine transformation.

• The original modelview matrix is pushed and
later restored to protect it from being affected
after this object has been drawnafter this object has been drawn.

Examples of Objects which can
D Th lDraw Themselves

Using the SDLUsing the SDL

• Fig 5 63 shows the code to read in anFig. 5.63 shows the code to read in an
SDL file and draw it.

• Fig 5 64 shows the SDL file necessary to• Fig. 5.64 shows the SDL file necessary to
draw the solid objects picture.
It i b t ti ll t th th• It is substantially more compact than the
corresponding OpenGL code file.
– Note also that some functions in the SDL may

have to be implemented by you!

