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Transformations

* We used the window to viewport transformation
to scale and translate objects in the world
window to their size and position in the viewport.

 We want to build on this idea, and gain more
flexible control over the size, orientation, and
position of objects of interest.

« To do so, we will use the powerful affine
transformation.



Example of Affine Transformations

 The house has been scaled, rotated and
translated, in both 2D and 3D.
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Using Transformations

* The arch is designed in its own coordinate
system.

* The scene is drawn by placing a number
of instances of the arch at different places
and with different sizes.
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Using Transformations (2)

* In 3D, many cubes make a city.




Using Transformations (3)

* The snowflake exhibits symmetries.

* We design a single motif and draw the
whole shape using appropriate reflections,
rotations, and translations of the motif.
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Using Transformations (4)

* A designer may want to view an object
from different vantage points.

* Positioning and reorienting a camera can

be carried out through the use of 3D affine
transformations.




Using Transformations (5)

In a computer animation, objects move.

We make them move by translating and rotating
their local coordinate systems as the animation
proceeds.

A number of graphics platforms, including
OpenGL, provide a graphics pipeline: a
sequence of operations which are applied to all
points that are sent through it.

A drawing is produced by processing each point.



The OpenGL Graphics Pipeline

* This version is simplified.
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Graphics Pipeline (2)

* An application sends the pipeline a sequence of
points P,, P,, ... using commands such as:

glBegin(GL_LINES);
glVertex3f(...); // send P1 through the pipeline
glVertex3f(...); // send P2 through the pipeline

gIEnd();

* These points first encounter a transformation
called the current transformation (CT), which
alters their values into a different set of points,

say Q4, Q,, OQs.



Graphics Pipeline (3)

 Just as the original points P; describe
some geometric object, the points Q,
describe the transformed version of the
same object.

* These points are then sent through
additional steps, and ultimately are used to
draw the final image on the display.



Graphics Pipeline (4)

* Prior to OpenGL 2.0 the pipeline was of fixed-
functionality: each stage had to perform a
specific operation in a particular manner.

« With OpenGL 2.0 and the Shading Language
(GLSL), the application programmer could not
only change the order in which some operations
were performed, but in addition could make the
operations programmable.

* This allows hardware and software developers
to take advantage of new algorithms and
rendering techniques and still comply with
OpenGL version 2.0.



Transformations

« Transformations change 2D or 3D points and
vectors, or change coordinate systems.

— An object transformation alters the coordinates of
each point on the object according to the same rule,
leaving the underlying coordinate system fixed.

— A coordinate transformation defines a new coordinate
system in terms of the old one, then represents all of
the object’s points in this new system.

« Object transformations are easier to understand,
so we will do them first.



Transformations (2)

* A (2D or 3D) transformation T( ) alters
each point, P into a new point, Q, using a
specific formula or algorithm: Q= T(P).
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Transformations (3)

An arbitrary point P in the plane is
mapped to Q.

Q is the image of P under the mapping T.

We transform an object by transforming
each of its points, using the same function
() for each point.

The image of line L under T, for instance,
consists of the images of all the individual
points of L.




Transformations (4)

* Most mappings of interest are continuous,
so the image of a straight line is still a
connected curve of some shape, although
it's not necessarily a straight line.

 Affine transformations, however, do
preserve lines: the image under T of a
straight line is also a straight line.



Transformations (5)

* \We use an explicit coordinate frame when
performing transformations.

* A coordinate frame consists of a point £
called the origin, and some mutually
perpendicular vectors (called 1 and | in the
2D case; I, |, and k in the 3D case) that
serve as the axes of the coordinate frame.

+ In2D, _ (R} (Q

P=|P, |,Q=|Q,
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Transformations (6)

* Recall that this means that point Zis at
location = Z 1+ %] + ¢, and similarly for
&.

« J,and &, are the coordinates of 7.

* To get from the origin to point ., move
amount %, along axis | and amount %,

along axis |.



Transformations (7)

« Suppose that transformation T operates
on any point ¥ to produce point &.

/QX\ /px\
Q, [=T(PR |
") g or @ =T(P).

* T may be any transformation: e.g.,

Q) (cos(P)e ™
QX | In(R)
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Transformations (8)

* To make affine transformations we restrict
ourselves to much simpler families of
functions, those that are linear in P, and
P..

y

 Affine transformations make it easy to

scale, rotate, and reposition figures.

 Successive affine transformations can be
combined into a single overall affine
transformation.



Affine Transformations

 Affine transformations have a compact
matrix representation.

* The matrix associated with an affine
transformation operating on 2D vectors or
points must be a three-by-three matrix.

— This is a direct consequence of representing

the vectors and points in homogeneous
coordinates.



Affine Transformations (2)

 Affine transformations have a simple form.

 Because the coordinates of ¢ are linear
combinations of those of 2, the

transformed point may be written in the
form:

/Qx\ / mllpx T m12 I:)y T m13 \
Qy =| My P, +m,, Py + My,

1) { 1 )




Affine Transformations (3)

* There are six given constants: m,,, m,,,
etc.

* The coordinate Q, consists of portions of
both P, and P, and so does Q,.

* This combination between the x- and y-
components also gives rise to rotations
and shears.



Affine Transformations (4)

 Matrix form of the affine transformation in
2D: /Qx\ /mll m12 mlB\KPx\
Qy =My My My Py

1) (0 0 1.1,

 For a 2D affine transformation the third
row of the matrix is always (0, 0, 1).



Affine Transformations (5)

 Some people prefer to use row matrices to
represent points and vectors rather than
column matrices: e.g., P = (P, P, 1)

* In this case, the P vector must pre-multiply
the matrix, and the transpose of the matrix
must be used: Q =P MT.

( m, My 0"
.

M* = m, My 0
\ m13 m23 1 )




Affine Transformations (6)

 Vectors can be transformed as well as
points.

» If a 2D vector v has coordinates V,and V,
then its coordinate frame representation is
a column vector with third component 0.



Affine Transformations (7)

* When vector V is transformed by the same

affine transformation as point P, the result
iS /Wx \ / mll m12 m13 ) /Vx \
Wy =1 My My My Vy

0 L0 0 1 A0/

* Important: to transform a point P into a
point Q, post-multiply M by P: Q=M P.



Affine Transformations (38)

« Example: find the image Q of point P = (1,
2, 1) using the affine transformation

(3 0 §5) 8y (3 0 5Y1)

M=|-2 1 2;Q=|2 -2 1 2|2

0 0 1, 1) (0 0 1)1




Geometric Effects of Affine
Transformations

« Combinations of four elementary
transformations: (a) a translation, (b) a scaling,
(c) a rotation, and (d) a shear (all shown below).




Translations

The amount P Is translated does not depend on
P’s position.

It is meaningless to translate vectors.

To translate a point P by a in the x direction and
b in the y direction use the matrix:

/QX\ 1 0 a\/px\ /Qx+a\

Q (=0 1 b|PR |=Q,+b

y

1) 0 0 1IxX1) U 1 )

Only using homogeneous coordinates allow us
to include translation as an affine transformation.



Scaling

» Scaling is about the origin. If S, = S, the
scaling is uniform; otherwise it distorts the
image.

* If S, or S, <0, the image is reflected
across the x or y axis.

* The matrix form is Q) (s o0 oYp
Q,I-10 S, 0P,
1) 0 0 1.1,



Example of Scaling

* The scaling (Sx, Sy) = (-1, 2) is applied to
a collection of points. Each point is both
reflected about the y-axis and scaled by 2

In the y-direction.
AY




Types of Scaling

* Pure reflections, for which each of the
scale factorsis +1 or -1.

A uniform scaling, or a magnification
about the origin: S, = S,, magnification |S].
— Reflection also occurs if S, or S, is negative.

— If |S| < 1, the points will be moved closer to
the origin, producing a reduced image.

 |f the scale factors are not the same, the
scaling is called a differential scaling.



Rotation

Counterclockwise around origin by angle

0

Q.) (cos(@) -sin(@) 0

Q,|=|sin(#) cos(®) o0
1 0 0 1




Deriving the Rotation Matrix

P is at distance R from the origin, at angle
®; then P = (R cos(P), R sin(P)).

Q must be at the same distance as P, and
atangle 8 + ®: Q =(R cos(6 + ®), R sin(b
+ @)).

cos(0 + @) = cos(8) cos(P) - sin(B) sin(P);
sin(@ + @) =sin(0) cos(P) + cos(O) sin(P).
Use P, = R cos(®) and P, = R sin(P).



Shear

« Shear H about origin:
X depends linearly on
y in the figure.

« Shear along x: h # 0,
and P, depends on P,
(for example, italic
letters).

« Shear alongy: g#0,
and P, depends on
P
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Inverses of Affine Transformations

* det(M) =m,,"m,, - m,,"m,,® 0 means that
the inverse of a transformation exists.
— That is, the transformation can be "undone”.

« MM1=M'M =1, the identity matrix (ones
down the major diagonal and zeroes
elsewhere).



Inverse Translation and Scaling

 |nverse of
translation T-1:

* Inverse of scaling
S

/QX\

Q,
1

0 1

1/,
0
0

1 0 -t
00 1,
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Inverse Rotation and Shear

* Inverse of rotation R = R(-6):

Q) (cos(@) sin(@) 0)p.
Q. |=|-sin(@) cos(@) 0| P,
1)1 0 0 1)1,
* Inverse of shear H-': generally h=0 or g=0.
/QX\ /1 _h O\(PX\
Q,I-|1-9 1 0]P,
\1 )\ O O 1)&1 J

1
1-gh




Composing Affine Transformations

« Usually, we want to apply several affine
transformations in a particular order to the
figures in a scene: for example,

— translate by (3, -4)
— then rotate by 30°
—then scale by (2, - 1) and so on.
* Applying successive affine transformations

Is called composing affine
transformations.



Composing Affine Transformations

(2)

* T,() maps P into Q,  So M =M,M,, the
and T,( ) maps Q into product of 2 matrices
point W. Is W =T,(Q) (in reverse order of
= T,(T,(P))affine? application), which is

+ Let T,=M, and T,=M,, affine.

where M, and M, are } Ty() Q )
the appropriate ° 1
matrices. 5 ./+ \

« W=M,(M,P)) =

(M,M,)P =MP by
associativity.




Composing Affine Transformations:
Examples

* To rotate around an arbitrary point:
translate P to the origin, rotate, translate P
back to original position. Q=T RT, P

* Shear around an arbitrary point:

Q=T HT,P

* Scale about an arbitrary point:

Q=TST,P




Composing Affine Transformations
(Examples)

» Reflect across an arbitrary line through the
origin ¢0: Q =R(6) SR(-8) P

* The rotation transforms the axis to the x-
axis, the reflection is a scaling, and the
last rotation transforms back to the original
axis.

* Window-viewport: Translate by -w.l, -w.Db,
scale by A, B, translate by v.l, v.b.



Properties of 2D and 3D Affine
Transformations

 Affine transformations preserve affine
combinations of points.
- W =a,P, + a,P, is an affine combination.
— MW = a,MP, + a,MP,

« Affine transformations preserve lines and
planes.

— A line through A and B is L(t) = (1-t)A + tB, an affine
combination of points.

— A plane can also be written as an affine combination
of points: P(s,a)=sA +tB +(1 —s - t)C.



Properties of Transformations (2)

« Parallelism of lines and planes is preserved.

— Line A + bt having direction b transforms to the line
given in homogeneous coordinates by M(A + bt) =
MA + Mbt, which has direction vector Mb.

— Mb does not depend on point A. Thus two different
lines A+ bt and A, + bt that have the same direction
will transform into two lines both having the direction,
so they are parallel.

« An important consequence of this property is
that parallelograms map into other
parallelograms.



Properties of Transformations (3)

* The direction vectors for a plane also
transform into new direction vectors
independent of the location of the
plane.

* As a conseqguence, parallelepipeds
map into other parallelepipeds.



Properties of Transformations (4)

* The columns of the matrix reveal the
transformed coordinate frame:

— Vector | transforms into column m,, vector |
into column m,, and the origin O into point m,.

— The coordinate frame (i, |, €) transforms into
the coordinate frame (m,, m,, m;), and these
new objects are precisely the columns of the
matrix. ( m, m, mls\

M=1my my my :(m1|m2|m3)
0 0 1

\ J



Properties of Transformations (5)

* The axes of the new coordinate frame are
not necessarily perpendicular, nor must
they be unit length.

— They are still perpendicular if the
transformation involves only rotations and
uniform scalings.

* Any point P = P,i + P,] + 0 transforms into

Q=Pm, + Pym2 + m,.



Properties of Transformations (6)

h) A




Properties of Transformations (7)

Relative ratios are * The transformed
oreserved: consider point, T(P), lies the
point P lying a same fraction t of the
fraction t of the way way between images
between two given T(A) and T(B).
points, A and B (see B
figure). 1-1
Apply affine t \T'
transformation T( )to A i
A, B, and P. t

T(A) 1-t

‘\%

T(B)



Properties of Transformations (8)

 How is the area of a figure affected by an affine
transformation?

e |t is clear that neither translations nor rotations
have any effect on the area of a figure, but
scalings certainly do, and shearing might.

* The result is simple: When the 2D
transformation with matrix M is applied to an
object, its area is multiplied by the magnitude of

the determinant of M:
area after transformation

areabeforetransformation

= |det M|



Properties of Transformations (9)

* In 2D the determinant of the matrix M is (m,;m,,
— MypMyq).

* For a pure scaling, the new area is S,S, times
the original area, whereas for a shear along one

axis the new area is the same as the original
area.

* |In 3D similar arguments apply, and we can
conclude that the volume of a 3D object is
scaled by |det M| when the object is transformed
by the 3D transformation based on matrix M.



Properties of Transformations (10)

* Every affine transformation is composed of
elementary operations.

« A matrix may be factored into a product of
elementary matrices in various ways. One
particular way of factoring the matrix associated
with a 2D affine transformation yields

M = (shear)(scaling)(rotation)(translation)

 Thatis, any 3 x 3 matrix that represents a 2D
affine transformation can be written as the
product of (reading right to left) a translation
matrix, a rotation matrix, a scaling matrix, and a
shear matrix.
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3D Affine Transformations

* Again we use coordinate frames, and
suppose that we have an origin ¢and
three mutually perpendicular axes in the
directions I, |, and k (see Figure 5.8). Point
P in this frame is given by P = O+ P,i + P}
+ Pk, and vector V by V,i + V| + V k.

( 3)( \ (VX \
P = Dy V = Vy
Dz | Vz

1) \0,



3-D Affine Transformations

* The matrix representing a transformation
IS now 4 x 4, with Q = M P as before.

( mll m12 m13 m14 )
m21 m22 m23 m24
m31 m32 m33 m34
L0 0 0 1,

* The fourth row of the matrix is a string of
zeroes followed a lone one.




Translation and Scaling

* Translation and scaling transformation
matrices are given below. The values S,,
S,, and S, cause scaling about the origin
of the corresponding coordinates.

1 0 0 t ) s, 0 0 0

0 1 0 t 0 s, 0 0
T = /1S = y

0 0 1 t 0 0 s, 0
000 1) (0 0 0 1,



Shear

* The shear matrix is given below.

—a: yalong z; b: zalong x; c: xalong y; d: z
along y; e: x along z; f: y along z

* Usually only one of {a,...,f} is non-zero.

1 a b 0)
c 1
e

0 0

O - Q
o



Rotations

* Rotations are more complicated. We start
by defining a roll (rotation counter-
clockwise around an axis looking toward

the origin): YA
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: the x-axis rotates to t
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Rotations (3)

Note that 12 of the terms in each matrix are the
zeros and ones of the identity matrix.

They occur in the row and column that
correspond to the axis about which the rotation
IS being made (e.qg., the first row and column for
an x-roll).

They guarantee that the corresponding
coordinate of the point being transformed will not
be altered.

The cos and sin terms always appear in a
rectangular pattern in the other rows and
columns.



Example

* A barn in its original orientation, and after
a -70° x-roll, a 30° y-roll, and a -90° z-roll.

a). the barn b). -70° x-roll T

/

c). 300 y-roll t d). -90° z-roll




Composing 3D Affine
Transformations

« 3D affine transformations can be composed, and
the result is another 3D affine transformation.

« The matrix of the overall transformation is the
product of the individual matrices M, and M, that
perform the two transformations, with M,, pre-
multiplying M,: M = M,M,

* Any number of affine transformations can be
composed in this way, and a single matrix
results that represents the overall
transformation.



Example

« A barnis first
transformed using
some M,, and the
transformed barn is
again transformed
using M,. The result
Is the same as the
barn transformed
once using M,M,.




Building Rotations

* All 2D rotations are R,. Two rotations combine to
make a rotation given by the sum of the rotation
angles, and the matrices commute.

* |n 3D the situation is much more complicated,
because rotations can be about different axes.

 The order in which two rotations about different
axes are performed does matter: 3D rotation
matrices do not commute.



Building Rotations (2)

* We build a rotation in 3D by composing
three elementary rotations: an x-roll
followed by a y-roll, and then a z-roll. The
overall rotation is given by M = R,([33)R(

B2)R(B4)-

* In this context the angles [3,, B,, and 35 are
often called Euler angles.




Building Rotations (3)

 Euler’'s Theorem: Any rotation (or sequence
of rotations) about a point is equivalent to a
single rotation about some axis through that
point.

* Any 3D rotation around an axis (passing through
the origin) can be obtained from the product of
five matrices for the appropriate choice of Euler
angles; we shall see a method to construct the
matrices.

* This implies that three values are required (and
only three) to completely specify a rotation!



Rotating about an Arbitrary Axis

 We wish to rotate
around axis u to make
P coincide with Q.

* U can have any
direction; it appears
difficult to find a matrix
that represents such a
rotation.

« But it can be found in
two ways, a classic way ~
and a constructive way.

AZ




Rotating about an Arbitrary Axis (2)

The classic way. Decompose the required
rotation into a sequence of known steps:

— Perform two rotations so that u becomes aligned with
the z-axis.

— Do a z-roll through angle B.

— Undo the two alignment rotations to restore u to its
original direction.

R,(B) = R -8) R(-®) R,(B) Ry(P) R,(0) is the
desired rotation.



Rotating about an Arbitrary Axis (3)

 The constructive way. Using some
vector tools we can obtain a more
revealing expression for the matrix R, (b).

* \We wish to express the operation of
rotating point P through angle b into point

Q

* The method, given in Case Study 5.5,
effectively establishes a 2D coordinate
system in the plane of rotation as shown.



Rotating about an Arbitrary Axis (4)

* This defines two orthogonal vectors a and b
lying in the plane, and as shown in Figure 5.25b
point Q is expressed as a linear combination of
them. The expression for Q involves dot
products and cross products of various
iIngredients in the problem.

 But because each of the terms is linear in the

coordinates of P, it can be rewritten as P times a
matrix.



Rotating about an Arbitrary Axis (5)




Rotating about an Arbitrary Axis (6)

* ¢ =cos(p), s =sin(B), and u,, u,, u, are the
components of u.

 Then

([ c+(l-cu?  (1-cuu,-su, (L-c)uu,+su, 0
2
(1-c)u,u, +su, c+(1—-c)u, (1-cju,u, —su, 0
2
(l-cuu, -su, (L-cjuu,+su,  c+(1-c)u, 0
. 0 0 0 1)

R, (5) =




Rotating about an Arbitrary Axis (6)

Open-GL provides a rotation about an
arbitrary axis:

glRotated (beta, ux, uy, uz);
beta is the angle of rotation.

* UX, Uy, uz are the components of a vector
u normal to the plane containing P and Q.



Summary of Properties of 3D Affine
Transformations
« Affine transformations preserve affine

combinations of points.

« Affine transformations preserve lines
and planes.

« Parallelism of lines and planes is
preserved.

* The columns of the matrix reveal the
transformed coordinate frame.

* Relative ratios are preserved.



Summary of Properties of 3D Affine
Transformations (2)

* The effect of transformations on the volumes
of objects. If 3D object D has volume V, then
its image T(D) has volume |det M | V, where |det
M| is the absolute value of the determinant of M.

« Every affine transformation is composed of
elementary operations. A 3D affine
transformation may be decomposed into a
composition of elementary transformations. See
Case Study 5.3.



Transforming Coordinate Systems

« We have a 2D
coordinate frame #1,
with origin ¢ and
axes I and].

« We have an affine
transformation T{.)
with matrix M, where
T(.) transforms
coordinate frame #1
Into coordinate
frame #2, with new
origin O’ = T(0), and
new axes i’ = T(i)
and |’ = T(j).

b

‘ 1&"

T~ system #2

system #1

/




Transforming Coordinate Systems
(2)
* Now let P be a point with representation
(c, d, 1)7 in the new system #2.

* What are the values of a and b in its
representation (a, b, 1)" in the original
system #17

« The answer: simply premultiply (c, d, 1)T
by M.

(a,b, )"=M(c, d, 1)T



Transforming Coordinate Systems
(3)

 \We have the following theorem:

* Suppose coordinate system #2 is formed
from coordinate system #1 by the affine
transformation M. Further suppose that
point P = (P,, P,, P,,1) are the coordinates
of a point P expressed in system #2. Then

the coordinates of P expressed in system
#1 are MP.




Successive Transformations

* Now consider forming a transformation by
making two successive changes of the
coordinate system. What is the overall

effect?

« System #1 is converted to system #2 by
transformation 7,(.), and system #2 is then
transformed to system #3 by
transformation 7,(.). Note that system #3
IS transformed relative to #2.



Successive Transformations (2)

« Point P has 4y
representation (e, )
f1)" with respectto  °—~— "~ ==
system #3. What are W
its coordinates (a,
b,1)" with respect to

the original system
#17




Successive Transformations (3)

« To answer this, collect the effects of each
transformation: In terms of system #2 the point P
has coordinates (c, d, 1)" = M,(e, f, 1)'. And in
terms of system #1 the point (c, d, 1)" has
coordinates (a, b, 1) = M,(c, d, 1)'. So
(a,b,1)"=M,(d, c, 1) =M, M,(e, f, 1)7

* The essential point is that when determining the
desired coordinates (a, b, 1)' from (e, f, 1) we
first apply M, and then M,, just the opposite

order as when applying transformations to
points.



Successive Transformations (4)

 To transform pomts To apply a sequence of
transformations T,(), T,(), T3() (in that order) to a
point P, form the matrix M = M; x M, x M,

* Then P is transformed to MP; pre-multiply by M..

* To transform the coordinate system To apply
a sequence of transformations 7,() (in
lgorm tzh

that order) to the coordinate system
matrix M = M, x M, x M.

* Then Pin the transformed system has
coordinates MP in the original system. To
compose each additional transformation M. you
must post-multiply by M..



Open-GL Transformations

* Open-GL actually transforms coordinate
systems, so in your programs you will
have to apply the transformations in
reverse order.

* E.g., If you want to translate the 3 vertices
of a triangle and then rotate it, your
program will have to do rotate and then
translate.




Using Affine Transformations in

9
9
9

Open-GL
Scaled (sx, sy, sz); /[ 2-d:sz=1.0
Translated (tx, ty, tz); //2-d: tz = 0.0
Rotated (angle, ux, uy, uz); //2-d:ux=uy =

0.0;uz=1.0

The sequence of commands is

— glLoadldentity();

— glMatrixMode (GL_MODELVIEW);

— /[ transformations 1, 2, 3, .... (in reverse order)

This method makes Open-GL do the work of
transforming for you.



Example

 We have version 1 of ¢ The easy way lets GL
the house defined do the transforming.
(vertices set), but )
what we really wantto 4v
draw Is version 2.

« We could write ﬁ
routines to transform |
the coordinates — this 4 $
Is the hard way. ol ™M
| |




Example: the Easy Way (2)

* We cause the desired transformation to be
applied automatically to each vertex. Just as we
know the window to viewport mapping is quietly
applied to each vertex as part of the graphics
pipeline, we can have an additional
transformation be applied as well.

* ltis often called the current transformation,
CT. We enhance moveTo() and lineTo() so that
they first apply this transformation to the
argument vertex, and then apply the window to
viewport mapping.



Example (3)

 When glVertex2d()is called with argument V, the vertex
V is first transformed by the CT to form point Q.

* Qs then passed through the window to viewport
mapping to form point S in the screen window.
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Example (4)

 How do we extend moveTo() and lineTo() so
they carry out this additional mapping?

* The transform is done automatically by OpenGL!
OpenGL maintains a so-called modelview
maitrix, and every vertex that is passed down
the graphics pipeline is multiplied by this
modelview matrix.

 We need only set up the modelview matrix once
to embody the desired transformation.



Example (5)

« The principal routines for altering the modelview
matrix are glRotated(), glScaled(), and
glTranslated().

 These don'’t set the CT directly; instead each
one postmultiplies the CT (the modelview matrix)
by a particular matrix, say M, and puts the result
back into the CT.

 That is, each of these routines creates a matrix
M as required for the new transformation, and
performs: CT = CT *M.



Example (6)

glScaled (sx, sy, sz); //2-d:sz=1.0
glTranslated (tx, ty, tz); //2-d: tz = 0.0
glRotated (angle, ux, uy, uz); // 2-d: ux =
uy = 0.0;uz=1.0

This method makes Open-GL do the work
of transforming for you.




Example (7)

 Of course, we have to start with some
MODELVIEW matrix:

* The sequence of commands is
— glMatrixMode (GL_MODELVIEW);
— glLoadldentity();
— [/ transformations 1, 2, 3, .... (in reverse order)

* Wrapper code for routines to manipulate
the CT is in Figure 5.33.



Example (8)

Code to draw house #2: note translate is done
before rotate (reverse order).

setWindow(...);

setViewport(..); // set window to viewport
// mapping
initCT(); // get started with identity
/[ transformation
translate2D(32, 25); // CT includes translation

rotate2D(-30.0); // CT includes translation and
/I rotation

house(); // draw the transformed house



Example 2: Star

« A star made of “interlocking” stripes: starMotif() draws a
part of the star, the polygon shown in part b. (Help on
finding polygon’s vertices in Case Study 5.1.)

 To draw the whole star we draw the motif five times,
each time rotating the motif through an additional 72°.
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Example 3: Snowflake

* The motif and the figure are shown below.
glScaled() is used to reflect the motif to get
a complete branch and then to restore the
original axis. Rotate by 60° between
branches. 2 b).

A
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Example 4: Dino Patterns

 The dinosaurs are distributed around a
circle in both versions. Left: each dinosaur
IS rotated so that its feet point toward the
origin; right: all the dinosaurs are upright.




Example 4 (2)

drawDino() draws an upright dinosaur centered

at the origin.

In a) the coordinate system for each motif is
rotated about the origin through a suitable angle,
and then translated along its y-axis by H units.

Note that the CT is reinitialized each time
through the loop so that the transformations
don’t accumulate.

An easy way to keep the motifs upright (as in
part b) is to pre-rotate each motif before
translating it.



Affine Transformations Stack

* |tis also possible to push/pop the current

transformation from a stack in OpenGL, using
the commands

glMatrixMode (GL_MODELVIEW);
glPushMatrix(); //or glPopMatrix();

b). after pushcT ()

a). before

CT,

CT,

CT,

CT,

CT,

e
e

CT,

CT,

c). after rotatezDd () d). after popCT ()

e
e

CT; - Rot
CT, f/

CT, / CT, /
CT, CT, /
CT, / CT,




Affine Transformations Stack (2)

* The implementation of pushCT() and popCT()
uses OpenGL routines glPushMatrix() and
glPopMatrix().

« Caution: Note that each routine must inform
OpenGL which matrix stack is being affected.

* In OpenGL, popping a stack that contains only
one matrix is an error; test the number of
matrices using OpenGL’s query function
glGet(G L_MODELVIEW_STACK_ DEPTH).



Affine Transformations Stack (3)

pushCT(void)
{ glMatrixMode(GL MODELVIEW);
glPushMatrix(); // push a copy of the top matrix
}
checkStack(void)

{ if (glGet (GL_MODELVIEW_STACK DEPTH)<1))
// do something
else popCT();

}
popCT(void)
{ glMatrixMode(GL_MODELVIEW);
glPopMatrix(); // pop the top matrix from the stack

}



Example 5: Motif

* Tilings are based on the repetition of a
basic motif both horizontally and vertically.

» Consider tiling the window with some
motif, drawn centered in its own
coordinate system by routine motif().

» Copies of the motif are drawn L units apart
In the x-direction, and D units apart in the
y-direction, as shown in part b).



Example 5 (2)

* The motif is translated horizontally and
vertically to achieve the tiling.
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Drawing 3D Scenes in OpenGL

« We want to transform objects in order to orient
and position them as desired in a 3D scene.

* OpenGL provides the necessary functions to
build and use the required matrices.

« The matrix stacks maintained by OpenGL make
it easy to set up a transformation for one object,
and then return to a previous transformation, in
preparation for transforming another object.



The Camera in OpenGL

 The camera is created with a matrix.
— We will study the details of how this is done in
Chapter 7.

* For now, we just use an OpenGL tool to
set up a reasonable camera so that we
may pay attention primarily to transforming
objects.



Interactive Programs

* In addition, we show how to make these
programs interactive so that at run time
the user can alter key properties of the
scene and its objects.

* The camera can be altered using the
mouse and keyboard so that the display
can be made to change dramatically in
real time. (Case Study 5.3.)



The Viewing Process and the
Graphics Pipeline

* The 2D drawing so far is a special case of
3D viewing, based on a simple parallel
projection.

* The eye is looking along the z-axis at the
world window, a rectangle in the xy-plane.
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The Viewing Process and the
Graphics Pipeline (2)

* Eye is simply a point in 3D space.
* The “orientation” of the eye ensures that
the view volume is in front of the eye.

* Objects closer than near or farther than far
are too blurred to see.

near plane window v far plane
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The Viewing Process and the
Graphics Pipeline (3)
* The view volume of the camera is a

rectangular parallelepiped.

* Its side walls are fixed by the window
edges; its other two walls are fixed by a
near plane and a far plane.
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The Viewing Process and the
Graphics Pipeline (4)
Points inside the view volume are projected onto

the window along lines parallel to the z-axis.

We ignore their z-component, so that the 3D
point (X, Y4, Z,) projects to (X4, Y4, 0).

Points lying outside the view volume are clipped
off.

A separate viewport transformation maps the
projected points from the window to the viewport
on the display device.



The Viewing Process and the
Graphics Pipeline (5)
 In 3D, the only change we make is to allow
the camera (eye) to have a more general

position and orientation in the scene Iin
order to produce better views of the scene.

viewplane
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The Viewing Process and the
Graphics Pipeline (6)

The z axis points toward the eye. Xand y
point to the viewer's right and up,
respectively.

Everything outside the view volume is
clipped.

Everything inside it is projected along lines
parallel to the axes onto the window plane
(parallel projection).



The Viewing Process and the
Graphics Pipeline (7)

* OpenGL provides functions for defining
the view volume and its position in the
scene, using matrices in the graphics
pipeline.

projection

/ matrx

—» YM = P ™ cip ™ V, D

\ /

modelview viewport
matrix matrix




The Viewing Process and the
Graphics Pipeline (8)
« Each vertex of an object is passed through
this pipeline using glVertex3d(x, vy, z).

* The vertex is multiplied by the various
matrices, clipped if necessary, and if it
survives, it is mapped onto the viewport.

 Each vertex encounters three matrices:
— The modelview matrix;
— The projection matrix;
— The viewport matrix;




The Modelview Matrix

« The modelview matrix is the CT (current
transformation).

* |t combines modeling transformations on objects
and the transformation that orients and positions
the camera in space (hence modelview).

 |tis a single matrix in the actual pipeline.

— For ease of use, we will think of it as the product of
two matrices: a modeling matrix M, and a viewing
matrix V. The modeling matrix is applied first, and
then the viewing matrix, so the modelview matrix is in
fact the product VM.



The Modelview Matrix (M)

* A modeling transformation M scales,

rotates, and translates the cube into the
block.
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The Modelview Matrix (V)

 The V matrix rotates and translates the
block into a new position.

 The camera moves from its position in the
scene to its generic position (eye at the
origin and the view volume aligned with
the z-axis).

* The coordinates of the block’s vertices are
changed so that projecting them onto a

plane (e.g., the near plane) displays the
projected image properly.




The Modelview Matr

* The matrix V changes the c
of the scene vertices into th

X (V)

oordinates
e

camera’s coordinate system, or into

eye coordinates.

* To inform OpenGL that we wish it to
operate on the modelview matrix we

call glMatrixMode(GL _MOL

ELVIEW);



The Projection Matrix

The projection matrix scales and translates each
vertex so that those inside the view volume will be
inside a standard cube that extends from -1to 1 in
each dimension (Normalized Device Coordinates).

This cube is a particularly efficient boundary against
which to clip objects.

The image is distorted, but the viewport
transformation will remove the distortion.

The projection matrix also reverses the sense of the
Z-axis; increasing values of z now represent
increasing values of depth from the eye.




The Projection Matrix (2)

» Setting the Projection Matrix:
— glMatrixMode(GL_PROJECTION);
— glLoadldentity (); // initialize projection matrix

— glOrtho (left, right, bottom, top, near, far); //
sets the view volume parellelpiped. (All
arguments are glDouble = 0.0.)

* left < vv.x < right, bottom < vv.y < top, and
-near < vv.z < -far (camera at the origin
looking along -z).




The Viewport Matrix

* The viewport matrix maps the standard
cube into a 3D viewport whose x and y
values extend across the viewport (in
screen coordinates), and whose z-
component extends from O to 1 (a
measure of the depth of each point).

* This measure of depth makes hidden
surface removal (do not draw surfaces
hidden by objects closer to the eye)
particularly efficient.



The Viewport Matrix (2)
A
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Setting Up the Camera

 We shall use a jib
camera.

* The photographer
rides at the top of
the tripod.

 The camera
moves through the
scene bobbing up
and down to get
the desired shots.




Setting Up the Scene (2)

glMatrixMode (GL_MODELVIEW);

// set up the modelview matrix
glLoadldentity ();

// initialize modelview matrix

// set up the view part of the matrix

// do any modeling transformations on the
scene



Setting Up the Projection

glMatrixMode(GL_PROJECTION);

// make the projection matrix current
glLoadldentity();

// set it to the identity matrix
glOrtho(left, right, bottom, top, near, far);

/[ multiply it by the new matrix

— Using 2 for near places the near plane at z = -2, that
IS, 2 units in front of the eye.

— Using 20 for far places the far plane at -20, 20 units
in front of the eye.



Setting Up the Camera
(View Matrix)

glMatrixMode (GL_MODELVIEW);
// make the modelview matrix current
glLoadldentity();
/I start with identity matrix
// position and aim the camera
gluLookAt (eye.x, eye.y, eye.z, // eye position
look.x, look.y, look.z, // the “look at” point
0, 1, 0) // approximation to true up direction
// Now do the modeling transformations



Setting Up the Camera (2)

* What gluLookAt does is create a camera
coordinate system of three mutually
orthogonal unit vectors: u, v, and n.

*n=eye-look;u=upxn;v=nxu

 Normalize n, u, v (in the camera system)
and let e = eye - 0 in the camera system,
where O is the origin.



Setting Up the Camera (3)

* Then gluLookAt () sets up the view matrix

V= * v 'z %y

Vv Vv Vv C
N

where d = (-e-u, -e-v, -e:n)

* up is usually (0, 1, 0) (along the y-axis), look is
frequently the middle of the window, and eye
frequently looks down on the scene.



The gluLookAt Coordinate System

e Camera in world coordinates:

look



Example

glMatrixMode (GL_PROJECTION);

9
9
9

// set the view volume (world coordinates)
Loadldentity();

Ortho (-3.2,3.2,-24,2.4, 1, 50);
MatrixMode (GL_MODELVIEW);

// place and aim the camera

glLoadldentity ();
gluLookAt (4, 4,4,0,1,0,0, 1, 0);

// modeling transformations go here



Changing Camera Orientation

* We can think of the jib camera as
behaving like an airplane.

— It can pitch, roll, or yaw from its position.

a) pitch b) roll C) yaw

)

u n



Changing Camera Orientation (2)

* Pitch — the angle between the longitudinal
axis and world horizontal.

* Roll —the angle between the transverse
axis and the world.

* Yaw — motion of the longitudinal axis
causing a change in the direction of the
plane’s flight.



Drawing 3D Shapes in OpenGL

 GLUT provides several 3D objects: a sphere, a
cone, a torus, the five Platonic solids, and the
teapot.

« Each is available as a wireframe model (one
appearing as a collection of wires connected
end to end) and as a solid model with faces that
can be shaded.

 All are drawn by default centered at the origin.

« To use the solid version, replace Wire by Solid in
the functions.



Drawing 3D Shapes in OpenGL (2)

* cube: glutWireCube (GLdouble size);
— Each side is of length size.

* sphere: glutWireSphere (GLdouble
radius, GLint nSlices, GLint nStacks);

— nSlices is the number of “orange sections”
and nStacks is the number of disks.

— Alternately, nSlices boundaries are longitude
lines and nStacks boundaries are latitude
lines.



Drawing 3D Shapes in OpenGL (3)

 torus: glutWireTorus (GLdouble
iInRad, GLdouble outRad, GLint
nSlices, GLint nStacks);

» teapot: glutWireTeapot (GLdouble
size);

— Why teapots? A standard graphics challenge
for a long time was both making a teapot look
realistic and drawing it quickly.



Drawing 3D Shapes in OpenGL (4)

tetrahedron: glutWireTetrahedron ();
octahedron: glutWireOctahedron ();
dodecahedron: glutWireDodecahedron ();
iIcosahedron: glutWirelcosahedron ();

cone: glutWireCone (GLdouble
baseRad, GLdouble height, GLint nSlices,
GLint nStacks);



Drawing 3D Shapes in OpenGL (5)

» tapered cylinder: gluCylinder (GLUquadricODbj
* gobj, GLdouble baseRad, GLdouble topRad,
GLdouble height, GLint nSlices, GLint nStacks);

« The tapered cylinder is actually a family of
shapes, distinguished by the value of topRad.

— When topRad is 1, there is no taper; this is the
classic cylinder.

— When topRad is 0O, the tapered cylinder is
iIdentical to the cone.




Drawing 3D Shapes in OpenGL (6)

* To draw the tapered cylinder in OpenGL, you
must 1) define a new quadric object, 2) set the
drawing style (GLU_LINE: wireframe,
GLU_FILL: solid), and 3) draw the object:

GLUquadricObj * qobj = gluNewQuadric ();
// make a quadric object
gluQuadricDrawStyle (gobj,GLU _LINE);
/] set style to wireframe

gluCylinder (gobj, baseRad, topRad, nSlices,
nStacks); // draw the cylinder






Code for Example (Fig. 5.57)

* The main() routine initializes a 640 by 480 pixel
screen window, sets the viewport and
background color, and specifies the drawing
function as displayWire().

* |In displayWire() the camera shape and position
are established and each object is drawn using
its own modeling matrix.

« Before each modeling transformation, a
glPushMatrix() is used to remember the current
transformation, and after the object has been
drawn, this prior current transformation is
restored with a glPopMatrix().



Code for Example (2)

* Thus the code to draw each object is imbedded
in a glPushMatrix(), glPopMatrix() pair.

 To draw the x-axis, the z-axis is rotated 90°
about the y-axis to form a rotated system, and
the axis Is redrawn In its new orientation.

* This axis is drawn without immersing it in a
glPushMatrix(), glPopMatrix() pair, so the
rotation to produce the y-axis takes place in the
already rotated coordinate system.



Solid 3D Drawing in OpenGL

* A solid object scene is rendered with
shading. The light produces highlights on
the sphere, teapot, and jack.




Solid 3D Drawing in OpenGL (2)

* The scene contains three objects resting
on a table in the corner of a room.

* The three walls are made by flattening a
cube into a thin sheet and moving it into
position.

* The jack is composed of three stretched
spheres oriented at right angles plus six
small spheres at their ends.



Solid 3D Drawing in OpenGL (3)

* The table consists of a table top and four
legs.

« Each of the table’s five pieces is a cube
that has been scaled to the desired size
and shape (next slide).

* The table is based on four parameters that
characterize the size of its parts: topWidth,
topThick, legLen, and legThick.
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Solid 3D Drawing in OpenGL (4)

* A routine tableLeg() draws each leg and is
called four times within the routine table()
to draw the legs in the four different
locations.

* The different parameters used produce
different modeling transformations within
tableLeg(). As always, a glPushMatrix(),
glPopMatrix() pair surrounds the modeling
functions to isolate their effect.



Code for the Solid Example
(Fig. 5.60)

* The solid version of each shape, such as
glutSolidSphere(), is used.

* To create shaded images, the position and
properties of a light source and certain
properties of the objects’ surfaces must be
specified, in order to describe how they reflect
light (Ch. 8).

* We just present the various function calls here;
using them as shown will generate shading.



Scene Description Language (SDL)

* Previous scenes were described through
specific OpenGL calls that transform and
draw each object, as in the following code:

glTranslated (0.25, 0.42, 0.35);

glutSolidSphere (0.1, 15, 15); // draw a
sphere

* The objects were “hard-wired” into the
program. This method is cumbersome and

error-prone.



SDL (2)

* We want the designer to be able to specify
the objects in a scene using a simple

language and place the description in a
file.

* The drawing program becomes a general-
purpose program:

— It reads a scene file at run-time and draws
whatever objects are encountered in the file.



SDL (3)

 The Scene Description Language (SDL),
described in Appendix 3, provides a Scene
class, also described in Appendix 3 and on
the book’s web site, that supports the
reading of an SDL file and the drawing of
the objects described in the file.



Using SDL

* A global Scene object is created:
Scene scn; // create a scene object

* Read in a scene file using the read
method of the class:

scn.read("example.dat"); // read the scene
file & build an object list




Example SDL Scene

I example.dat: simple scene: 1 light and 4 shapes
| beginning ! is a comment; extends to end of line

background 0 O 1 | create a blue background
light298 111 | put a white light at (2, 9, 8)
diffuse .9 .1 .1 I make following objects reddish

translate 3 5 -2 sphere ! puta sphere at3 5 -2
translate -4 —6 8 cone ! put a cone in the scene
translate 1 1 1 cube I add a cube
diffuse 01 0 I make following objects green
translate 40 5 2 scale .2 .2 .2 sphere ! tiny sphere




The SDL Scene

* The scene has a bright blue background color (red,
green, blue) = (0, 0, 1), a bright white (1, 1, 1) light
situated at (2, 9, 8), and four objects: two spheres, a
cone and a cube.

* The light field points to the list of light sources, and
the obj field points to the object list.

« Each shape object has its own affine transformation
M that describes how it is scaled, rotated, and
positioned in the scene. It also contains various data
fields that specify its material properties. Only the
diffuse field is shown in the example.



SDL Data Structure
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The SDL Scene (2)

« Once the light list and object list have been built, the
application can render the scene:

scn.makelLightsOpenGL(),
scn.drawSceneOpenGL(); // render scene with OpenGL

« The first instruction passes a description of the light
sources to OpenGL. The second uses the method
drawSceneOpenGL () to draw each object in the object
list.

« The code for this method is very simple:

void Scene :: drawSceneOpenGL()

{ for(GeomOQODbj* p =obj; p; p = p->next)
p->drawOpenGL(); // draw it

}



The SDL Scene (3)

The function moves a pointer through the object
list, calling drawOpenGL() for each object in
turn.

Each different shape can draw itself; it has a
method drawOpenGL() that calls the appropriate
routine for that shape (next slide).

Each first passes the object’s material properties
to OpenGL, then updates the modelview matrix
with the object’s specific affine transformation.

The original modelview matrix is pushed and
later restored to protect it from being affected
after this object has been drawn.



Examples of Objects which can
Draw Themselves

vaid Sphere :: drawlpenGLlld

[

tellMaterialaGL{); f/paee matarial data toc OpanGL
glPushMatrdix(];

glMultMatrixf (tranef.ml F¥f 1amd thi4i= obiect's matrix
glut5clid8pherae(1.0,10,12); ff draw a sphere
glPopHatrix ()

void Cone @@ drawlpenGLi)

[

tellMaterialaGL{) ;//pazs material data to COpenGL
glPushMatrdix(];

glMultMatrixf (transf.m); f/ load this cbject'e matrix
glut8eclidCeonel(l.0,1.0, 10,12); ff draw a cone
glPopHatrix();



Using the SDL

* Fig. 5.63 shows the code to read in an
SDL file and draw it.

* Fig. 5.64 shows the SDL file necessary to
draw the solid objects picture.

* It is substantially more compact than the

corresponding OpenGL code file.

— Note also that some functions in the SDL may
have to be implemented by you!
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