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TransformationsTransformations

• We used the window to viewport transformationWe used the window to viewport transformation 
to scale and translate objects in the world 
window to their size and position in the viewport. 

• We want to build on this idea, and gain more 
flexible control over the size, orientation, and 
position of objects of interest. 

• To do so, we will use the powerful affine 
f itransformation.



Example of Affine TransformationsExample of Affine Transformations

• The house has been scaled, rotated andThe house has been scaled, rotated and 
translated, in both 2D and 3D.



Using TransformationsUsing Transformations

• The arch is designed in its own coordinateThe arch is designed in its own coordinate 
system. 

• The scene is drawn by placing a number• The scene is drawn by placing a number 
of instances of the arch at different places 
and with different sizesand with different sizes.



Using Transformations (2)Using Transformations (2)

• In 3D many cubes make a cityIn 3D, many cubes make a city.



Using Transformations (3)Using Transformations (3)

• The snowflake exhibits symmetriesThe snowflake exhibits symmetries. 
• We design a single motif and draw the 

whole shape using appropriate reflectionswhole shape using appropriate reflections, 
rotations, and translations of the motif.

use it 12 times



Using Transformations (4)Using Transformations (4)

• A designer may want to view an objectA designer may want to view an object 
from different vantage points.

• Positioning and reorienting a camera can• Positioning and reorienting a camera can 
be carried out through the use of 3D affine 
transformationstransformations.



Using Transformations (5)Using Transformations (5)

• In a computer animation, objects move.In a computer animation, objects move.
• We make them move by translating and rotating 

their local coordinate systems as the animation y
proceeds. 

• A number of graphics platforms, including g p p , g
OpenGL, provide a graphics pipeline: a 
sequence of operations which are applied to all 

i h h h ipoints that are sent through it.  
• A drawing is produced by processing each point.



The OpenGL Graphics PipelineThe OpenGL Graphics Pipeline

• This version is simplifiedThis version is simplified.



Graphics Pipeline (2)Graphics Pipeline (2)
• An application sends the pipeline a sequence of pp p p q

points P1, P2, ... using commands such as:
glBegin(GL_LINES);

glVertex3f( ); // send P1 through the pipelineglVertex3f(...); // send P1 through the pipeline
glVertex3f(...); // send P2 through the pipeline
...

glEnd();
• These points first encounter a transformation 

ll d h f i (CT) hi hcalled the current transformation (CT), which 
alters their values into a different set of points, 
say Q1, Q2, Q3. y 1, 2, 3



Graphics Pipeline (3)Graphics Pipeline (3)

• Just as the original points Pi describeJust as the original points Pi describe 
some geometric object, the points Qi
describe the transformed version of thedescribe the transformed version of the 
same object.

• These points are then sent through• These points are then sent through 
additional steps, and ultimately are used to 
draw the final image on the displaydraw the final image on the display. 



Graphics Pipeline (4)Graphics Pipeline (4)
• Prior to OpenGL 2.0 the pipeline was of fixed-p p p

functionality: each stage had to perform a 
specific operation in a particular manner.  

• With OpenGL 2 0 and the Shading LanguageWith OpenGL 2.0 and the Shading Language 
(GLSL), the application programmer could not 
only change the order in which some operations 
were performed but in addition could make thewere performed, but in addition could make the 
operations programmable. 

• This allows hardware and software developers 
k d f l i h dto take advantage of new algorithms and 

rendering techniques and still comply with 
OpenGL version 2.0. p



TransformationsTransformations

• Transformations change 2D or 3D points andTransformations change 2D or 3D points and 
vectors, or change coordinate systems.
– An object transformation alters the coordinates of 

each point on the object according to the same rule, 
leaving the underlying coordinate system fixed.
A coordinate transformation defines a new coordinate– A coordinate transformation defines a new coordinate 
system in terms of the old one, then represents all of 
the object’s points in this new system.

• Object transformations are easier to understand, 
so we will do them first.



Transformations (2)Transformations (2)

• A (2D or 3D) transformation T( ) altersA (2D or 3D) transformation T( ) alters 
each point, P into a new point, Q, using a 
specific formula or algorithm: Q= T(P)specific formula or algorithm: Q  T(P). 



Transformations (3)Transformations (3)

• An arbitrary point P in the plane isAn arbitrary point P in the plane is 
mapped to Q. 

• Q is the image of P under the mapping T.Q is the image of P under the mapping T. 
• We transform an object by transforming 

each of its points, using the same functioneach of its points, using the same function 
T() for each point. 

• The image of line L under T, for instance,The image of line L under T, for instance, 
consists of the images of all the individual 
points of L.p



Transformations (4)Transformations (4)

• Most mappings of interest are continuousMost mappings of interest are continuous, 
so the image of a straight line is still a 
connected curve of some shape althoughconnected curve of some shape, although 
it’s not necessarily a straight line. 

• Affine transformations however do• Affine transformations, however, do
preserve lines: the image under T of a 
straight line is also a straight linestraight line is also a straight line. 



Transformations (5)Transformations (5)

• We use an explicit coordinate frame whenWe use an explicit coordinate frame when 
performing transformations. 

• A coordinate frame consists of a point O• A coordinate frame consists of a point O, 
called the origin, and some mutually 
perpendicular vectors (called i and j in theperpendicular vectors (called i and j in the 
2D case;  i, j, and k in the 3D case) that 
serve as the axes of the coordinate frameserve as the axes of the coordinate frame.

• In 2D, 
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Transformations (6)Transformations (6)

• Recall that this means that point P is atRecall that this means that point P is at 
location  = Px i + Py j + O , and similarly for 
Q   Q.  

• Px and Py are the coordinates of P. 
T t f th i i t i t P• To get from the origin to point P, move 
amount Px along axis i and amount Py
l i jalong axis j.



Transformations (7)Transformations (7)

• Suppose that transformation T operatesSuppose that transformation T operates 
on any point P to produce point Q:
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Transformations (8)Transformations (8)

• To make affine transformations we restrictTo make affine transformations we restrict 
ourselves to much simpler families of 
functions, those that are linear in Px and x
Py. 

• Affine transformations make it easy to y
scale, rotate, and reposition figures. 

• Successive affine transformations can be 
combined into a single overall affine 
transformation.



Affine TransformationsAffine Transformations

• Affine transformations have a compactAffine transformations have a compact 
matrix representation.  

• The matrix associated with an affine• The matrix associated with an affine 
transformation operating on 2D vectors or 
points must be a three by three matrixpoints must be a three-by-three matrix.  
– This is a direct consequence of representing 

the vectors and points in homogeneousthe vectors and points in homogeneous 
coordinates. 



Affine Transformations (2)Affine Transformations (2)

• Affine transformations have a simple formAffine transformations have a simple form.
• Because the coordinates of Q are linear

combinations of those of P thecombinations of those of P, the 
transformed point  may be written in the 
form:form:
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Affine Transformations (3)Affine Transformations (3)

• There are six given constants: m11 m12There are six given constants: m11, m12, 
etc.

• The coordinate Q consists of portions of• The coordinate Qx consists of portions of 
both Px and Py, and so does Qy. 
Thi bi ti b t th d• This combination between the x- and y-
components also gives rise to rotations 

d hand shears. 



Affine Transformations (4)Affine Transformations (4)

• Matrix form of the affine transformation inMatrix form of the affine transformation in 
2D:
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• For a 2D affine transformation the third 
row of the matrix is always (0, 0, 1). 



Affine Transformations (5)Affine Transformations (5)

• Some people prefer to use row matrices toSome people prefer to use row matrices to 
represent points and vectors rather than 
column matrices: e g P = (P P 1)column matrices: e.g., P  (Px, Py, 1) 

• In this case, the P vector must pre-multiply
the matrix and the transpose of the matrixthe matrix, and the transpose of the matrix 
must be used: Q = P MT.
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Affine Transformations (6)Affine Transformations (6)

• Vectors can be transformed as well asVectors can be transformed as well as 
points. 

• If a 2D vector v has coordinates V and V• If a 2D vector v has coordinates Vx and Vy
then its coordinate frame representation is 
a column vector with third component 0a column vector with third component 0. 



Affine Transformations (7)Affine Transformations (7)

• When vector V is transformed by the sameWhen vector V is transformed by the same 
affine transformation as point P, the result 
is  VmmmWis
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• Important: to transform a point P into a 
point Q, post-multiply M by P: Q = M P.p Q, p p y y



Affine Transformations (8)Affine Transformations (8)

• Example: find the image Q of point P = (1Example: find the image Q of point P = (1, 
2, 1) using the affine transformation 
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Geometric Effects of Affine 
T f iTransformations

• Combinations of four elementary y
transformations: (a) a translation, (b) a scaling, 
(c) a rotation, and (d) a shear (all shown below).



TranslationsTranslations 
• The amount P is translated does not depend on p

P’s position. 
• It is meaningless to translate vectors.
• To translate a point P by a in the x direction and• To translate a point P by a in the x direction and 

b in the y direction use the matrix:
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ScalingScaling

• Scaling is about the origin. If Sx = Sy the g g x y
scaling is uniform; otherwise it distorts the 
image.  
If S S 0 th i i fl t d• If Sx or Sy < 0, the image is reflected 
across the x or y axis.

• The matrix form is• The matrix form is
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Example of ScalingExample of Scaling

• The scaling (Sx Sy) = (-1 2) is applied toThe scaling (Sx, Sy) = ( 1, 2) is applied to 
a collection of points. Each point is both 
reflected about the y-axis and scaled by 2reflected about the y axis and scaled by 2 
in the y-direction. 

y

x



Types of ScalingTypes of Scaling

• Pure reflections, for which each of thePure reflections, for which each of the 
scale factors is  +1 or  -1.

• A uniform scaling, or a magnificationA uniform scaling, or a magnification 
about the origin: Sx = Sy, magnification |S|.
– Reflection also occurs if Sx or Sy is negative.x y g
– If |S| < 1, the points will be moved closer to 

the origin, producing a reduced image.
• If the scale factors are not the same, the 

scaling is called a differential scaling. 



RotationRotation

• Counterclockwise around origin by angleCounterclockwise around origin by angle 
θ:
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Deriving the Rotation MatrixDeriving the Rotation Matrix

• P is at distance R from the origin at angleP is at distance R from the origin, at angle 
Φ; then P = (R cos(Φ), R sin(Φ)).

• Q must be at the same distance as P and• Q must be at the same distance as P, and 
at angle θ + Φ: Q =(R cos(θ + Φ), R sin(θ
+ Φ))+ Φ)).

• cos(θ + Φ) = cos(θ) cos(Φ) - sin(θ) sin(Φ); 
i (θ Φ) i (θ) (Φ) (θ) i (Φ)sin(θ + Φ)  = sin(θ) cos(Φ) + cos(θ) sin(Φ).

• Use Px = R cos(Φ) and Py = R sin(Φ). 



ShearShear

• Shear H about origin: 
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Inverses of Affine TransformationsInverses of Affine Transformations

• det(M) = m11*m22 - m21*m12 0 means thatdet(M)  m11 m22 m21 m12 0 means that 
the inverse of a transformation exists.

That is the transformation can be "undone“– That is, the transformation can be undone .
• M M-1 = M-1M = I, the identity matrix (ones 

down the major diagonal and zeroesdown the major diagonal and zeroes 
elsewhere). 



Inverse Translation and ScalingInverse Translation and Scaling

• Inverse of QInverse of 
translation T-1:
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Inverse Rotation and ShearInverse Rotation and Shear

• Inverse of rotation R-1 = R(-θ):Inverse of rotation R = R( θ):
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Composing Affine TransformationsComposing Affine Transformations

• Usually, we want to apply several affineUsually, we want to apply several affine 
transformations in a particular order to the 
figures in a scene: for example,g p
– translate by (3,  - 4) 
– then rotate by 30o

– then scale by (2,  - 1) and so on.
• Applying successive affine transformations y g

is called composing affine 
transformations.



Composing Affine Transformations 
(2)(2)

• T1( ) maps P into Q, • So M = M2M1, the 1( ) p Q,
and T2( ) maps Q into 
point W.  Is W = T2(Q) 
= T (T (P))affine?

2 1,
product of 2 matrices 
(in reverse order of 
application) which is= T2(T1(P))affine?

• Let T1=M1 and T2=M2, 
where M1 and M2 are

application), which is 
affine.

where M1 and M2 are 
the appropriate 
matrices.

• W = M2(M1P)) = 
(M2M1)P =MP by 
associativityassociativity.



Composing Affine Transformations: 
E lExamples

• To rotate around an arbitrary point:To rotate around an arbitrary point: 
translate P to the origin, rotate, translate P 
back to original position Q = TP R T P Pback to original position.  Q  TP R T-P P

• Shear around an arbitrary point:               
Q = T H T PQ = TP H T-P P

• Scale about an arbitrary point: 
Q = TPST-P P



Composing Affine Transformations 
(E l )(Examples)

• Reflect across an arbitrary line through theReflect across an arbitrary line through the 
origin O: Q = R(θ) S R(-θ) P

• The rotation transforms the axis to the x• The rotation transforms the axis to the x-
axis, the reflection is a scaling, and the 
last rotation transforms back to the originallast rotation transforms back to the original 
axis.
Wi d i t T l t b l b• Window-viewport: Translate by -w.l, -w.b, 
scale by A, B, translate by v.l, v.b.



Properties of 2D and 3D Affine 
T f iTransformations

• Affine transformations preserve affineAffine transformations preserve affine 
combinations of points. 
– W = a1P1 + a2P2 is an affine combination.1 1 2 2

– MW = a1MP1 + a2MP2

• Affine transformations preserve lines and 
planes. 
– A line through A and B is L(t) = (1-t)A + tB, an affine 

combination of pointscombination of points.
– A plane can also be written as an affine combination 

of points: P(s, a) = sA + tB +(1 – s – t)C.p ( , ) ( )



Properties of Transformations (2)Properties of Transformations (2)

• Parallelism of lines and planes is preserved.p p
– Line A + bt having direction b transforms to the line 

given in homogeneous coordinates by  M(A + bt) = 
MA + Mbt which has direction vector MbMA + Mbt, which has direction vector Mb. 

– Mb does not depend on point A. Thus two different 
lines A1+ bt and A2 + bt that have the same direction 

ill t f i t t li b th h i th di tiwill transform into two lines both having the direction, 
so they are parallel. 

• An important consequence of this property is p q p p y
that parallelograms map into other 
parallelograms.



Properties of Transformations (3)Properties of Transformations (3)

• The direction vectors for a plane also• The direction vectors for a plane also 
transform into new direction vectors 
i d d t f th l ti f thindependent of the location of the 
plane. 

• As a consequence, parallelepipeds 
map into other parallelepipedsmap into other parallelepipeds.



Properties of Transformations (4)Properties of Transformations (4)

• The columns of the matrix reveal theThe columns of the matrix reveal the 
transformed coordinate frame:

Vector i transforms into column m vector j– Vector i transforms into column m1, vector j 
into column m2, and the origin O into point m3.

– The coordinate frame (i j O) transforms intoThe coordinate frame (i, j, O) transforms into 
the coordinate frame (m1, m2, m3), and these 
new objects are precisely the columns of the j p y
matrix.
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Properties of Transformations (5)Properties of Transformations (5)

• The axes of the new coordinate frame areThe axes of the new coordinate frame are 
not necessarily perpendicular, nor must 
they be unit lengththey be unit length. 
– They are still perpendicular if the 

transformation involves only rotations andtransformation involves only rotations and 
uniform scalings.  

• Any point P = P i + P j + O transforms intoAny point P  Pxi + Pyj + O transforms into 
Q = Pxm1 + Pym2 + m3. 



Properties of Transformations (6)Properties of Transformations (6)



Properties of Transformations (7)Properties of Transformations (7)

• Relative ratios are • The transformedRelative ratios are 
preserved: consider 
point P lying a  

The transformed 
point, T(P), lies the 
same fraction t of the 

fraction t of the way 
between two given 

i t A d B (

way between images 
T(A) and T(B).

points, A and B (see 
figure). 

• Apply affine

B

T

1 - t

• Apply affine 
transformation T( ) to 
A B and P

A
P

t

tA , B, and P. 
T(A)

T(B)T(P)

1 - t



Properties of Transformations (8)Properties of Transformations (8)

• How is the area of a figure affected by an affineHow is the area of a figure affected by an affine 
transformation? 

• It is clear that neither translations nor rotations 
have any effect on the area of a figure, but 
scalings certainly do, and shearing might. 

• The result is simple: When the 2D 
transformation with matrix M is applied to an 

bj i i l i li d b h i d fobject, its area is multiplied by the magnitude of 
the determinant of M:

area after transformation darea after transformation
area before transformation

M det



Properties of Transformations (9)Properties of Transformations (9)

• In 2D the determinant of the matrix M is (m11m22( 11 22
– m12m21).

• For a pure scaling, the new area is SxSy times 
h i i l h f h l

y
the original area, whereas for a shear along one
axis the new area is the same as the original 
areaarea. 

• In 3D similar arguments apply, and we can 
conclude that the volume of a 3D object is 
scaled by |det M| when the object is transformed 
by the 3D transformation based on matrix M.



Properties of Transformations (10)Properties of Transformations (10)

• Every affine transformation is composed of y p
elementary operations. 

• A matrix  may be factored into a product of 
elementary matrices in various ways Oneelementary matrices in various ways. One 
particular way of factoring the matrix associated 
with a 2D affine transformation yields
M ( h )( li )( t ti )(t l ti )M = (shear)(scaling)(rotation)(translation)

• That is, any 3 x 3 matrix  that represents a 2D 
affine transformation can be written as the a e t a s o at o ca be tte as t e
product of (reading right to left) a translation 
matrix, a rotation matrix, a scaling matrix, and a 
shear matrixshear matrix. 
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3D Affine Transformations3D Affine Transformations

• Again we use coordinate frames andAgain we use coordinate frames, and 
suppose that we have an origin O and 
three mutually perpendicular axes in thethree mutually perpendicular axes in the 
directions i, j, and k (see Figure 5.8). Point 
P in this frame is given by P = O + P i + P jP in this frame is given by P  O + Pxi + Pyj
+ Pzk, and vector V by Vxi + Vyj + Vzk. 
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3-D Affine Transformations3 D Affine Transformations 

• The matrix representing a transformationThe matrix representing a transformation 
is now 4 x 4, with Q = M P as before.

 mmmm
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
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M

• The fourth row of the matrix is a string of 
zeroes followed a lone one



zeroes followed a lone one. 



Translation and ScalingTranslation and Scaling

• Translation and scaling transformationTranslation and scaling transformation 
matrices are given below. The values Sx, 
S and S cause scaling about the originSy, and Sz cause scaling about the origin 
of the corresponding coordinates. 
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ShearShear

• The shear matrix is given belowThe shear matrix is given below. 
– a: y along z; b: z along x; c: x along y; d: z 

along y; e: x along z; f: y along zalong y; e: x along z; f: y along z
• Usually only one of {a,…,f} is non-zero.
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RotationsRotations

• Rotations are more complicated We startRotations are more complicated.  We start 
by defining a roll (rotation counter-
clockwise around an axis looking towardclockwise around an axis looking toward
the origin):



Rotations (2)Rotations (2)

• z-roll: the x-axis rotates to the y-axis.z roll: the x axis rotates to the y axis. 
• x-roll: the y-axis rotates to the z-axis. 
• y roll: the z axis rotates to the x axis• y-roll: the z-axis rotates to the x-axis.
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Rotations (3)Rotations (3)
• Note that 12 of the terms in each matrix are the 

zeros and ones of the identity matrix. 
• They occur in the row and column that 

correspond to the axis about which the rotationcorrespond to the axis about which the rotation 
is being made (e.g., the first row and column for 
an x-roll). 
Th t th t th di• They guarantee that the corresponding 
coordinate of the point being transformed will not 
be altered. 

• The cos and sin terms always appear in a 
rectangular pattern in the other rows and 
columnscolumns.



ExampleExample

• A barn in its original orientation and afterA barn in its original orientation, and after 
a -70° x-roll,  a 30° y-roll, and a -90° z-roll.

a). the barn b). -700 x-roll 

c). 300 y-roll d). -900 z-roll 



Composing 3D Affine 
T f iTransformations

• 3D affine transformations can be composed, and p ,
the result is another 3D affine transformation. 

• The matrix of the overall transformation is the 
d f h i di id l i M d M hproduct of the individual matrices M1 and M2 that 

perform the two transformations, with M2 pre-
multiplying M1: M = M2M1multiplying M1: M  M2M1

• Any number of affine transformations can be 
composed in this way, and a single matrix 
results that represents the overall 
transformation. 



ExampleExample

• A barn is firstA barn is first 
transformed using 
some M1, and the 
transformed barn is 
again transformed 

i M Th ltusing M2. The result 
is the same as the 
barn transformedbarn transformed 
once using M2M1.



Building RotationsBuilding Rotations

• All 2D rotations are Rz. Two rotations combine toAll 2D rotations are Rz. Two rotations combine to 
make a rotation given by the sum of the rotation 
angles, and the matrices commute. 

• In 3D the situation is much more complicated, 
because rotations can be about different axes. 

• The order in which two rotations about different 
axes are performed does matter: 3D rotation 

i dmatrices do not commute. 



Building Rotations (2)Building Rotations (2)

• We build a rotation in 3D by composingWe build a rotation in 3D by composing 
three elementary rotations: an x-roll 
followed by a y-roll, and then a z-roll. The y y
overall rotation is given by M = Rz(β3)Ry( 
β2)Rx(β1).

• In this context the angles β1, β2, and β3 are 
often called Euler angles.



Building Rotations (3)Building Rotations (3)
• Euler’s Theorem: Any rotation (or sequence y ( q

of rotations) about a point is equivalent to a 
single rotation about some axis through that 
pointpoint.

• Any 3D rotation around an axis (passing through 
the origin) can be obtained from the product ofthe origin) can be obtained from the product of 
five matrices for the appropriate choice of Euler 
angles; we shall see a method to construct the 

t imatrices.  
• This implies that three values are required (and 

only three) to completely specify a rotation!only three) to completely specify a rotation!



Rotating about an Arbitrary AxisRotating about an Arbitrary Axis
• We wish to rotate z

around axis u to make 
P coincide with Q.

• u can have any

z

u

Q• u can have any 
direction; it appears 
difficult to find a matrix 
th t t h

P

Q





that represents such a 
rotation. 

• But it can be found in 



But it can be found in 
two ways, a classic way 
and a constructive way.

x y




Rotating about an Arbitrary Axis (2)Rotating about an Arbitrary Axis (2)

• The classic way. Decompose the requiredThe classic way. Decompose the required 
rotation into a sequence of known steps:
– Perform two rotations so that u becomes aligned with 

the z-axis. 
– Do a z-roll through angle β. 

U d th t li t t ti t t t it– Undo the two alignment rotations to restore u to its 
original direction.

• R (β) = R ( -θ) R ( -Φ) R (β) R (Φ) R (θ) is the• Ru(β) = Rz( -θ) Ry( -Φ) Rz(β) Ry(Φ) Rz(θ) is the 
desired rotation.



Rotating about an Arbitrary Axis (3)Rotating about an Arbitrary Axis (3)

• The constructive way. Using someThe constructive way. Using some 
vector tools we can obtain a more 
revealing expression for the matrix Ru(b).g p u( )

• We wish to express the operation of 
rotating point P through angle b into pointg p g g p
Q.  

• The method, given in Case Study 5.5, g y
effectively establishes a 2D coordinate 
system in the plane of rotation as shown. 



Rotating about an Arbitrary Axis (4)Rotating about an Arbitrary Axis (4)

• This defines two orthogonal vectors a and bThis defines two orthogonal vectors a and b 
lying in the plane, and as shown in Figure 5.25b 
point Q is expressed as a linear combination of 
them. The expression for Q involves dot 
products and cross products of various 
i di t i th blingredients in the problem. 

• But because each of the terms is linear in the 
coordinates of P it can be rewritten as P times acoordinates of P, it can be rewritten as P times a 
matrix.



Rotating about an Arbitrary Axis (5)Rotating about an Arbitrary Axis (5)
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Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• c = cos(β) s = sin(β) and u u u are thec = cos(β), s = sin(β), and ux, uy, uz are the 
components of u.

• Then• Then 

  0)1()1()1( 2 suuucsuuucucc


















0)1()1()1(
0)1()1()1(
0)1()1()1(

)( 2

2
xyzyzyx

yxzzxyx

u uccsuuucsuuuc
suuucuccsuuuc
suuucsuuucucc

R 










1000
0)1()1()1( zxzyyzx uccsuuucsuuuc



Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• Open-GL provides a rotation about anOpen GL provides a rotation about an 
arbitrary axis:

glRotated (beta ux uy uz);glRotated (beta, ux, uy, uz);
• beta is the angle of rotation.
• ux, uy, uz are the components of a vector 

u normal to the plane containing P and Q.



Summary of Properties of 3D Affine 
T f iTransformations

• Affine transformations preserve affine p
combinations of points. 

• Affine transformations preserve lines 
d land planes.

• Parallelism of lines and planes is 
preservedpreserved. 

• The columns of the matrix reveal the 
transformed coordinate frametransformed coordinate frame.

• Relative ratios are preserved.



Summary of Properties of 3D Affine 
T f i (2)Transformations (2)

• The effect of transformations on the volumesThe effect of transformations on the volumes 
of objects. If 3D object D has volume V, then 
its image T(D) has volume |det M | V, where |det
M| is the absolute value of the determinant of M.

• Every affine transformation is composed of 
elementary operations. A 3D affine 
transformation may be decomposed into a 
composition of elementary transformations Seecomposition of elementary transformations. See  
Case Study 5.3.



Transforming Coordinate SystemsTransforming Coordinate Systems 

• We have a 2D 
coordinate frame #1, 
with origin O and 
axes  i and j.  j

• We have an affine 
transformation T(.) 
with matrix M wherewith matrix M, where 
T(.) transforms 
coordinate frame #1 
into coordinateinto coordinate 
frame #2, with new 
origin O’ = T(O), and 
new axes i’ = T(i)new axes i   T(i) 
and j’ = T(j).



Transforming Coordinate Systems 
(2)(2)

• Now let P be a point with representationNow let P be a point with representation 
(c, d, 1)T in the new system #2. 

• What are the values of a and b in its• What are the values of a and b in its 
representation (a, b, 1)T in the original 
system #1?system #1? 

• The answer: simply premultiply (c, d, 1)T

b Mby M: 
(a, b, 1)T = M (c, d, 1)T



Transforming Coordinate Systems 
(3)(3)

• We have the following theorem:We have the following theorem: 
• Suppose coordinate system #2 is formed 

from coordinate system #1 by the affinefrom coordinate system #1 by the affine 
transformation M. Further suppose that 
point P = (P P P 1) are the coordinatespoint P = (Px, Py, Pz,1) are the coordinates 
of a point P expressed in system #2. Then 
the coordinates of P expressed in systemthe coordinates of P expressed in system 
#1 are MP.



Successive TransformationsSuccessive Transformations

• Now consider forming a transformation byNow consider forming a transformation by 
making two successive changes of the 
coordinate system. What is the overall y
effect? 

• System #1 is converted to system #2 by y y y
transformation T1(.), and system #2 is then 
transformed to system #3 by 
t f ti T ( ) N t th t t #3transformation T2(.). Note that system #3 
is transformed relative to #2.



Successive Transformations (2)Successive Transformations (2)

• Point P has yPoint P has 
representation (e, 
f,1)T with respect to 

P

f
b

system #3.  What are 
its coordinates (a, 
b 1)T ith t t

system #3

f

e
d

T2b,1)T with respect to 
the original system 
#1?

system #2

c

T1
#1?

x

a

system #1



Successive Transformations (3)Successive Transformations (3)
• To answer this, collect the effects of each ,

transformation: In terms of system #2 the point P
has coordinates (c, d, 1)T = M2(e, f, 1)T. And in 
terms of system #1 the point (c d 1)T hasterms of system #1 the point (c, d, 1)T has 
coordinates (a, b, 1)T = M1( c, d, 1)T.  So            
(a, b, 1)T = M1(d, c, 1)T = M1M2(e, f, 1)T( , , ) 1( , , ) 1 2( , , )

• The essential point is that when determining the 
desired coordinates (a, b, 1)T from (e, f, 1)T we 
fi t l M d th M j t th itfirst apply M2 and then M1, just the opposite
order as when applying transformations to 
points. po ts



Successive Transformations (4)Successive Transformations (4)
• To transform points. To apply a sequence of p pp y q

transformations T1(), T2(), T3() (in that order) to a 
point P, form the matrix  M = M3 x M2 x M1.

• Then P is transformed to MP; pre-multiply by MiThen P is transformed to MP; pre-multiply by Mi.   
• To transform the coordinate system. To apply 

a sequence of transformations T1(), T2(), T3() (in 
th t d ) t th di t t f ththat order) to the coordinate system, form the 
matrix M = M1 x M2 x M3.

• Then P in the transformed system has e t e t a s o ed syste as
coordinates MP in the original system. To 
compose each additional transformation Mi you 
must post-multiply by Mimust post multiply by Mi.



Open-GL TransformationsOpen GL Transformations

• Open-GL actually transforms coordinateOpen GL actually transforms coordinate 
systems, so in your programs you will 
have to apply the transformations inhave to apply the transformations in 
reverse order.

• E g if you want to translate the 3 vertices• E.g., if you want to translate the 3 vertices 
of a triangle and then rotate it, your 
program will have to do rotate and thenprogram will have to do rotate and then 
translate. 



Using Affine Transformations in 
O GLOpen-GL

• glScaled (sx, sy, sz); // 2-d: sz = 1.0g ( , y, );
• glTranslated (tx, ty, tz); //2-d: tz = 0.0
• glRotated (angle, ux, uy, uz); // 2-d: ux = uy = g ( g , , y, ); y

0.0; uz = 1.0
• The sequence of commands is

– glLoadIdentity();
– glMatrixMode (GL_MODELVIEW);
– // transformations 1 2 3 (in reverse order)// transformations 1, 2, 3, .... (in reverse order)

• This method makes Open-GL do the work of 
transforming for you.g y



ExampleExample

• We have version 1 of • The easy way lets GLWe have version 1 of 
the house defined 
(vertices set), but 

The easy way lets GL 
do the transforming.

a).

what we really want to 
draw is version 2.

y

• We could write 
routines to transform 
the coordinates this

23
the coordinates – this 
is the hard way. #1

#2
x

32



Example: the Easy Way (2)
• We cause the desired transformation to be 

Example: the Easy Way (2)

applied automatically to each vertex. Just as we 
know the window to viewport mapping is quietly 
applied to each vertex as part of the graphicsapplied to each vertex as part of the graphics 
pipeline, we can have an additional 
transformation be applied as well. pp

• It is often called the current transformation,
CT. We enhance moveTo() and lineTo() so that 
th fi t l thi t f ti t ththey first apply this transformation to the 
argument vertex, and then apply the window to 
viewport mapping. e po t app g



Example (3)Example (3)
• When glVertex2d()is called with argument V, the vertex g () g ,

V is first transformed by the CT to form point Q. 
• Q is then passed through the window to viewport 

mapping to form point S in the screen window.



Example (4)Example (4)

• How do we extend moveTo() and lineTo() soHow do we extend moveTo() and lineTo() so 
they carry out this additional mapping?

• The transform is done automatically by OpenGL! y y p
OpenGL maintains a so-called modelview 
matrix, and every vertex that is passed down 
the graphics pipeline is multiplied by this 
modelview matrix. 
W d l h d l i i• We need only set up the modelview matrix once 
to embody the desired transformation. 



Example (5)Example (5)
• The principal routines for altering the modelview p p g

matrix are glRotated(), glScaled(), and 
glTranslated().
Th d ’ h CT di l i d h• These don’t set the CT directly; instead each 
one postmultiplies the CT (the modelview matrix) 
by a particular matrix say M and puts the resultby a particular matrix, say M, and puts the result 
back into the CT. 

• That is, each of these routines creates a matrix 
M as required for the new transformation, and 
performs: CT = CT *M.



Example (6)Example (6)

• glScaled (sx sy sz); // 2-d: sz = 1 0glScaled (sx, sy, sz); // 2 d: sz = 1.0
• glTranslated (tx, ty, tz); //2-d: tz = 0.0

lR t t d ( l ) // 2 d• glRotated (angle, ux, uy, uz); // 2-d: ux = 
uy = 0.0; uz = 1.0

• This method makes Open-GL do the work 
of transforming for you.



Example (7)Example (7)

• Of course we have to start with someOf course, we have to start with some 
MODELVIEW matrix: 

• The sequence of commands is• The sequence of commands is
– glMatrixMode (GL_MODELVIEW);

lL dId tit ()– glLoadIdentity();
– // transformations 1, 2, 3, .... (in reverse order)

• Wrapper code for routines to manipulate 
the CT is in Figure 5.33.



Example (8)Example (8)
• Code to draw house #2: note translate is done 

before rotate (reverse order).
• setWindow(...);  
• setViewport(..);  // set window to viewport 

// mapping
i itCT() // t t t d ith id tit• initCT(); // get started with identity 

// transformation
• translate2D(32 25); // CT includes translation• translate2D(32, 25); // CT includes translation
• rotate2D(-30.0);     // CT includes translation and 

// rotation
• house();       // draw the transformed house



Example 2: StarExample 2: Star
• A star made of “interlocking” stripes: starMotif() draws a g p ()

part of the star, the polygon shown in part b. (Help on 
finding polygon’s vertices in Case Study 5.1.) 

• To draw the whole star we draw the motif five times,To draw the whole star we draw the motif five times, 
each time rotating the motif through an additional 72°.

a). b).

(x1,y1)



Example 3: SnowflakeExample 3: Snowflake

• The motif and the figure are shown belowThe motif and the figure are shown below.  
glScaled() is used to reflect the motif to get 
a complete branch and then to restore thea complete branch and then to restore the 
original axis.  Rotate by 60o between 
branches a). b)branches. ) b).

30 o line30 e



Example 4: Dino PatternsExample 4: Dino Patterns

• The dinosaurs are distributed around aThe dinosaurs are distributed around a 
circle in both versions.  Left: each dinosaur 
is rotated so that its feet point toward theis rotated so that its feet point toward the 
origin; right: all the dinosaurs are upright. 



Example 4 (2)Example 4 (2)
• drawDino() draws an upright dinosaur centered () p g

at the origin. 
• In a) the coordinate system for each motif is 

rotated about the origin through a suitable anglerotated about the origin through a suitable angle, 
and then translated along its y-axis by H units. 

• Note that the CT is reinitialized each time 
th h th l th t th t f tithrough the loop so that the transformations 
don’t accumulate. 

• An easy way to keep the motifs upright (as in easy ay to eep t e ot s up g t (as
part b) is to pre-rotate each motif before 
translating it. 



Affine Transformations StackAffine Transformations Stack

• It is also possible to push/pop the currentIt is also possible to push/pop the current 
transformation from a stack in OpenGL, using 
the commands 

glMatrixMode (GL_MODELVIEW); 
glPushMatrix(); //or glPopMatrix();



Affine Transformations Stack (2)Affine Transformations Stack (2)

• The implementation of pushCT() and popCT()The implementation of pushCT() and popCT()
uses OpenGL routines glPushMatrix() and 
glPopMatrix().

• Caution: Note that each routine must inform 
OpenGL which matrix stack is being affected.  

• In OpenGL, popping a stack that contains only 
one matrix is an error; test the number of 

i i O GL’ f imatrices using OpenGL’s query function  
glGet(G L_MODELVIEW_STACK_DEPTH).



Affine Transformations Stack (3)Affine Transformations Stack (3)
pushCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPushMatrix();           // push a copy of the top matrix 
}}
checkStack(void)
{ if (glGet (GL_MODELVIEW_STACK_DEPTH) ≤ 1) )

// do something// do something
else  popCT();

}
popCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPopMatrix(); // pop the top matrix from the stackglPopMatrix();            // pop the top matrix from the stack
}



Example 5: MotifExample 5: Motif

• Tilings are based on the repetition of aTilings are based on the repetition of a 
basic motif both horizontally and vertically.

• Consider tiling the window with some• Consider tiling the window with some 
motif, drawn centered in its own 
coordinate system by routine motif()coordinate system by routine motif().

• Copies of the motif are drawn L units apart 
i th di ti d D it t i thin the x-direction, and D units apart in the 
y-direction, as shown in part b).



Example 5 (2)Example 5 (2)

• The motif is translated horizontally andThe motif is translated horizontally and 
vertically to achieve the tiling.
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Drawing 3D Scenes in OpenGLDrawing 3D Scenes in OpenGL

• We want to transform objects in order to orientWe want to transform objects in order to orient 
and position them as desired in a 3D scene. 

• OpenGL provides the necessary functions to p p y
build and use the required matrices. 

• The matrix stacks maintained by OpenGL make y p
it easy to set up a transformation for one object, 
and then return to a previous transformation, in 

i f f i h bjpreparation for transforming another object.



The Camera in OpenGLThe Camera in OpenGL

• The camera is created with a matrixThe camera is created with a matrix.
– We will study the details of how this is done in 

Chapter 7Chapter 7. 
• For now, we just use an OpenGL tool to 

set up a reasonable camera so that weset up a reasonable camera so that we 
may pay attention primarily to transforming 
objectsobjects. 



Interactive ProgramsInteractive Programs

• In addition we show how to make theseIn addition, we show how to make these 
programs interactive so that at run time 
the user can alter key properties of thethe user can alter key properties of the 
scene and its objects.  

• The camera can be altered using the• The camera can be altered using the 
mouse and keyboard so that the display 
can be made to change dramatically incan be made to change dramatically in 
real time. (Case Study 5.3.)



The Viewing Process and the 
G hi Pi liGraphics Pipeline

• The 2D drawing so far is a special case ofThe 2D drawing so far is a special case of 
3D viewing, based on a simple parallel 
projectionprojection. 

• The eye is looking along the z-axis at the 
world window a rectangle in the xy planeworld window, a rectangle in the xy-plane. 



The Viewing Process and the 
G hi Pi li (2)Graphics Pipeline (2)

• Eye is simply a point in 3D spaceEye is simply a point in 3D space. 
• The “orientation” of the eye ensures that 

the view volume is in front of the eyethe view volume is in front of the eye.
• Objects closer than near or farther than far

t bl d tare too blurred to see.



The Viewing Process and the 
G hi Pi li (3)Graphics Pipeline (3)

• The view volume of the camera is aThe view volume of the camera is a 
rectangular parallelepiped.

• Its side walls are fixed by the window• Its side walls are fixed by the window 
edges; its other two walls are fixed by a 
near plane and a far planenear plane and a far plane. 



The Viewing Process and the 
G hi Pi li (4)Graphics Pipeline (4)

• Points inside the view volume are projected ontoPoints inside the view volume are projected onto 
the window along lines parallel to the z-axis.

• We ignore their z-component, so that the 3D g p ,
point (x1 y1, z1) projects to (x1, y1, 0).  

• Points lying outside the view volume are clipped y g pp
off. 

• A separate viewport transformation maps the 
projected points from the window to the viewport 
on the display device.



The Viewing Process and the 
G hi Pi li ( )Graphics Pipeline (5)

• In 3D the only change we make is to allowIn 3D, the only change we make is to allow 
the camera (eye) to have a more general 
position and orientation in the scene inposition and orientation in the scene in 
order to produce better views of the scene. 



The Viewing Process and the 
G hi Pi li (6)Graphics Pipeline (6)

• The z axis points toward the eye X and yThe z axis points toward the eye. X and y 
point to the viewer’s right and up, 
respectivelyrespectively. 

• Everything outside the view volume is 
clippedclipped.

• Everything inside it is projected along lines 
ll l t th t th i d lparallel to the axes onto the window plane 

(parallel projection).



The Viewing Process and the 
G hi Pi li ( )Graphics Pipeline (7)

• OpenGL provides functions for definingOpenGL provides functions for defining 
the view volume and its position in the 
scene using matrices in the graphicsscene, using matrices in the graphics 
pipeline.



The Viewing Process and the 
G hi Pi li (8)Graphics Pipeline (8)

• Each vertex of an object is passed throughEach vertex of an object is passed through 
this pipeline using glVertex3d(x, y, z).

• The vertex is multiplied by the variousThe vertex is multiplied by the various 
matrices, clipped if necessary, and if it 
survives, it is mapped onto the viewport.pp p

• Each vertex encounters three matrices:
– The modelview matrix;;
– The projection matrix;
– The viewport matrix;



The Modelview MatrixThe Modelview Matrix
• The modelview matrix is the CT (current (

transformation). 
• It combines modeling transformations on objects 

d h f i h i d i iand the transformation that orients and positions 
the camera in space (hence modelview).

• It is a single matrix in the actual pipeline• It is a single matrix in the actual pipeline.
– For ease of use, we will think of it as the product of 

two matrices: a modeling matrix M, and a viewing 
i V Th d li i i li d fi dmatrix V. The modeling matrix is applied first, and 

then the viewing matrix, so the modelview matrix is in 
fact the product VM.



The Modelview Matrix (M)The Modelview Matrix (M)

• A modeling transformation M scalesA modeling transformation M scales, 
rotates, and translates the cube into the 
blockblock.



The Modelview Matrix (V)The Modelview Matrix (V)
• The V matrix rotates and translates the 

block into a new position. 
• The camera moves from its position in the 

t it i iti ( t thscene to its generic position (eye at the 
origin and the view volume aligned with 
the z-axis)the z axis).

• The coordinates of the block’s vertices are 
changed so that projecting them onto a g p j g
plane (e.g., the near plane) displays the 
projected image properly. 



The Modelview Matrix (V)The Modelview Matrix (V)

• The matrix V changes the coordinates• The matrix V changes the coordinates 
of the scene vertices into the 

’ di t t i tcamera’s coordinate system, or into 
eye coordinates. 

• To inform OpenGL that we wish it to 
operate on the modelview matrix weoperate on the modelview matrix we 
call glMatrixMode(GL_MODELVIEW);



The Projection MatrixThe Projection Matrix
• The projection matrix scales and translates each p j

vertex so that those inside the view volume will be 
inside a standard cube that extends from -1 to 1 in 
each dimension (Normalized Device Coordinates)each dimension (Normalized Device Coordinates).

• This cube is a particularly efficient boundary against 
which to clip objects. 

• The image is distorted, but the viewport 
transformation will remove the distortion. 

• The projection matrix also reverses the sense of the• The projection matrix also reverses the sense of the 
z-axis; increasing values of z now represent 
increasing values of depth from the eye. 



The Projection Matrix (2)The Projection Matrix (2)

• Setting the Projection Matrix:Setting the Projection Matrix:
– glMatrixMode(GL_PROJECTION);
– glLoadIdentity (); // initialize projection matrixglLoadIdentity (); // initialize projection matrix
– glOrtho (left, right, bottom, top, near, far); // 

sets the view volume parellelpiped.  (All 
arguments are glDouble ≥ 0.0.)

• left ≤ vv.x ≤ right, bottom ≤ vv.y ≤ top, and       
≤ ≤ f ( t th i i-near ≤ vv.z ≤ -far (camera at the origin 

looking along -z).



The Viewport MatrixThe Viewport Matrix
• The viewport matrix maps the standard p p

cube into a 3D viewport whose x and y
values extend across the viewport (in 
screen coordinates) and whose zscreen coordinates), and whose z-
component extends from 0 to 1 (a 
measure of the depth of each point). p p )

• This measure of depth makes hidden 
surface removal (do not draw surfaces 
hidd b bj t l t th )hidden by objects closer to the eye) 
particularly efficient.



The Viewport Matrix (2)The Viewport Matrix (2)



Setting Up the CameraSetting Up the Camera
• We shall use a jibWe shall use a jib 

camera.
• The photographer 

rides at the top of 
the tripod.
Th• The camera 
moves through the 
scene bobbing upscene bobbing up 
and down to get 
the desired shots.



Setting Up the Scene (2)Setting Up the Scene (2)

glMatrixMode (GL MODELVIEW);glMatrixMode (GL_MODELVIEW); 
// set up the modelview matrix

lL dId tit ()glLoadIdentity (); 
// initialize modelview matrix
// set up the view part of the matrix
// do any modeling transformations on the// do any modeling transformations on the 
scene



Setting Up the ProjectionSetting Up the Projection
glMatrixMode(GL PROJECTION); g ( _ );

// make the projection matrix current
glLoadIdentity();g y();

// set it to the identity matrix
glOrtho(left, right, bottom, top, near, far);

// multiply it by the new matrix 
– Using 2 for near places the near plane at z = -2, that 

is 2 units in front of the eyeis, 2 units in front of the eye. 
– Using 20 for far places the far plane at -20,  20 units 

in front of the eye.



Setting Up the Camera 
(Vi M i )(View Matrix)

glMatrixMode (GL MODELVIEW);glMatrixMode (GL_MODELVIEW);       
// make the modelview matrix current

glLoadIdentity();glLoadIdentity();     
// start with identity matrix
// position and aim the camera// position and aim the camera

gluLookAt (eye.x, eye.y, eye.z,    // eye position
look x look y look z // the “look at” pointlook.x, look.y, look.z,       // the look at  point
0, 1, 0)   // approximation to true up direction

// N d th d li t f ti// Now do the modeling transformations



Setting Up the Camera (2)Setting Up the Camera (2)

• What gluLookAt does is create a cameraWhat gluLookAt does is create a camera 
coordinate system of three mutually 
orthogonal unit vectors: u v and northogonal unit vectors: u, v, and n.  

• n = eye - look; u = up x n; v = n x u
N li (i th t )• Normalize n, u, v (in the camera system) 
and let e = eye - O in the camera system, 

h O i th i iwhere O is the origin.



Setting Up the Camera (3)Setting Up the Camera (3)

• Then gluLookAt () sets up the view matrixThen gluLookAt () sets up the view matrix
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where d = (-e·u, -e·v, -e·n)
• up is usually (0 1 0) (along the y axis) look is





 1000

• up is usually (0, 1, 0) (along the y-axis), look is 
frequently the middle of the window, and eye
frequently looks down on the scenefrequently looks down on the scene. 



The gluLookAt Coordinate SystemThe gluLookAt Coordinate System

• Camera in world coordinates:Camera in world coordinates:



ExampleExample
glMatrixMode (GL PROJECTION); g ( _ );

// set the view volume (world coordinates)
glLoadIdentity();g y();
glOrtho (-3.2, 3.2, -2.4, 2.4, 1, 50);
glMatrixMode (GL_MODELVIEW); 

// place and aim the camera
glLoadIdentity ();     
gluLookAt (4, 4, 4, 0, 1, 0, 0, 1, 0);

// modeling transformations go here



Changing Camera OrientationChanging Camera Orientation

• We can think of the jib camera asWe can think of the jib camera as 
behaving like an airplane.

It can pitch roll or yaw from its position– It can pitch, roll, or yaw from its position.



Changing Camera Orientation (2)Changing Camera Orientation (2)

• Pitch – the angle between the longitudinalPitch the angle between the longitudinal
axis and world horizontal. 

• Roll the angle between the transverse• Roll – the angle between the transverse 
axis and the world. 
Y ti f th l it di l i• Yaw – motion of the longitudinal axis 
causing a change in the direction of the 
l ’ fli htplane’s flight. 



Drawing 3D Shapes in OpenGLDrawing 3D Shapes in OpenGL
• GLUT provides several 3D objects: a sphere, a p j p ,

cone, a torus, the five Platonic solids, and the 
teapot. 
E h i il bl i f d l (• Each is available as a wireframe model (one 
appearing as a collection of wires connected 
end to end) and as a solid model with faces thatend to end) and as a solid model with faces that 
can be shaded. 

• All are drawn by default centered at the origin.
• To use the solid version, replace Wire by Solid in 

the functions.



Drawing 3D Shapes in OpenGL (2)Drawing 3D Shapes in OpenGL (2)

• cube: glutWireCube (GLdouble size);cube: glutWireCube (GLdouble size);
– Each side is of length size.

• sphere: glutWireSphere (GLdoublesphere: glutWireSphere (GLdouble 
radius, GLint nSlices, GLint nStacks);
– nSlices is the number of “orange sections”nSlices is the number of orange sections  

and nStacks is the number of disks. 
– Alternately, nSlices boundaries are longitude 

lines and nStacks boundaries are latitude 
lines.



Drawing 3D Shapes in OpenGL (3)Drawing 3D Shapes in OpenGL (3)

• torus: glutWireTorus (GLdouble• torus: glutWireTorus (GLdouble 
inRad, GLdouble outRad, GLint 

Sli GLi t St k )nSlices, GLint nStacks);
• teapot: glutWireTeapot (GLdouble p g p (

size);
– Why teapots? A standard graphics challengeWhy teapots?  A standard graphics challenge 

for a long time was both making a teapot look 
realistic and drawing it quickly.



Drawing 3D Shapes in OpenGL (4)Drawing 3D Shapes in OpenGL (4)

• tetrahedron: glutWireTetrahedron ();tetrahedron:  glutWireTetrahedron ();
• octahedron:   glutWireOctahedron ();

d d h d l tWi D d h d ()• dodecahedron: glutWireDodecahedron ();
• icosahedron:  glutWireIcosahedron ();
• cone:   glutWireCone (GLdouble 

baseRad, GLdouble height, GLint nSlices, , g , ,
GLint nStacks);



Drawing 3D Shapes in OpenGL (5)Drawing 3D Shapes in OpenGL (5)

• tapered cylinder: gluCylinder (GLUquadricObjtapered cylinder: gluCylinder (GLUquadricObj  
* qobj, GLdouble baseRad, GLdouble topRad, 
GLdouble height, GLint nSlices, GLint nStacks);

• The tapered cylinder is actually a family of 
shapes, distinguished by the value of topRad.
– When topRad is 1, there is no taper; this is the 

classic cylinder. 
– When topRad is 0, the tapered cylinder is 

identical to the cone.



Drawing 3D Shapes in OpenGL (6)Drawing 3D Shapes in OpenGL (6)

• To draw the tapered cylinder in OpenGL, you p y p , y
must 1) define a new quadric object,  2) set the 
drawing style (GLU_LINE: wireframe, 
GLU FILL: solid) and 3) draw the object:GLU_FILL: solid), and 3) draw the object:

GLUquadricObj * qobj = gluNewQuadric ();
// make a quadric object// make a quadric object

gluQuadricDrawStyle (qobj,GLU_LINE); 
// set style to wireframe// set style to wireframe

gluCylinder (qobj, baseRad, topRad, nSlices, 
nStacks);    // draw the cylinder); y



ExampleExample



Code for Example (Fig 5 57)Code for Example (Fig. 5.57)
• The main() routine initializes a 640 by 480 pixel () y p

screen window, sets the viewport and 
background color, and specifies the drawing 
function as displayWire().p y ()

• In displayWire() the camera shape and position 
are established and each object is drawn using 
its own modeling matrixits own modeling matrix. 

• Before each modeling transformation, a 
glPushMatrix() is used to remember the current 

f i d f h bj h btransformation, and after the object has been 
drawn, this prior current transformation is 
restored with a glPopMatrix().g p ()



Code for Example (2)Code for Example (2)

• Thus the code to draw each object is imbeddedThus the code to draw each object is imbedded 
in a glPushMatrix(), glPopMatrix() pair.

• To draw the x-axis, the z-axis is rotated 90o,
about the y-axis to form a rotated system, and 
the axis is redrawn in its new orientation. 

• This axis is drawn without immersing it in a 
glPushMatrix(), glPopMatrix() pair, so the 

i d h i k l i hrotation to produce the y-axis takes place in the 
already rotated coordinate system. 



Solid 3D Drawing in OpenGLSolid 3D Drawing in OpenGL

• A solid object scene is rendered withA solid object scene is rendered with 
shading. The light produces highlights on 
the sphere teapot and jackthe sphere, teapot, and jack.



Solid 3D Drawing in OpenGL (2)Solid 3D Drawing in OpenGL (2)

• The scene contains three objects restingThe scene contains three objects resting 
on a table in the corner of a room. 

• The three walls are made by flattening a• The three walls are made by flattening a 
cube into a thin sheet and moving it into 
positionposition. 

• The jack is composed of three stretched 
h i t d t i ht l l ispheres oriented at right angles plus six 

small spheres at their ends. 



Solid 3D Drawing in OpenGL (3)Solid 3D Drawing in OpenGL (3)

• The table consists of a table top and fourThe table consists of a table top and four 
legs. 

• Each of the table’s five pieces is a cube• Each of the table s five pieces is a cube 
that has been scaled to the desired size 
and shape (next slide)and shape (next slide). 

• The table is based on four parameters that 
h t i th i f it t t Widthcharacterize the size of its parts: topWidth, 

topThick, legLen, and legThick.



Table ConstructionTable Construction



Solid 3D Drawing in OpenGL (4)Solid 3D Drawing in OpenGL (4)

• A routine tableLeg() draws each leg and isA routine tableLeg() draws each leg and is 
called four times within the routine table()
to draw the legs in the four different g
locations. 

• The different parameters used produce p p
different modeling transformations within 
tableLeg(). As always, a glPushMatrix(), 
lP M t i () i d th d liglPopMatrix() pair surrounds the modeling 

functions to isolate their effect. 



Code for the Solid Example 
(Fi 60)(Fig. 5.60)

• The solid version of each shape, such asThe solid version of each shape, such as 
glutSolidSphere(), is used.

• To create shaded images, the position and g , p
properties of a light source and certain 
properties of the objects’ surfaces must be 
specified, in order to describe how they reflect 
light (Ch. 8). 
W j h i f i ll h• We just present the various function calls here; 
using them as shown will generate shading. 



Scene Description Language (SDL)Scene Description Language (SDL)

• Previous scenes were described throughPrevious scenes were described through 
specific OpenGL calls that transform and 
draw each object, as in the following code:j g

glTranslated (0.25, 0.42, 0.35);
glutSolidSphere (0.1, 15, 15); // draw aglutSolidSphere (0.1, 15, 15); // draw a 

sphere
• The objects were “hard-wired” into theThe objects were hard wired  into the 

program. This method is cumbersome and 
error-prone. p



SDL (2)SDL (2)

• We want the designer to be able to specifyWe want the designer to be able to specify 
the objects in a scene using a simple 
language and place the description in alanguage and place the description in a 
file. 

• The drawing program becomes a general• The drawing program becomes a general-
purpose program: 

It d fil t ti d d– It reads a scene file at run-time and draws 
whatever objects are encountered in the file.



SDL (3)SDL (3)

• The Scene Description Language (SDL)The Scene Description Language (SDL), 
described in Appendix 3, provides a Scene 
class also described in Appendix 3 and onclass, also described in Appendix 3 and on 
the book’s web site, that supports the 
reading of an SDL file and the drawing ofreading of an SDL file and the drawing of 
the objects described in the file. 



Using SDLUsing SDL

• A global Scene object is created:A global Scene object is created:
Scene scn; // create a scene object
R d i fil i th d• Read in a scene file using the read 
method of the class:
scn.read("example.dat");  // read the scene 
file & build an object list



Example SDL SceneExample SDL Scene
! example.dat: simple scene: 1 light and 4 shapesp p g p
! beginning ! is a comment; extends to end of line
background 0 0 1         ! create a blue backgroundg g
light 2 9 8 1 1 1 ! put a white light at (2, 9, 8)
diffuse .9 .1 .1      ! make following objects reddish
translate 3 5 –2 sphere    ! put a sphere at 3 5 –2
translate –4 –6 8  cone    ! put a cone in the scene
translate  1 1 1 cube ! add a cube
diffuse 0 1 0           ! make following objects green
translate 40 5 2 scale .2 .2 .2 sphere   ! tiny sphere



The SDL SceneThe SDL Scene
• The scene has a bright blue background color (red, g g ( ,

green, blue) = (0, 0, 1), a bright white (1, 1, 1) light 
situated at (2, 9, 8), and four objects: two spheres, a 
cone and a cubecone and a cube. 

• The light field points to the list of light sources, and 
the obj field points to the object list. 

• Each shape object has its own affine transformation 
M that describes how it is scaled, rotated, and 
positioned in the scene It also contains various datapositioned in the scene. It also contains various data 
fields that specify its material properties. Only the 
diffuse field is shown in the example.



SDL Data StructureSDL Data  Structure



The SDL Scene (2)The SDL Scene (2)
• Once the light list and object list have been built, the 

li ti d thapplication can render the scene:
scn.makeLightsOpenGL(), 
scn.drawSceneOpenGL();  // render scene with OpenGLp () p
• The first instruction passes a description of the light 

sources to OpenGL. The second uses the method 
drawSceneOpenGL() to draw each object in the object 
list. 

• The code for this method is very simple:
void Scene :: drawSceneOpenGL()p ()
{     for(GeomObj* p = obj; p ; p = p->next)

p->drawOpenGL(); // draw it
}}



The SDL Scene (3)The SDL Scene (3)
• The function moves a pointer through the object p g j

list, calling drawOpenGL() for each object in 
turn. 

• Each different shape can draw itself; it has aEach different shape can draw itself; it has a 
method drawOpenGL() that calls the appropriate 
routine for that shape (next slide). 
E h fi t th bj t’ t i l ti• Each first passes the object’s material properties 
to OpenGL, then updates the modelview matrix 
with the object’s specific affine transformation. 

• The original modelview matrix is pushed and 
later restored to protect it from being affected 
after this object has been drawnafter this object has been drawn.



Examples of Objects which can 
D Th lDraw Themselves



Using the SDLUsing the SDL

• Fig 5 63 shows the code to read in anFig. 5.63 shows the code to read in an 
SDL file and draw it.

• Fig 5 64 shows the SDL file necessary to• Fig. 5.64 shows the SDL file necessary to 
draw the solid objects picture. 
It i b t ti ll t th th• It is substantially more compact than the 
corresponding OpenGL code file.
– Note also that some functions in the SDL may 

have to be implemented by you!
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