
Computer Graphics using OpenGLComputer Graphics using OpenGL,
3rd Edition

F S Hill J d S K llF. S. Hill, Jr. and S. Kelley

Chapter 5.1-2Chapter 5.1 2
Transformations of
ObjectsObjects

S. M. Lea
University of North Carolina at GreensboroUniversity of North Carolina at Greensboro

© 2007, Prentice Hall

TransformationsTransformations

• We used the window to viewport transformationWe used the window to viewport transformation
to scale and translate objects in the world
window to their size and position in the viewport.

• We want to build on this idea, and gain more
flexible control over the size, orientation, and
position of objects of interest.

• To do so, we will use the powerful affine
f itransformation.

Example of Affine TransformationsExample of Affine Transformations

• The house has been scaled, rotated andThe house has been scaled, rotated and
translated, in both 2D and 3D.

Using TransformationsUsing Transformations

• The arch is designed in its own coordinateThe arch is designed in its own coordinate
system.

• The scene is drawn by placing a number• The scene is drawn by placing a number
of instances of the arch at different places
and with different sizesand with different sizes.

Using Transformations (2)Using Transformations (2)

• In 3D many cubes make a cityIn 3D, many cubes make a city.

Using Transformations (3)Using Transformations (3)

• The snowflake exhibits symmetriesThe snowflake exhibits symmetries.
• We design a single motif and draw the

whole shape using appropriate reflectionswhole shape using appropriate reflections,
rotations, and translations of the motif.

use it 12 times

Using Transformations (4)Using Transformations (4)

• A designer may want to view an objectA designer may want to view an object
from different vantage points.

• Positioning and reorienting a camera can• Positioning and reorienting a camera can
be carried out through the use of 3D affine
transformationstransformations.

Using Transformations (5)Using Transformations (5)

• In a computer animation, objects move.In a computer animation, objects move.
• We make them move by translating and rotating

their local coordinate systems as the animation y
proceeds.

• A number of graphics platforms, including g p p , g
OpenGL, provide a graphics pipeline: a
sequence of operations which are applied to all

i h h h ipoints that are sent through it.
• A drawing is produced by processing each point.

The OpenGL Graphics PipelineThe OpenGL Graphics Pipeline

• This version is simplifiedThis version is simplified.

Graphics Pipeline (2)Graphics Pipeline (2)
• An application sends the pipeline a sequence of pp p p q

points P1, P2, ... using commands such as:
glBegin(GL_LINES);

glVertex3f(); // send P1 through the pipelineglVertex3f(...); // send P1 through the pipeline
glVertex3f(...); // send P2 through the pipeline
...

glEnd();
• These points first encounter a transformation

ll d h f i (CT) hi hcalled the current transformation (CT), which
alters their values into a different set of points,
say Q1, Q2, Q3. y 1, 2, 3

Graphics Pipeline (3)Graphics Pipeline (3)

• Just as the original points Pi describeJust as the original points Pi describe
some geometric object, the points Qi
describe the transformed version of thedescribe the transformed version of the
same object.

• These points are then sent through• These points are then sent through
additional steps, and ultimately are used to
draw the final image on the displaydraw the final image on the display.

Graphics Pipeline (4)Graphics Pipeline (4)
• Prior to OpenGL 2.0 the pipeline was of fixed-p p p

functionality: each stage had to perform a
specific operation in a particular manner.

• With OpenGL 2 0 and the Shading LanguageWith OpenGL 2.0 and the Shading Language
(GLSL), the application programmer could not
only change the order in which some operations
were performed but in addition could make thewere performed, but in addition could make the
operations programmable.

• This allows hardware and software developers
k d f l i h dto take advantage of new algorithms and

rendering techniques and still comply with
OpenGL version 2.0. p

TransformationsTransformations

• Transformations change 2D or 3D points andTransformations change 2D or 3D points and
vectors, or change coordinate systems.
– An object transformation alters the coordinates of

each point on the object according to the same rule,
leaving the underlying coordinate system fixed.
A coordinate transformation defines a new coordinate– A coordinate transformation defines a new coordinate
system in terms of the old one, then represents all of
the object’s points in this new system.

• Object transformations are easier to understand,
so we will do them first.

Transformations (2)Transformations (2)

• A (2D or 3D) transformation T() altersA (2D or 3D) transformation T() alters
each point, P into a new point, Q, using a
specific formula or algorithm: Q= T(P)specific formula or algorithm: Q T(P).

Transformations (3)Transformations (3)

• An arbitrary point P in the plane isAn arbitrary point P in the plane is
mapped to Q.

• Q is the image of P under the mapping T.Q is the image of P under the mapping T.
• We transform an object by transforming

each of its points, using the same functioneach of its points, using the same function
T() for each point.

• The image of line L under T, for instance,The image of line L under T, for instance,
consists of the images of all the individual
points of L.p

Transformations (4)Transformations (4)

• Most mappings of interest are continuousMost mappings of interest are continuous,
so the image of a straight line is still a
connected curve of some shape althoughconnected curve of some shape, although
it’s not necessarily a straight line.

• Affine transformations however do• Affine transformations, however, do
preserve lines: the image under T of a
straight line is also a straight linestraight line is also a straight line.

Transformations (5)Transformations (5)

• We use an explicit coordinate frame whenWe use an explicit coordinate frame when
performing transformations.

• A coordinate frame consists of a point O• A coordinate frame consists of a point O,
called the origin, and some mutually
perpendicular vectors (called i and j in theperpendicular vectors (called i and j in the
2D case; i, j, and k in the 3D case) that
serve as the axes of the coordinate frameserve as the axes of the coordinate frame.

• In 2D,
















~~ xx

Q
Q

QP
P

P




















1

,
1

yy QQPP

Transformations (6)Transformations (6)

• Recall that this means that point P is atRecall that this means that point P is at
location = Px i + Py j + O , and similarly for
Q Q.

• Px and Py are the coordinates of P.
T t f th i i t i t P• To get from the origin to point P, move
amount Px along axis i and amount Py
l i jalong axis j.

Transformations (7)Transformations (7)

• Suppose that transformation T operatesSuppose that transformation T operates
on any point P to produce point Q:











 xx PQ

• or Q = T(P).
)

1
(

1 
































y

x

y

x

PTQ
Q

• T may be any transformation: e.g.,








)cos(P
x ePQ

x
























1
)ln(

)cos(

2
y

x

y

x

P
P

e

Q
Q














 1

1
1 xP

Transformations (8)Transformations (8)

• To make affine transformations we restrictTo make affine transformations we restrict
ourselves to much simpler families of
functions, those that are linear in Px and x
Py.

• Affine transformations make it easy to y
scale, rotate, and reposition figures.

• Successive affine transformations can be
combined into a single overall affine
transformation.

Affine TransformationsAffine Transformations

• Affine transformations have a compactAffine transformations have a compact
matrix representation.

• The matrix associated with an affine• The matrix associated with an affine
transformation operating on 2D vectors or
points must be a three by three matrixpoints must be a three-by-three matrix.
– This is a direct consequence of representing

the vectors and points in homogeneousthe vectors and points in homogeneous
coordinates.

Affine Transformations (2)Affine Transformations (2)

• Affine transformations have a simple formAffine transformations have a simple form.
• Because the coordinates of Q are linear

combinations of those of P thecombinations of those of P, the
transformed point may be written in the
form:form:





 





 131211 mPmPmQ yxx






















 11
232221 mPmPmQ yxy



Affine Transformations (3)Affine Transformations (3)

• There are six given constants: m11 m12There are six given constants: m11, m12,
etc.

• The coordinate Q consists of portions of• The coordinate Qx consists of portions of
both Px and Py, and so does Qy.
Thi bi ti b t th d• This combination between the x- and y-
components also gives rise to rotations

d hand shears.

Affine Transformations (4)Affine Transformations (4)

• Matrix form of the affine transformation inMatrix form of the affine transformation in
2D:























 131211 xx

P
Pmmm

Q
Q


























 11001
232221 yy PmmmQ

• For a 2D affine transformation the third
row of the matrix is always (0, 0, 1).

Affine Transformations (5)Affine Transformations (5)

• Some people prefer to use row matrices toSome people prefer to use row matrices to
represent points and vectors rather than
column matrices: e g P = (P P 1)column matrices: e.g., P (Px, Py, 1)

• In this case, the P vector must pre-multiply
the matrix and the transpose of the matrixthe matrix, and the transpose of the matrix
must be used: Q = P MT.











 0
0

2212

2111

mm
mm

M T








 12313

2212

mm

Affine Transformations (6)Affine Transformations (6)

• Vectors can be transformed as well asVectors can be transformed as well as
points.

• If a 2D vector v has coordinates V and V• If a 2D vector v has coordinates Vx and Vy
then its coordinate frame representation is
a column vector with third component 0a column vector with third component 0.

Affine Transformations (7)Affine Transformations (7)

• When vector V is transformed by the sameWhen vector V is transformed by the same
affine transformation as point P, the result
is  VmmmWis
































232221

131211

y

x

y

x

V
V

mmm
mmm

W
W
















 01000

• Important: to transform a point P into a
point Q, post-multiply M by P: Q = M P.p Q, p p y y

Affine Transformations (8)Affine Transformations (8)

• Example: find the image Q of point P = (1Example: find the image Q of point P = (1,
2, 1) using the affine transformation












































 2

1
212
503

2
8

;212
503

QM































 11001100

Geometric Effects of Affine
T f iTransformations

• Combinations of four elementary y
transformations: (a) a translation, (b) a scaling,
(c) a rotation, and (d) a shear (all shown below).

TranslationsTranslations
• The amount P is translated does not depend on p

P’s position.
• It is meaningless to translate vectors.
• To translate a point P by a in the x direction and• To translate a point P by a in the x direction and

b in the y direction use the matrix:





 
















 01 aQPaQ





































































11100
10
01

1
bQ
aQ

P
P

b
a

Q
Q

y

x

y

x

y

x

• Only using homogeneous coordinates allow us
to include translation as an affine transformation

 111001

to include translation as an affine transformation.

ScalingScaling

• Scaling is about the origin. If Sx = Sy the g g x y
scaling is uniform; otherwise it distorts the
image.
If S S 0 th i i fl t d• If Sx or Sy < 0, the image is reflected
across the x or y axis.

• The matrix form is• The matrix form is
































00
00

P
P

S
S

Q
Q

y

x

y

xx

















 1100

00
1

PSQ yyy

Example of ScalingExample of Scaling

• The scaling (Sx Sy) = (-1 2) is applied toThe scaling (Sx, Sy) = (1, 2) is applied to
a collection of points. Each point is both
reflected about the y-axis and scaled by 2reflected about the y axis and scaled by 2
in the y-direction.

y

x

Types of ScalingTypes of Scaling

• Pure reflections, for which each of thePure reflections, for which each of the
scale factors is +1 or -1.

• A uniform scaling, or a magnificationA uniform scaling, or a magnification
about the origin: Sx = Sy, magnification |S|.
– Reflection also occurs if Sx or Sy is negative.x y g
– If |S| < 1, the points will be moved closer to

the origin, producing a reduced image.
• If the scale factors are not the same, the

scaling is called a differential scaling.

RotationRotation

• Counterclockwise around origin by angleCounterclockwise around origin by angle
θ:

     0iQ    
   









































 

1100
0cossin
0sincos

1
P
P

Q
Q

y

x

y

x

















 11001

Deriving the Rotation MatrixDeriving the Rotation Matrix

• P is at distance R from the origin at angleP is at distance R from the origin, at angle
Φ; then P = (R cos(Φ), R sin(Φ)).

• Q must be at the same distance as P and• Q must be at the same distance as P, and
at angle θ + Φ: Q =(R cos(θ + Φ), R sin(θ
+ Φ))+ Φ)).

• cos(θ + Φ) = cos(θ) cos(Φ) - sin(θ) sin(Φ);
i (θ Φ) i (θ) (Φ) (θ) i (Φ)sin(θ + Φ) = sin(θ) cos(Φ) + cos(θ) sin(Φ).

• Use Px = R cos(Φ) and Py = R sin(Φ).

ShearShear

• Shear H about origin: 









 01 PhQShear H about origin:

x depends linearly on
y in the figure. 










































1100
01
01

1
P
P

g
h

Q
Q

y

x

y

x

• Shear along x: h ≠ 0,
and Px depends on Py














 11001

y
(for example, italic
letters).
Sh l ≠ 0• Shear along y: g ≠ 0,
and Py depends on
PPx.

Inverses of Affine TransformationsInverses of Affine Transformations

• det(M) = m11*m22 - m21*m12 0 means thatdet(M) m11 m22 m21 m12 0 means that
the inverse of a transformation exists.

That is the transformation can be "undone“– That is, the transformation can be undone .
• M M-1 = M-1M = I, the identity matrix (ones

down the major diagonal and zeroesdown the major diagonal and zeroes
elsewhere).

Inverse Translation and ScalingInverse Translation and Scaling

• Inverse of QInverse of
translation T-1:






































10
01

P
P

t
t

Q
Q

y

x

y

x

y

x

















 11001

• Inverse of scaling
























0/10
00/1

P
P

S
S

Q
Q

xxx

S-1:




























 1100
0/10

1
PSQ yyy

Inverse Rotation and ShearInverse Rotation and Shear

• Inverse of rotation R-1 = R(-θ):Inverse of rotation R = R(θ):
   
    























i
0sincos P

Q
Q

xx




   
































1100

0cossin
1

PQ yy 

• Inverse of shear H-1: generally h=0 or g=0.


hQ  01
ghP

P
g

h
Q
Q

y

x

y

x








































1
101

01
gh
















111001

Composing Affine TransformationsComposing Affine Transformations

• Usually, we want to apply several affineUsually, we want to apply several affine
transformations in a particular order to the
figures in a scene: for example,g p
– translate by (3, - 4)
– then rotate by 30o

– then scale by (2, - 1) and so on.
• Applying successive affine transformations y g

is called composing affine
transformations.

Composing Affine Transformations
(2)(2)

• T1() maps P into Q, • So M = M2M1, the 1() p Q,
and T2() maps Q into
point W. Is W = T2(Q)
= T (T (P))affine?

2 1,
product of 2 matrices
(in reverse order of
application) which is= T2(T1(P))affine?

• Let T1=M1 and T2=M2,
where M1 and M2 are

application), which is
affine.

where M1 and M2 are
the appropriate
matrices.

• W = M2(M1P)) =
(M2M1)P =MP by
associativityassociativity.

Composing Affine Transformations:
E lExamples

• To rotate around an arbitrary point:To rotate around an arbitrary point:
translate P to the origin, rotate, translate P
back to original position Q = TP R T P Pback to original position. Q TP R T-P P

• Shear around an arbitrary point:
Q = T H T PQ = TP H T-P P

• Scale about an arbitrary point:
Q = TPST-P P

Composing Affine Transformations
(E l)(Examples)

• Reflect across an arbitrary line through theReflect across an arbitrary line through the
origin O: Q = R(θ) S R(-θ) P

• The rotation transforms the axis to the x• The rotation transforms the axis to the x-
axis, the reflection is a scaling, and the
last rotation transforms back to the originallast rotation transforms back to the original
axis.
Wi d i t T l t b l b• Window-viewport: Translate by -w.l, -w.b,
scale by A, B, translate by v.l, v.b.

Properties of 2D and 3D Affine
T f iTransformations

• Affine transformations preserve affineAffine transformations preserve affine
combinations of points.
– W = a1P1 + a2P2 is an affine combination.1 1 2 2

– MW = a1MP1 + a2MP2

• Affine transformations preserve lines and
planes.
– A line through A and B is L(t) = (1-t)A + tB, an affine

combination of pointscombination of points.
– A plane can also be written as an affine combination

of points: P(s, a) = sA + tB +(1 – s – t)C.p (,) ()

Properties of Transformations (2)Properties of Transformations (2)

• Parallelism of lines and planes is preserved.p p
– Line A + bt having direction b transforms to the line

given in homogeneous coordinates by M(A + bt) =
MA + Mbt which has direction vector MbMA + Mbt, which has direction vector Mb.

– Mb does not depend on point A. Thus two different
lines A1+ bt and A2 + bt that have the same direction

ill t f i t t li b th h i th di tiwill transform into two lines both having the direction,
so they are parallel.

• An important consequence of this property is p q p p y
that parallelograms map into other
parallelograms.

Properties of Transformations (3)Properties of Transformations (3)

• The direction vectors for a plane also• The direction vectors for a plane also
transform into new direction vectors
i d d t f th l ti f thindependent of the location of the
plane.

• As a consequence, parallelepipeds
map into other parallelepipedsmap into other parallelepipeds.

Properties of Transformations (4)Properties of Transformations (4)

• The columns of the matrix reveal theThe columns of the matrix reveal the
transformed coordinate frame:

Vector i transforms into column m vector j– Vector i transforms into column m1, vector j
into column m2, and the origin O into point m3.

– The coordinate frame (i j O) transforms intoThe coordinate frame (i, j, O) transforms into
the coordinate frame (m1, m2, m3), and these
new objects are precisely the columns of the j p y
matrix.

 321232221

131211

|| mmmmmm
mmm

M 







  321232221 ||
100 








Properties of Transformations (5)Properties of Transformations (5)

• The axes of the new coordinate frame areThe axes of the new coordinate frame are
not necessarily perpendicular, nor must
they be unit lengththey be unit length.
– They are still perpendicular if the

transformation involves only rotations andtransformation involves only rotations and
uniform scalings.

• Any point P = P i + P j + O transforms intoAny point P Pxi + Pyj + O transforms into
Q = Pxm1 + Pym2 + m3.

Properties of Transformations (6)Properties of Transformations (6)

Properties of Transformations (7)Properties of Transformations (7)

• Relative ratios are • The transformedRelative ratios are
preserved: consider
point P lying a

The transformed
point, T(P), lies the
same fraction t of the

fraction t of the way
between two given

i t A d B (

way between images
T(A) and T(B).

points, A and B (see
figure).

• Apply affine

B

T

1 - t

• Apply affine
transformation T() to
A B and P

A
P

t

tA , B, and P.
T(A)

T(B)T(P)

1 - t

Properties of Transformations (8)Properties of Transformations (8)

• How is the area of a figure affected by an affineHow is the area of a figure affected by an affine
transformation?

• It is clear that neither translations nor rotations
have any effect on the area of a figure, but
scalings certainly do, and shearing might.

• The result is simple: When the 2D
transformation with matrix M is applied to an

bj i i l i li d b h i d fobject, its area is multiplied by the magnitude of
the determinant of M:

area after transformation darea after transformation
area before transformation

M det

Properties of Transformations (9)Properties of Transformations (9)

• In 2D the determinant of the matrix M is (m11m22(11 22
– m12m21).

• For a pure scaling, the new area is SxSy times
h i i l h f h l

y
the original area, whereas for a shear along one
axis the new area is the same as the original
areaarea.

• In 3D similar arguments apply, and we can
conclude that the volume of a 3D object is
scaled by |det M| when the object is transformed
by the 3D transformation based on matrix M.

Properties of Transformations (10)Properties of Transformations (10)

• Every affine transformation is composed of y p
elementary operations.

• A matrix may be factored into a product of
elementary matrices in various ways Oneelementary matrices in various ways. One
particular way of factoring the matrix associated
with a 2D affine transformation yields
M (h)(li)(t ti)(t l ti)M = (shear)(scaling)(rotation)(translation)

• That is, any 3 x 3 matrix that represents a 2D
affine transformation can be written as the a e t a s o at o ca be tte as t e
product of (reading right to left) a translation
matrix, a rotation matrix, a scaling matrix, and a
shear matrixshear matrix.

Computer Graphics using Open GLComputer Graphics using Open GL,
3rd Edition

F S Hill J d S K llF. S. Hill, Jr. and S. Kelley

Chapter 5.3-5Chapter 5.3 5
Transformations of
ObjectsObjects

S. M. Lea
University of North Carolina at GreensboroUniversity of North Carolina at Greensboro

© 2007, Prentice Hall

3D Affine Transformations3D Affine Transformations

• Again we use coordinate frames andAgain we use coordinate frames, and
suppose that we have an origin O and
three mutually perpendicular axes in thethree mutually perpendicular axes in the
directions i, j, and k (see Figure 5.8). Point
P in this frame is given by P = O + P i + P jP in this frame is given by P O + Pxi + Pyj
+ Pzk, and vector V by Vxi + Vyj + Vzk.











 VP


























 , y

x

y

x

V
V
V

V
P
P
P

P











 01

zz VP

3-D Affine Transformations3 D Affine Transformations

• The matrix representing a transformationThe matrix representing a transformation
is now 4 x 4, with Q = M P as before.

 mmmm











 24232221

14131211

mmmm
mmmm

M








 1000
34333231 mmmm

M

• The fourth row of the matrix is a string of
zeroes followed a lone one



zeroes followed a lone one.

Translation and ScalingTranslation and Scaling

• Translation and scaling transformationTranslation and scaling transformation
matrices are given below. The values Sx,
S and S cause scaling about the originSy, and Sz cause scaling about the origin
of the corresponding coordinates.























000
000

010
001

y

x

y

x

s
s

S
t
t

T



























1000
000

,

1000
100 z

y

z

y

s
S

t
T

 10001000

ShearShear

• The shear matrix is given belowThe shear matrix is given below.
– a: y along z; b: z along x; c: x along y; d: z

along y; e: x along z; f: y along zalong y; e: x along z; f: y along z
• Usually only one of {a,…,f} is non-zero.











01
01

dc
ba

H














1000
01fe

H

 1000

RotationsRotations

• Rotations are more complicated We startRotations are more complicated. We start
by defining a roll (rotation counter-
clockwise around an axis looking towardclockwise around an axis looking toward
the origin):

Rotations (2)Rotations (2)

• z-roll: the x-axis rotates to the y-axis.z roll: the x axis rotates to the y axis.
• x-roll: the y-axis rotates to the z-axis.
• y roll: the z axis rotates to the x axis• y-roll: the z-axis rotates to the x-axis.

















 0010
0sin0cos

0sincos0
0001 




























 ,

1000
0cos0sin
0010

,

1000
0cossin0
0sincos0




yx RR









 



00cossin
00sincos




R














1000
0100zR

Rotations (3)Rotations (3)
• Note that 12 of the terms in each matrix are the

zeros and ones of the identity matrix.
• They occur in the row and column that

correspond to the axis about which the rotationcorrespond to the axis about which the rotation
is being made (e.g., the first row and column for
an x-roll).
Th t th t th di• They guarantee that the corresponding
coordinate of the point being transformed will not
be altered.

• The cos and sin terms always appear in a
rectangular pattern in the other rows and
columnscolumns.

ExampleExample

• A barn in its original orientation and afterA barn in its original orientation, and after
a -70° x-roll, a 30° y-roll, and a -90° z-roll.

a). the barn b). -700 x-roll

c). 300 y-roll d). -900 z-roll

Composing 3D Affine
T f iTransformations

• 3D affine transformations can be composed, and p ,
the result is another 3D affine transformation.

• The matrix of the overall transformation is the
d f h i di id l i M d M hproduct of the individual matrices M1 and M2 that

perform the two transformations, with M2 pre-
multiplying M1: M = M2M1multiplying M1: M M2M1

• Any number of affine transformations can be
composed in this way, and a single matrix
results that represents the overall
transformation.

ExampleExample

• A barn is firstA barn is first
transformed using
some M1, and the
transformed barn is
again transformed

i M Th ltusing M2. The result
is the same as the
barn transformedbarn transformed
once using M2M1.

Building RotationsBuilding Rotations

• All 2D rotations are Rz. Two rotations combine toAll 2D rotations are Rz. Two rotations combine to
make a rotation given by the sum of the rotation
angles, and the matrices commute.

• In 3D the situation is much more complicated,
because rotations can be about different axes.

• The order in which two rotations about different
axes are performed does matter: 3D rotation

i dmatrices do not commute.

Building Rotations (2)Building Rotations (2)

• We build a rotation in 3D by composingWe build a rotation in 3D by composing
three elementary rotations: an x-roll
followed by a y-roll, and then a z-roll. The y y
overall rotation is given by M = Rz(β3)Ry(
β2)Rx(β1).

• In this context the angles β1, β2, and β3 are
often called Euler angles.

Building Rotations (3)Building Rotations (3)
• Euler’s Theorem: Any rotation (or sequence y (q

of rotations) about a point is equivalent to a
single rotation about some axis through that
pointpoint.

• Any 3D rotation around an axis (passing through
the origin) can be obtained from the product ofthe origin) can be obtained from the product of
five matrices for the appropriate choice of Euler
angles; we shall see a method to construct the

t imatrices.
• This implies that three values are required (and

only three) to completely specify a rotation!only three) to completely specify a rotation!

Rotating about an Arbitrary AxisRotating about an Arbitrary Axis
• We wish to rotate z

around axis u to make
P coincide with Q.

• u can have any

z

u

Q• u can have any
direction; it appears
difficult to find a matrix
th t t h

P

Q





that represents such a
rotation.

• But it can be found in 



But it can be found in
two ways, a classic way
and a constructive way.

x y


Rotating about an Arbitrary Axis (2)Rotating about an Arbitrary Axis (2)

• The classic way. Decompose the requiredThe classic way. Decompose the required
rotation into a sequence of known steps:
– Perform two rotations so that u becomes aligned with

the z-axis.
– Do a z-roll through angle β.

U d th t li t t ti t t t it– Undo the two alignment rotations to restore u to its
original direction.

• R (β) = R (-θ) R (-Φ) R (β) R (Φ) R (θ) is the• Ru(β) = Rz(-θ) Ry(-Φ) Rz(β) Ry(Φ) Rz(θ) is the
desired rotation.

Rotating about an Arbitrary Axis (3)Rotating about an Arbitrary Axis (3)

• The constructive way. Using someThe constructive way. Using some
vector tools we can obtain a more
revealing expression for the matrix Ru(b).g p u()

• We wish to express the operation of
rotating point P through angle b into pointg p g g p
Q.

• The method, given in Case Study 5.5, g y
effectively establishes a 2D coordinate
system in the plane of rotation as shown.

Rotating about an Arbitrary Axis (4)Rotating about an Arbitrary Axis (4)

• This defines two orthogonal vectors a and bThis defines two orthogonal vectors a and b
lying in the plane, and as shown in Figure 5.25b
point Q is expressed as a linear combination of
them. The expression for Q involves dot
products and cross products of various
i di t i th blingredients in the problem.

• But because each of the terms is linear in the
coordinates of P it can be rewritten as P times acoordinates of P, it can be rewritten as P times a
matrix.

Rotating about an Arbitrary Axis (5)Rotating about an Arbitrary Axis (5)

z
a). b).

z
u

Q b Qa'

P

Q


a'

Qh
a

x y

P

a
P


p

y

Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• c = cos(β) s = sin(β) and u u u are thec = cos(β), s = sin(β), and ux, uy, uz are the
components of u.

• Then• Then

  0)1()1()1(2 suuucsuuucucc


















0)1()1()1(
0)1()1()1(
0)1()1()1(

)(2

2
xyzyzyx

yxzzxyx

u uccsuuucsuuuc
suuucuccsuuuc
suuucsuuucucc

R 










1000
0)1()1()1(zxzyyzx uccsuuucsuuuc

Rotating about an Arbitrary Axis (6)Rotating about an Arbitrary Axis (6)

• Open-GL provides a rotation about anOpen GL provides a rotation about an
arbitrary axis:

glRotated (beta ux uy uz);glRotated (beta, ux, uy, uz);
• beta is the angle of rotation.
• ux, uy, uz are the components of a vector

u normal to the plane containing P and Q.

Summary of Properties of 3D Affine
T f iTransformations

• Affine transformations preserve affine p
combinations of points.

• Affine transformations preserve lines
d land planes.

• Parallelism of lines and planes is
preservedpreserved.

• The columns of the matrix reveal the
transformed coordinate frametransformed coordinate frame.

• Relative ratios are preserved.

Summary of Properties of 3D Affine
T f i (2)Transformations (2)

• The effect of transformations on the volumesThe effect of transformations on the volumes
of objects. If 3D object D has volume V, then
its image T(D) has volume |det M | V, where |det
M| is the absolute value of the determinant of M.

• Every affine transformation is composed of
elementary operations. A 3D affine
transformation may be decomposed into a
composition of elementary transformations Seecomposition of elementary transformations. See
Case Study 5.3.

Transforming Coordinate SystemsTransforming Coordinate Systems

• We have a 2D
coordinate frame #1,
with origin O and
axes i and j. j

• We have an affine
transformation T(.)
with matrix M wherewith matrix M, where
T(.) transforms
coordinate frame #1
into coordinateinto coordinate
frame #2, with new
origin O’ = T(O), and
new axes i’ = T(i)new axes i T(i)
and j’ = T(j).

Transforming Coordinate Systems
(2)(2)

• Now let P be a point with representationNow let P be a point with representation
(c, d, 1)T in the new system #2.

• What are the values of a and b in its• What are the values of a and b in its
representation (a, b, 1)T in the original
system #1?system #1?

• The answer: simply premultiply (c, d, 1)T

b Mby M:
(a, b, 1)T = M (c, d, 1)T

Transforming Coordinate Systems
(3)(3)

• We have the following theorem:We have the following theorem:
• Suppose coordinate system #2 is formed

from coordinate system #1 by the affinefrom coordinate system #1 by the affine
transformation M. Further suppose that
point P = (P P P 1) are the coordinatespoint P = (Px, Py, Pz,1) are the coordinates
of a point P expressed in system #2. Then
the coordinates of P expressed in systemthe coordinates of P expressed in system
#1 are MP.

Successive TransformationsSuccessive Transformations

• Now consider forming a transformation byNow consider forming a transformation by
making two successive changes of the
coordinate system. What is the overall y
effect?

• System #1 is converted to system #2 by y y y
transformation T1(.), and system #2 is then
transformed to system #3 by
t f ti T () N t th t t #3transformation T2(.). Note that system #3
is transformed relative to #2.

Successive Transformations (2)Successive Transformations (2)

• Point P has yPoint P has
representation (e,
f,1)T with respect to

P

f
b

system #3. What are
its coordinates (a,
b 1)T ith t t

system #3

f

e
d

T2b,1)T with respect to
the original system
#1?

system #2

c

T1
#1?

x

a

system #1

Successive Transformations (3)Successive Transformations (3)
• To answer this, collect the effects of each ,

transformation: In terms of system #2 the point P
has coordinates (c, d, 1)T = M2(e, f, 1)T. And in
terms of system #1 the point (c d 1)T hasterms of system #1 the point (c, d, 1)T has
coordinates (a, b, 1)T = M1(c, d, 1)T. So
(a, b, 1)T = M1(d, c, 1)T = M1M2(e, f, 1)T(, ,) 1(, ,) 1 2(, ,)

• The essential point is that when determining the
desired coordinates (a, b, 1)T from (e, f, 1)T we
fi t l M d th M j t th itfirst apply M2 and then M1, just the opposite
order as when applying transformations to
points. po ts

Successive Transformations (4)Successive Transformations (4)
• To transform points. To apply a sequence of p pp y q

transformations T1(), T2(), T3() (in that order) to a
point P, form the matrix M = M3 x M2 x M1.

• Then P is transformed to MP; pre-multiply by MiThen P is transformed to MP; pre-multiply by Mi.
• To transform the coordinate system. To apply

a sequence of transformations T1(), T2(), T3() (in
th t d) t th di t t f ththat order) to the coordinate system, form the
matrix M = M1 x M2 x M3.

• Then P in the transformed system has e t e t a s o ed syste as
coordinates MP in the original system. To
compose each additional transformation Mi you
must post-multiply by Mimust post multiply by Mi.

Open-GL TransformationsOpen GL Transformations

• Open-GL actually transforms coordinateOpen GL actually transforms coordinate
systems, so in your programs you will
have to apply the transformations inhave to apply the transformations in
reverse order.

• E g if you want to translate the 3 vertices• E.g., if you want to translate the 3 vertices
of a triangle and then rotate it, your
program will have to do rotate and thenprogram will have to do rotate and then
translate.

Using Affine Transformations in
O GLOpen-GL

• glScaled (sx, sy, sz); // 2-d: sz = 1.0g (, y,);
• glTranslated (tx, ty, tz); //2-d: tz = 0.0
• glRotated (angle, ux, uy, uz); // 2-d: ux = uy = g (g , , y,); y

0.0; uz = 1.0
• The sequence of commands is

– glLoadIdentity();
– glMatrixMode (GL_MODELVIEW);
– // transformations 1 2 3 (in reverse order)// transformations 1, 2, 3, (in reverse order)

• This method makes Open-GL do the work of
transforming for you.g y

ExampleExample

• We have version 1 of • The easy way lets GLWe have version 1 of
the house defined
(vertices set), but

The easy way lets GL
do the transforming.

a).

what we really want to
draw is version 2.

y

• We could write
routines to transform
the coordinates this

23
the coordinates – this
is the hard way. #1

#2
x

32

Example: the Easy Way (2)
• We cause the desired transformation to be

Example: the Easy Way (2)

applied automatically to each vertex. Just as we
know the window to viewport mapping is quietly
applied to each vertex as part of the graphicsapplied to each vertex as part of the graphics
pipeline, we can have an additional
transformation be applied as well. pp

• It is often called the current transformation,
CT. We enhance moveTo() and lineTo() so that
th fi t l thi t f ti t ththey first apply this transformation to the
argument vertex, and then apply the window to
viewport mapping. e po t app g

Example (3)Example (3)
• When glVertex2d()is called with argument V, the vertex g () g ,

V is first transformed by the CT to form point Q.
• Q is then passed through the window to viewport

mapping to form point S in the screen window.

Example (4)Example (4)

• How do we extend moveTo() and lineTo() soHow do we extend moveTo() and lineTo() so
they carry out this additional mapping?

• The transform is done automatically by OpenGL! y y p
OpenGL maintains a so-called modelview
matrix, and every vertex that is passed down
the graphics pipeline is multiplied by this
modelview matrix.
W d l h d l i i• We need only set up the modelview matrix once
to embody the desired transformation.

Example (5)Example (5)
• The principal routines for altering the modelview p p g

matrix are glRotated(), glScaled(), and
glTranslated().
Th d ’ h CT di l i d h• These don’t set the CT directly; instead each
one postmultiplies the CT (the modelview matrix)
by a particular matrix say M and puts the resultby a particular matrix, say M, and puts the result
back into the CT.

• That is, each of these routines creates a matrix
M as required for the new transformation, and
performs: CT = CT *M.

Example (6)Example (6)

• glScaled (sx sy sz); // 2-d: sz = 1 0glScaled (sx, sy, sz); // 2 d: sz = 1.0
• glTranslated (tx, ty, tz); //2-d: tz = 0.0

lR t t d (l) // 2 d• glRotated (angle, ux, uy, uz); // 2-d: ux =
uy = 0.0; uz = 1.0

• This method makes Open-GL do the work
of transforming for you.

Example (7)Example (7)

• Of course we have to start with someOf course, we have to start with some
MODELVIEW matrix:

• The sequence of commands is• The sequence of commands is
– glMatrixMode (GL_MODELVIEW);

lL dId tit ()– glLoadIdentity();
– // transformations 1, 2, 3, (in reverse order)

• Wrapper code for routines to manipulate
the CT is in Figure 5.33.

Example (8)Example (8)
• Code to draw house #2: note translate is done

before rotate (reverse order).
• setWindow(...);
• setViewport(..); // set window to viewport

// mapping
i itCT() // t t t d ith id tit• initCT(); // get started with identity

// transformation
• translate2D(32 25); // CT includes translation• translate2D(32, 25); // CT includes translation
• rotate2D(-30.0); // CT includes translation and

// rotation
• house(); // draw the transformed house

Example 2: StarExample 2: Star
• A star made of “interlocking” stripes: starMotif() draws a g p ()

part of the star, the polygon shown in part b. (Help on
finding polygon’s vertices in Case Study 5.1.)

• To draw the whole star we draw the motif five times,To draw the whole star we draw the motif five times,
each time rotating the motif through an additional 72°.

a). b).

(x1,y1)

Example 3: SnowflakeExample 3: Snowflake

• The motif and the figure are shown belowThe motif and the figure are shown below.
glScaled() is used to reflect the motif to get
a complete branch and then to restore thea complete branch and then to restore the
original axis. Rotate by 60o between
branches a). b)branches.) b).

30 o line30 e

Example 4: Dino PatternsExample 4: Dino Patterns

• The dinosaurs are distributed around aThe dinosaurs are distributed around a
circle in both versions. Left: each dinosaur
is rotated so that its feet point toward theis rotated so that its feet point toward the
origin; right: all the dinosaurs are upright.

Example 4 (2)Example 4 (2)
• drawDino() draws an upright dinosaur centered () p g

at the origin.
• In a) the coordinate system for each motif is

rotated about the origin through a suitable anglerotated about the origin through a suitable angle,
and then translated along its y-axis by H units.

• Note that the CT is reinitialized each time
th h th l th t th t f tithrough the loop so that the transformations
don’t accumulate.

• An easy way to keep the motifs upright (as in easy ay to eep t e ot s up g t (as
part b) is to pre-rotate each motif before
translating it.

Affine Transformations StackAffine Transformations Stack

• It is also possible to push/pop the currentIt is also possible to push/pop the current
transformation from a stack in OpenGL, using
the commands

glMatrixMode (GL_MODELVIEW);
glPushMatrix(); //or glPopMatrix();

Affine Transformations Stack (2)Affine Transformations Stack (2)

• The implementation of pushCT() and popCT()The implementation of pushCT() and popCT()
uses OpenGL routines glPushMatrix() and
glPopMatrix().

• Caution: Note that each routine must inform
OpenGL which matrix stack is being affected.

• In OpenGL, popping a stack that contains only
one matrix is an error; test the number of

i i O GL’ f imatrices using OpenGL’s query function
glGet(G L_MODELVIEW_STACK_DEPTH).

Affine Transformations Stack (3)Affine Transformations Stack (3)
pushCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPushMatrix(); // push a copy of the top matrix
}}
checkStack(void)
{ if (glGet (GL_MODELVIEW_STACK_DEPTH) ≤ 1))

// do something// do something
else popCT();

}
popCT(void)
{ glMatrixMode(GL_MODELVIEW);

glPopMatrix(); // pop the top matrix from the stackglPopMatrix(); // pop the top matrix from the stack
}

Example 5: MotifExample 5: Motif

• Tilings are based on the repetition of aTilings are based on the repetition of a
basic motif both horizontally and vertically.

• Consider tiling the window with some• Consider tiling the window with some
motif, drawn centered in its own
coordinate system by routine motif()coordinate system by routine motif().

• Copies of the motif are drawn L units apart
i th di ti d D it t i thin the x-direction, and D units apart in the
y-direction, as shown in part b).

Example 5 (2)Example 5 (2)

• The motif is translated horizontally andThe motif is translated horizontally and
vertically to achieve the tiling.

Computer Graphics using OpenGLComputer Graphics using OpenGL,
3rd Edition

F S Hill J d S K llF. S. Hill, Jr. and S. Kelley

Chapter 5.6Chapter 5.6
Transformations of
ObjectsObjects

S. M. Lea
University of North Carolina at GreensboroUniversity of North Carolina at Greensboro

© 2007, Prentice Hall

Drawing 3D Scenes in OpenGLDrawing 3D Scenes in OpenGL

• We want to transform objects in order to orientWe want to transform objects in order to orient
and position them as desired in a 3D scene.

• OpenGL provides the necessary functions to p p y
build and use the required matrices.

• The matrix stacks maintained by OpenGL make y p
it easy to set up a transformation for one object,
and then return to a previous transformation, in

i f f i h bjpreparation for transforming another object.

The Camera in OpenGLThe Camera in OpenGL

• The camera is created with a matrixThe camera is created with a matrix.
– We will study the details of how this is done in

Chapter 7Chapter 7.
• For now, we just use an OpenGL tool to

set up a reasonable camera so that weset up a reasonable camera so that we
may pay attention primarily to transforming
objectsobjects.

Interactive ProgramsInteractive Programs

• In addition we show how to make theseIn addition, we show how to make these
programs interactive so that at run time
the user can alter key properties of thethe user can alter key properties of the
scene and its objects.

• The camera can be altered using the• The camera can be altered using the
mouse and keyboard so that the display
can be made to change dramatically incan be made to change dramatically in
real time. (Case Study 5.3.)

The Viewing Process and the
G hi Pi liGraphics Pipeline

• The 2D drawing so far is a special case ofThe 2D drawing so far is a special case of
3D viewing, based on a simple parallel
projectionprojection.

• The eye is looking along the z-axis at the
world window a rectangle in the xy planeworld window, a rectangle in the xy-plane.

The Viewing Process and the
G hi Pi li (2)Graphics Pipeline (2)

• Eye is simply a point in 3D spaceEye is simply a point in 3D space.
• The “orientation” of the eye ensures that

the view volume is in front of the eyethe view volume is in front of the eye.
• Objects closer than near or farther than far

t bl d tare too blurred to see.

The Viewing Process and the
G hi Pi li (3)Graphics Pipeline (3)

• The view volume of the camera is aThe view volume of the camera is a
rectangular parallelepiped.

• Its side walls are fixed by the window• Its side walls are fixed by the window
edges; its other two walls are fixed by a
near plane and a far planenear plane and a far plane.

The Viewing Process and the
G hi Pi li (4)Graphics Pipeline (4)

• Points inside the view volume are projected ontoPoints inside the view volume are projected onto
the window along lines parallel to the z-axis.

• We ignore their z-component, so that the 3D g p ,
point (x1 y1, z1) projects to (x1, y1, 0).

• Points lying outside the view volume are clipped y g pp
off.

• A separate viewport transformation maps the
projected points from the window to the viewport
on the display device.

The Viewing Process and the
G hi Pi li ()Graphics Pipeline (5)

• In 3D the only change we make is to allowIn 3D, the only change we make is to allow
the camera (eye) to have a more general
position and orientation in the scene inposition and orientation in the scene in
order to produce better views of the scene.

The Viewing Process and the
G hi Pi li (6)Graphics Pipeline (6)

• The z axis points toward the eye X and yThe z axis points toward the eye. X and y
point to the viewer’s right and up,
respectivelyrespectively.

• Everything outside the view volume is
clippedclipped.

• Everything inside it is projected along lines
ll l t th t th i d lparallel to the axes onto the window plane

(parallel projection).

The Viewing Process and the
G hi Pi li ()Graphics Pipeline (7)

• OpenGL provides functions for definingOpenGL provides functions for defining
the view volume and its position in the
scene using matrices in the graphicsscene, using matrices in the graphics
pipeline.

The Viewing Process and the
G hi Pi li (8)Graphics Pipeline (8)

• Each vertex of an object is passed throughEach vertex of an object is passed through
this pipeline using glVertex3d(x, y, z).

• The vertex is multiplied by the variousThe vertex is multiplied by the various
matrices, clipped if necessary, and if it
survives, it is mapped onto the viewport.pp p

• Each vertex encounters three matrices:
– The modelview matrix;;
– The projection matrix;
– The viewport matrix;

The Modelview MatrixThe Modelview Matrix
• The modelview matrix is the CT (current (

transformation).
• It combines modeling transformations on objects

d h f i h i d i iand the transformation that orients and positions
the camera in space (hence modelview).

• It is a single matrix in the actual pipeline• It is a single matrix in the actual pipeline.
– For ease of use, we will think of it as the product of

two matrices: a modeling matrix M, and a viewing
i V Th d li i i li d fi dmatrix V. The modeling matrix is applied first, and

then the viewing matrix, so the modelview matrix is in
fact the product VM.

The Modelview Matrix (M)The Modelview Matrix (M)

• A modeling transformation M scalesA modeling transformation M scales,
rotates, and translates the cube into the
blockblock.

The Modelview Matrix (V)The Modelview Matrix (V)
• The V matrix rotates and translates the

block into a new position.
• The camera moves from its position in the

t it i iti (t thscene to its generic position (eye at the
origin and the view volume aligned with
the z-axis)the z axis).

• The coordinates of the block’s vertices are
changed so that projecting them onto a g p j g
plane (e.g., the near plane) displays the
projected image properly.

The Modelview Matrix (V)The Modelview Matrix (V)

• The matrix V changes the coordinates• The matrix V changes the coordinates
of the scene vertices into the

’ di t t i tcamera’s coordinate system, or into
eye coordinates.

• To inform OpenGL that we wish it to
operate on the modelview matrix weoperate on the modelview matrix we
call glMatrixMode(GL_MODELVIEW);

The Projection MatrixThe Projection Matrix
• The projection matrix scales and translates each p j

vertex so that those inside the view volume will be
inside a standard cube that extends from -1 to 1 in
each dimension (Normalized Device Coordinates)each dimension (Normalized Device Coordinates).

• This cube is a particularly efficient boundary against
which to clip objects.

• The image is distorted, but the viewport
transformation will remove the distortion.

• The projection matrix also reverses the sense of the• The projection matrix also reverses the sense of the
z-axis; increasing values of z now represent
increasing values of depth from the eye.

The Projection Matrix (2)The Projection Matrix (2)

• Setting the Projection Matrix:Setting the Projection Matrix:
– glMatrixMode(GL_PROJECTION);
– glLoadIdentity (); // initialize projection matrixglLoadIdentity (); // initialize projection matrix
– glOrtho (left, right, bottom, top, near, far); //

sets the view volume parellelpiped. (All
arguments are glDouble ≥ 0.0.)

• left ≤ vv.x ≤ right, bottom ≤ vv.y ≤ top, and
≤ ≤ f (t th i i-near ≤ vv.z ≤ -far (camera at the origin

looking along -z).

The Viewport MatrixThe Viewport Matrix
• The viewport matrix maps the standard p p

cube into a 3D viewport whose x and y
values extend across the viewport (in
screen coordinates) and whose zscreen coordinates), and whose z-
component extends from 0 to 1 (a
measure of the depth of each point). p p)

• This measure of depth makes hidden
surface removal (do not draw surfaces
hidd b bj t l t th)hidden by objects closer to the eye)
particularly efficient.

The Viewport Matrix (2)The Viewport Matrix (2)

Setting Up the CameraSetting Up the Camera
• We shall use a jibWe shall use a jib

camera.
• The photographer

rides at the top of
the tripod.
Th• The camera
moves through the
scene bobbing upscene bobbing up
and down to get
the desired shots.

Setting Up the Scene (2)Setting Up the Scene (2)

glMatrixMode (GL MODELVIEW);glMatrixMode (GL_MODELVIEW);
// set up the modelview matrix

lL dId tit ()glLoadIdentity ();
// initialize modelview matrix
// set up the view part of the matrix
// do any modeling transformations on the// do any modeling transformations on the
scene

Setting Up the ProjectionSetting Up the Projection
glMatrixMode(GL PROJECTION); g (_);

// make the projection matrix current
glLoadIdentity();g y();

// set it to the identity matrix
glOrtho(left, right, bottom, top, near, far);

// multiply it by the new matrix
– Using 2 for near places the near plane at z = -2, that

is 2 units in front of the eyeis, 2 units in front of the eye.
– Using 20 for far places the far plane at -20, 20 units

in front of the eye.

Setting Up the Camera
(Vi M i)(View Matrix)

glMatrixMode (GL MODELVIEW);glMatrixMode (GL_MODELVIEW);
// make the modelview matrix current

glLoadIdentity();glLoadIdentity();
// start with identity matrix
// position and aim the camera// position and aim the camera

gluLookAt (eye.x, eye.y, eye.z, // eye position
look x look y look z // the “look at” pointlook.x, look.y, look.z, // the look at point
0, 1, 0) // approximation to true up direction

// N d th d li t f ti// Now do the modeling transformations

Setting Up the Camera (2)Setting Up the Camera (2)

• What gluLookAt does is create a cameraWhat gluLookAt does is create a camera
coordinate system of three mutually
orthogonal unit vectors: u v and northogonal unit vectors: u, v, and n.

• n = eye - look; u = up x n; v = n x u
N li (i th t)• Normalize n, u, v (in the camera system)
and let e = eye - O in the camera system,

h O i th i iwhere O is the origin.

Setting Up the Camera (3)Setting Up the Camera (3)

• Then gluLookAt () sets up the view matrixThen gluLookAt () sets up the view matrix









dvvv
duuu xzyx














1000
dnnn
dvvv

 V
zzyx

yzyx

where d = (-e·u, -e·v, -e·n)
• up is usually (0 1 0) (along the y axis) look is





 1000

• up is usually (0, 1, 0) (along the y-axis), look is
frequently the middle of the window, and eye
frequently looks down on the scenefrequently looks down on the scene.

The gluLookAt Coordinate SystemThe gluLookAt Coordinate System

• Camera in world coordinates:Camera in world coordinates:

ExampleExample
glMatrixMode (GL PROJECTION); g (_);

// set the view volume (world coordinates)
glLoadIdentity();g y();
glOrtho (-3.2, 3.2, -2.4, 2.4, 1, 50);
glMatrixMode (GL_MODELVIEW);

// place and aim the camera
glLoadIdentity ();
gluLookAt (4, 4, 4, 0, 1, 0, 0, 1, 0);

// modeling transformations go here

Changing Camera OrientationChanging Camera Orientation

• We can think of the jib camera asWe can think of the jib camera as
behaving like an airplane.

It can pitch roll or yaw from its position– It can pitch, roll, or yaw from its position.

Changing Camera Orientation (2)Changing Camera Orientation (2)

• Pitch – the angle between the longitudinalPitch the angle between the longitudinal
axis and world horizontal.

• Roll the angle between the transverse• Roll – the angle between the transverse
axis and the world.
Y ti f th l it di l i• Yaw – motion of the longitudinal axis
causing a change in the direction of the
l ’ fli htplane’s flight.

Drawing 3D Shapes in OpenGLDrawing 3D Shapes in OpenGL
• GLUT provides several 3D objects: a sphere, a p j p ,

cone, a torus, the five Platonic solids, and the
teapot.
E h i il bl i f d l (• Each is available as a wireframe model (one
appearing as a collection of wires connected
end to end) and as a solid model with faces thatend to end) and as a solid model with faces that
can be shaded.

• All are drawn by default centered at the origin.
• To use the solid version, replace Wire by Solid in

the functions.

Drawing 3D Shapes in OpenGL (2)Drawing 3D Shapes in OpenGL (2)

• cube: glutWireCube (GLdouble size);cube: glutWireCube (GLdouble size);
– Each side is of length size.

• sphere: glutWireSphere (GLdoublesphere: glutWireSphere (GLdouble
radius, GLint nSlices, GLint nStacks);
– nSlices is the number of “orange sections”nSlices is the number of orange sections

and nStacks is the number of disks.
– Alternately, nSlices boundaries are longitude

lines and nStacks boundaries are latitude
lines.

Drawing 3D Shapes in OpenGL (3)Drawing 3D Shapes in OpenGL (3)

• torus: glutWireTorus (GLdouble• torus: glutWireTorus (GLdouble
inRad, GLdouble outRad, GLint

Sli GLi t St k)nSlices, GLint nStacks);
• teapot: glutWireTeapot (GLdouble p g p (

size);
– Why teapots? A standard graphics challengeWhy teapots? A standard graphics challenge

for a long time was both making a teapot look
realistic and drawing it quickly.

Drawing 3D Shapes in OpenGL (4)Drawing 3D Shapes in OpenGL (4)

• tetrahedron: glutWireTetrahedron ();tetrahedron: glutWireTetrahedron ();
• octahedron: glutWireOctahedron ();

d d h d l tWi D d h d ()• dodecahedron: glutWireDodecahedron ();
• icosahedron: glutWireIcosahedron ();
• cone: glutWireCone (GLdouble

baseRad, GLdouble height, GLint nSlices, , g , ,
GLint nStacks);

Drawing 3D Shapes in OpenGL (5)Drawing 3D Shapes in OpenGL (5)

• tapered cylinder: gluCylinder (GLUquadricObjtapered cylinder: gluCylinder (GLUquadricObj
* qobj, GLdouble baseRad, GLdouble topRad,
GLdouble height, GLint nSlices, GLint nStacks);

• The tapered cylinder is actually a family of
shapes, distinguished by the value of topRad.
– When topRad is 1, there is no taper; this is the

classic cylinder.
– When topRad is 0, the tapered cylinder is

identical to the cone.

Drawing 3D Shapes in OpenGL (6)Drawing 3D Shapes in OpenGL (6)

• To draw the tapered cylinder in OpenGL, you p y p , y
must 1) define a new quadric object, 2) set the
drawing style (GLU_LINE: wireframe,
GLU FILL: solid) and 3) draw the object:GLU_FILL: solid), and 3) draw the object:

GLUquadricObj * qobj = gluNewQuadric ();
// make a quadric object// make a quadric object

gluQuadricDrawStyle (qobj,GLU_LINE);
// set style to wireframe// set style to wireframe

gluCylinder (qobj, baseRad, topRad, nSlices,
nStacks); // draw the cylinder); y

ExampleExample

Code for Example (Fig 5 57)Code for Example (Fig. 5.57)
• The main() routine initializes a 640 by 480 pixel () y p

screen window, sets the viewport and
background color, and specifies the drawing
function as displayWire().p y ()

• In displayWire() the camera shape and position
are established and each object is drawn using
its own modeling matrixits own modeling matrix.

• Before each modeling transformation, a
glPushMatrix() is used to remember the current

f i d f h bj h btransformation, and after the object has been
drawn, this prior current transformation is
restored with a glPopMatrix().g p ()

Code for Example (2)Code for Example (2)

• Thus the code to draw each object is imbeddedThus the code to draw each object is imbedded
in a glPushMatrix(), glPopMatrix() pair.

• To draw the x-axis, the z-axis is rotated 90o,
about the y-axis to form a rotated system, and
the axis is redrawn in its new orientation.

• This axis is drawn without immersing it in a
glPushMatrix(), glPopMatrix() pair, so the

i d h i k l i hrotation to produce the y-axis takes place in the
already rotated coordinate system.

Solid 3D Drawing in OpenGLSolid 3D Drawing in OpenGL

• A solid object scene is rendered withA solid object scene is rendered with
shading. The light produces highlights on
the sphere teapot and jackthe sphere, teapot, and jack.

Solid 3D Drawing in OpenGL (2)Solid 3D Drawing in OpenGL (2)

• The scene contains three objects restingThe scene contains three objects resting
on a table in the corner of a room.

• The three walls are made by flattening a• The three walls are made by flattening a
cube into a thin sheet and moving it into
positionposition.

• The jack is composed of three stretched
h i t d t i ht l l ispheres oriented at right angles plus six

small spheres at their ends.

Solid 3D Drawing in OpenGL (3)Solid 3D Drawing in OpenGL (3)

• The table consists of a table top and fourThe table consists of a table top and four
legs.

• Each of the table’s five pieces is a cube• Each of the table s five pieces is a cube
that has been scaled to the desired size
and shape (next slide)and shape (next slide).

• The table is based on four parameters that
h t i th i f it t t Widthcharacterize the size of its parts: topWidth,

topThick, legLen, and legThick.

Table ConstructionTable Construction

Solid 3D Drawing in OpenGL (4)Solid 3D Drawing in OpenGL (4)

• A routine tableLeg() draws each leg and isA routine tableLeg() draws each leg and is
called four times within the routine table()
to draw the legs in the four different g
locations.

• The different parameters used produce p p
different modeling transformations within
tableLeg(). As always, a glPushMatrix(),
lP M t i () i d th d liglPopMatrix() pair surrounds the modeling

functions to isolate their effect.

Code for the Solid Example
(Fi 60)(Fig. 5.60)

• The solid version of each shape, such asThe solid version of each shape, such as
glutSolidSphere(), is used.

• To create shaded images, the position and g , p
properties of a light source and certain
properties of the objects’ surfaces must be
specified, in order to describe how they reflect
light (Ch. 8).
W j h i f i ll h• We just present the various function calls here;
using them as shown will generate shading.

Scene Description Language (SDL)Scene Description Language (SDL)

• Previous scenes were described throughPrevious scenes were described through
specific OpenGL calls that transform and
draw each object, as in the following code:j g

glTranslated (0.25, 0.42, 0.35);
glutSolidSphere (0.1, 15, 15); // draw aglutSolidSphere (0.1, 15, 15); // draw a

sphere
• The objects were “hard-wired” into theThe objects were hard wired into the

program. This method is cumbersome and
error-prone. p

SDL (2)SDL (2)

• We want the designer to be able to specifyWe want the designer to be able to specify
the objects in a scene using a simple
language and place the description in alanguage and place the description in a
file.

• The drawing program becomes a general• The drawing program becomes a general-
purpose program:

It d fil t ti d d– It reads a scene file at run-time and draws
whatever objects are encountered in the file.

SDL (3)SDL (3)

• The Scene Description Language (SDL)The Scene Description Language (SDL),
described in Appendix 3, provides a Scene
class also described in Appendix 3 and onclass, also described in Appendix 3 and on
the book’s web site, that supports the
reading of an SDL file and the drawing ofreading of an SDL file and the drawing of
the objects described in the file.

Using SDLUsing SDL

• A global Scene object is created:A global Scene object is created:
Scene scn; // create a scene object
R d i fil i th d• Read in a scene file using the read
method of the class:
scn.read("example.dat"); // read the scene
file & build an object list

Example SDL SceneExample SDL Scene
! example.dat: simple scene: 1 light and 4 shapesp p g p
! beginning ! is a comment; extends to end of line
background 0 0 1 ! create a blue backgroundg g
light 2 9 8 1 1 1 ! put a white light at (2, 9, 8)
diffuse .9 .1 .1 ! make following objects reddish
translate 3 5 –2 sphere ! put a sphere at 3 5 –2
translate –4 –6 8 cone ! put a cone in the scene
translate 1 1 1 cube ! add a cube
diffuse 0 1 0 ! make following objects green
translate 40 5 2 scale .2 .2 .2 sphere ! tiny sphere

The SDL SceneThe SDL Scene
• The scene has a bright blue background color (red, g g (,

green, blue) = (0, 0, 1), a bright white (1, 1, 1) light
situated at (2, 9, 8), and four objects: two spheres, a
cone and a cubecone and a cube.

• The light field points to the list of light sources, and
the obj field points to the object list.

• Each shape object has its own affine transformation
M that describes how it is scaled, rotated, and
positioned in the scene It also contains various datapositioned in the scene. It also contains various data
fields that specify its material properties. Only the
diffuse field is shown in the example.

SDL Data StructureSDL Data Structure

The SDL Scene (2)The SDL Scene (2)
• Once the light list and object list have been built, the

li ti d thapplication can render the scene:
scn.makeLightsOpenGL(),
scn.drawSceneOpenGL(); // render scene with OpenGLp () p
• The first instruction passes a description of the light

sources to OpenGL. The second uses the method
drawSceneOpenGL() to draw each object in the object
list.

• The code for this method is very simple:
void Scene :: drawSceneOpenGL()p ()
{ for(GeomObj* p = obj; p ; p = p->next)

p->drawOpenGL(); // draw it
}}

The SDL Scene (3)The SDL Scene (3)
• The function moves a pointer through the object p g j

list, calling drawOpenGL() for each object in
turn.

• Each different shape can draw itself; it has aEach different shape can draw itself; it has a
method drawOpenGL() that calls the appropriate
routine for that shape (next slide).
E h fi t th bj t’ t i l ti• Each first passes the object’s material properties
to OpenGL, then updates the modelview matrix
with the object’s specific affine transformation.

• The original modelview matrix is pushed and
later restored to protect it from being affected
after this object has been drawnafter this object has been drawn.

Examples of Objects which can
D Th lDraw Themselves

Using the SDLUsing the SDL

• Fig 5 63 shows the code to read in anFig. 5.63 shows the code to read in an
SDL file and draw it.

• Fig 5 64 shows the SDL file necessary to• Fig. 5.64 shows the SDL file necessary to
draw the solid objects picture.
It i b t ti ll t th th• It is substantially more compact than the
corresponding OpenGL code file.
– Note also that some functions in the SDL may

have to be implemented by you!

	HillCh5.1-2Ed3F
	HillCh5.3-5Ed3F
	HillCh5.6Ed3F

