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3D Modeling
• Polygonal meshes capture the shape of complex 

3D objects in simple data structures.
– Platonic solids, the Buckyball, geodesic domes, 

prisms.
– Extruded or swept shapes, and surfaces of revolution.
– Solids with smoothly curved surfaces.

• Animated Particle systems: each particle 
responds to conditions.

• Physically based systems: the various objects in 
a scene are modeled as connected by springs, 
gears, electrostatic forces, gravity, or other 
mechanisms. 



Particle Systems Example

• Particle system showing water droplets in a 
fountain. (Courtesy of Philipp Crocoll); 
Starfield simulation (Courtesy of Ge Wang)



Polygonal Meshes

• A polygonal mesh is a collection of 
polygons (faces) that approximate the 
surface of a 3D object.
– Examples: surfaces of sphere, cone, cylinder 

made of polygons (Ch. 5); barn (below).



Polygonal Meshes (2)

• Polygons are easy to represent (by a 
sequence of vertices) and transform.

• They have simple properties (a single 
normal vector, a well-defined inside and 
outside, etc.).

• They are easy to draw (using a polygon-fill 
routine, or by mapping texture onto the 
polygon).



Polygonal Meshes (3)

• Meshes are a standard way of 
representing 3D objects in graphics.

• A mesh can approximate the surface to 
any degree of accuracy by making the 
mesh finer or coarser.

• We can also smooth the polygon edges 
using rendering techniques.



Polygonal Meshes (4)

• Meshes can model both solid shapes and 
thin skins. 
– The object is solid if the polygonal faces fit 

together to enclose space. 
– In other cases, the faces fit together without 

enclosing space, and so they represent an 
infinitesimally thin surface. 

• In both cases we call the collection of 
polygons a polygonal mesh (or simply a 
mesh). 



Polygonal Meshes (5)
• A polygonal mesh is described by a list of 

polygons, along with information about the 
direction in which each polygon is facing. 

• If the mesh represents a solid, each face has an 
inside and an outside relative to the rest of the 
mesh.  

• In such a case, the directional information is 
often simply the outward pointing normal vector
to the plane of the face used in the shading 
process.



Polygonal Meshes (6)

• The normal direction to a face determines 
its brightness.



Polygonal Meshes (7)
• For some objects, we associate a normal 

vector to each vertex of a face rather than 
one vector to an entire face. 
– We use meshes, which represent objects with 

smoothly curved faces such as a sphere or 
cylinder. We will refer to the faces of such 
objects, but with the idea that there is a 
“smooth-underlying surface”.

– When we display such an object, we will want 
to de-emphasize the individual faces of the 
object in order to make the object look 
smooth.  



Polygonal Meshes (8)
• Each vertex V1, V2, V3, and V4 defining the side wall of 

the barn has the same normal n1, the normal vector to 
the side wall.  

• But vertices of the front wall, such as V5, will use normal 
n2. (Note that vertices V1 and V5 are located at the same 
point in space, but use different normals.) 



Polygonal Meshes (9)

• For the smoothly curved surface of the cylinder, 
both vertex V1 of face F1 and vertex V2 on face 
F2 use the same normal n, the vector 
perpendicular to the underlying smooth surface. 



Defining a Polygonal Mesh

• A mesh consists of 3 lists: the vertices of 
the mesh, the outside normal at each 
vertex, and the faces of the mesh.

• Example: the basic barn has 7 polygonal 
faces and 10 vertices (each shared by 3 
faces).



Defining a Polygonal Mesh (2)

• It has a square floor 
one unit on a side. 

• Because the barn has 
flat walls, there are 
only 7 distinct normal 
vectors involved, the 
normal to each face 
as shown.



Defining a Polygonal Mesh (3)

• The vertex list reports the locations of the 
distinct vertices in the mesh. 

• The list of normals reports the directions of 
the distinct normal vectors that occur in 
the model. 

• The face list indexes into the vertex and 
normal lists. 



Vertex List for the Barn
vertex x y z
0 0 0 0
1 1 0 0
2 1 1 0
3 0.5 1.5 0
4 0 1 0
5 0 0 1
6 1 0 1
7 1 1 1
8 0.5 1.5 10
9 0 1 1



Normal List for the Barn

• The normal 
list (as unit 
vectors, to 
the 7 basic 
planes or 
polygons).

normal nx ny nz

0 -1 0 0
1 -0.707 0.707 0
2 0.707 0.707 0
3 1 0 0
4 0 -1 0
5 0 0 1
6 0 0 -1



Face List for the Barn

Face Vertices Normal
0 (left) 0, 5, 9, 4 0,0,0,0
1 (roof left) 3, 4, 9, 8 1,1,1,1
2 (roof right) 2, 3, 8, 7 2, 2, 2,2
3 (right) 1, 2, 7, 6 3, 3, 3, 3
4 (bottom) 0, 1, 6, 5 4, 4, 4, 4
5 (front) 5, 6, 7, 8, 9 5, 5, 5, 5, 5
6 (back) 0, 4, 3, 2, 1 6, 6, 6, 6, 6



Defining a Polygonal Mesh (4) 
• Only the indices of the vertices and normals are 

used. 
• The list of vertices for a face begins with any 

vertex in the face, and then proceeds around the 
face vertex by vertex until a complete circuit has 
been made. 
– There are two ways to traverse a polygon: clockwise 

and counterclockwise. For instance, face #5 above 
could be listed as (5, 6, 7, 8, 9) or (9, 8, 7, 6, 5). 

– Convention: Traverse the polygon 
counterclockwise as seen from outside the object.



Defining a Polygonal Mesh (5)

• Using this order, if you traverse around the 
face by walking from vertex to vertex, the 
inside of the face is on your left. 

• Using the convention allows algorithms to 
distinguish with ease the front from the 
back of a face.

• If we use an underlying smooth surface, 
such as a cylinder, normals are computed 
for that surface.



3D File Formats
• There is no standard file format.
• Some formats have been found to be efficient and easy 

to use: for example, the .qs file format developed by the 
Stanford University Computer Graphics Laboratory.  This 
particular mesh model has 2,748,318 points (about 
5,500,000 triangles) and is based on 566,098 vertices.  



3D File Formats (2)

• OpenGL has the capability to load a 
variety of 3D model formats such as (but 
not limited to) 3DS, VRML, PLY, MS3D, 
ASE and OBJ.  

• A number of resources are available on 
the book’s companion web site that cover 
loading 3D mesh models into OpenGL. 



Calculating Normals
• Take any three non-collinear points on the face, 

V1, V2, and V3, and compute the normal as their 
cross product m = (V1 - V2) × (V3 - V2) and 
normalize it to unit length.
– If the two vectors V1 - V2 and V3 - V2 are nearly 

parallel, the cross product will be very small and 
numerical inaccuracies may result. 

– The polygon may not be perfectly planar. Thus the 
surface represented by the vertices cannot be truly 
flat. We need to form some average value for the 
normal to the polygon, one that takes into 
consideration all of the vertices. 



Newell's Method for Normals

• Given N vertices, define next(i) = ni = (i+1) 
mod N.  

• Traverse the vertices for the face in 
counter-clockwise order from the outside.

• The normal given by the values on the 
next slide points to the outside (front) of 
the face. 



Normal (Newell’s Method)
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Properties of Meshes
• A closed mesh represents a solid object (which 

encloses a volume).
• A mesh is connected if there is an unbroken 

path along the edges of the mesh between any 
two vertices.

• A mesh is simple if it has no holes. Example: a 
sphere is simple; a torus is not.

• A mesh is planar if every face is a plane 
polygon. Triangular meshes are frequently used 
to enforce planarity.



Properties of Meshes (2)

• A mesh is convex if the line connecting any two 
interior points is entirely inside the mesh.

• Exterior connecting lines are shown for non-
convex objects below (step and torus).



Meshes for Drawing Non-physical 
Objects

• The figure labeled 
IMPOSSIBLE looks 
impossible but is not.

• This object can be 
represented by a mesh.

• Gershon Elber’s web site 
(http://www.cs.technion.a
c.il/~gershon/EscherForR
eal/) presents a collection 
of physically impossible 
objects, and describes 
how they can be modeled 
and drawn. 

PYRAMID

DONUT

BARNIMPOSSIBLE



“Thin-skin” Meshes Representing 
Non-solid Objects



Working with Meshes in a Program

• We want an efficient Mesh class that 
makes it easy to create and draw the 
object. 

• Since mesh data is frequently stored in a 
file, we also need simple ways to read and 
write mesh files. 

• Code for classes VertexID, Face, and 
Mesh is in Fig. 6.15.



Meshes in a Program (2)

• The Face data type is a list of vertices and the 
normal vector associated with each vertex in the 
face. 

• It is an array of index pairs; the normal to the vth

vertex of the fth face has value 
norm[face[f].vert[v].normIndex].

• This indexing scheme is quite orderly and easy 
to manage, and it allows rapid random access 
indexing into the pt[ ] array.



Example (tetrahedron & 
representation) 



Drawing the Mesh Object
• Mesh::draw() (Fig. 6.17) traverses the array of 

faces in the mesh object, and for each face 
sends the list of vertices and their normals down 
the graphics pipeline. 

• In OpenGL, to specify that subsequent vertices 
are associated with normal vector m, execute  
glNormal3f (m.x, m.y, m.z).

• For proper shading, these vectors must be 
normalized. Otherwise, place 
glEnable(GL_NORMALIZE) in the init() function. 
This requests that OpenGL automatically 
normalize all normal vectors.



SDL and Meshes

• To use SDL, simply develop the Mesh class 
from the Shape class (as SDL does for you) and 
add the method drawOpenGL(). The book’s 
companion web site gives full details on the 
Shape class and SDL’s supporting classes.  

• The Scene class that reads SDL files is already 
set to accept the keyword mesh, followed by the 
name of the file that contains the mesh 
description: e.g., mesh pawn.3vn



Using SDL to Create and Draw 
Meshes 

• The mesh data are in a file with suffix .3vn.
• The first line of the file lists the number of 

vertices, number of normals, and number 
of faces, separated by whitespace.

• The second line begins the list of vertices, 
giving their x, y and z coordinates 
separated by whitespace.
– Multiple vertex coordinates may be listed on a 

single line.



Using SDL (2)
• After all vertices have been listed, the list of 

normals begins. A normal is specified by nx, ny, 
and nz, separated by whitespace.
– Multiple normal values may be listed on a 

single line.
• The list of faces follows. A face is specified by 

the number of vertices it has, the list of vertex 
indices (in counter-clockwise order from 
outside), and the list of normal indices (same 
order as the vertex indices). 



Using SDL (3)

• We can also use the matrix manipulation 
functions of SDL to position and orient the 
mesh drawing.  

• Example:
– push translate 3 5 4 scale 3 3 3 mesh 

pawn.3vn pop



Meshes for Polyhedra

• Polyhedron: connected mesh of simple 
planar polygons that encloses a finite 
volume.
– Every edge is shared by exactly 2 faces.
– At least 3 edges meet at each vertex.
– Faces do not interpenetrate. They touch 

either not at all, or only along their common 
edge.

– Euler's formula: V + F - E = 2 for a simple 
polyhedron.



Schlegel Diagrams

• A Schlegel diagram reveals the structure 
of a polygon. 

• It views the polyhedron from a point just 
outside the center of one of its faces.

• The front face appears as a large polygon 
surrounding the rest of the faces.

a). b).



Schlegel Diagrams (2)

• Part a) shows the Schlegel diagram of a 
pyramid, and parts b) and c) show two 
different Schlegel diagrams for the basic 
barn. (Which faces are closest to the 
eye?).

a). b). c).



Prisms

• A prism is formed by moving a regular 
polygon along a straight line.

• When the line is perpendicular to the 
polygon, the prism is a right prism.

P

da). b). c).



Platonic Solids

• All the faces are identical and each is a 
regular polygon. 



Duals
• Every Platonic solid P 

has a dual Platonic solid 
D.  The vertices vi of D 
are the centers of faces 
of P, calculated as 

• The duals are 
tetrahedron-tetrahedron, 
hexahedron-octahedron, 
dodecahedron-
icosahedron. 
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Flattened Models
• To keep track of 

vertex and face 
numbering, we 
use a flat model, 
which is made by 
cutting along 
certain edges of 
each solid and 
unfolding it to lie 
flat. 



Normal Vectors for the Platonic 
Solids

• Normals can be found 
using Newell’s method.

• Also, because of the high 
degree of symmetry of a 
Platonic solid, if the solid 
is centered at the 
origin, the normal vector 
to each face is the vector 
from the origin to the 
center of the face (the 
average of the vertices of 
the face).



Vertex and Face lists for a 
Tetrahedron

• For the unit cube having vertices (±1,±1,±1), and 
the tetrahedron with one vertex at (1,1,1), the 
tetrahedron has vertex and face lists given 
below. 

Vertex list Face list
vertex x y z Face # vertices

0 1 1 1 0 1, 2, 3 
1 1 -1 -1 1 0, 3, 2 
2 -1 -1 1 2 0, 1, 3 
3 -1 1 -1 3 0, 2, 1 



Icosahedron

• This figure shows that three mutually 
perpendicular golden rectangles inscribe 
the icosahedron. A vertex list may be read 
directly from this picture. 



Icosahedron (2)

• We choose to align each golden rectangle 
with a coordinate axis. For convenience, 
we define one rectangle so that its longer 
edge extends from -1 to 1 along the x-axis, 
and its shorter edge extends from -φ to φ, 
where φ = 0.618 is the reciprocal of the 
golden ratio Φ.



Vertex List for the Icosahedron

Vertex x y z Vertex x y z

  1 φ 6 φ 0 1

1 0 1 -φ 7 -φ 0 1

2 1 φ 0 8 φ 0 -1

3 1 -φ 0 9 -φ 0 -1

4 0 -1 -φ 10 -1 φ 0

5 0 -1 φ 11 -1 -φ 0



Flattened Model for Icosahedron
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Prism Model for Icosahedron



Flattened Model for Dodecahedron
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Archimedean Solids

• Have more than one type of polygon as faces; 
semi-regular.

• Examples: truncated cube (octagon and triangle)



Truncated Cube

• Each edge of the cube is divided into three 
parts; the middle part of length              
and the middle portion of each             
edge is joined to its neighbors. 

• Thus if an edge of the cube has endpoints 
C and D, two new vertices, V and W, are 
formed as the affine combinations
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Number of Archimedean Solids

• Given the constraints that faces must be 
regular polygons, and that they must occur 
in the same arrangement about each 
vertex, there are only 13 possible 
Archimedean solids. 

• Archimedean solids have sufficient  
symmetry that the normal vector to each 
face is found using the center of the face.



Truncated Icosahedron
• The truncated icosahedron (soccer ball) consists 

of regular hexagons and pentagons. 
• More recently this shape has been named the 

Buckyball after Buckminster Fuller, because of 
his interest in geodesic structures similar to this.

• Crystallographers have discovered that 60 
atoms of carbon can be arranged at the vertices 
of the truncated icosahedron, producing a new 
kind of carbon molecule that is neither graphite 
nor diamond. 

• The material has been named Fullerene.  



The Buckyball and Flattened 
Version (Partial)
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Extruded Shapes

• A large class of shapes can be generated 
by extruding or sweeping a 2D shape 
through space. 

• In addition, surfaces of revolution can also 
be approximated by extrusion of a polygon 
once we slightly broaden the definition of 
extrusion.



Extruded Shapes

• Prism: 
formed by 
sweeping 
the arrow 
along a 
straight 
line.

• Flattened 
version.



Extruded Shapes (2)
• Base has vertices (xi, yi, 0) and top has vertices 

(xi, yi, H).
• Each vertex (xi, yi, H) on the top is connected to 

corresponding vertex (xi, yi, 0) on the base.
• If the polygon has n sides, then there are n 

vertical sides of the prism plus a top side (cap) 
and a bottom side (base), or n+2 faces 
altogether.

• The normals for the prism are the face normals.  
These may be obtained using the Newell 
method, and the normal list for the prism 
constructed.



Vertex List for the Prism

• Suppose the prism's base is a polygon 
with N vertices (xi, yi). We number the 
vertices of the base 0, . . . , N-1 and those 
of the cap N, . . ., 2N -1, so that an edge 
joins vertices i and i + N. 

• The vertex list is then easily constructed to 
contain the points (xi, yi, 0) and (xi, yi, H), 
for i = 0, 1, ..., N-1.



Face List for the Prism

• We first make the side faces and then add 
the cap and base. 

• For the j-th wall  (j = 0,...,N-1) we create a 
face with the four vertices having indices j,  
j + N, next(j)+ N, and next(j) where next(j) 
is j+1 % N. 

• Code:  if (j < n-1) next = ++j; else next = 0;
• Or j = (++j) % N;



Arrays of Extruded Prisms

• OpenGL can reliably draw only convex 
polygons. For non-convex prisms, stack 
the parts.



Drawing Arrays of Extruded Prisms

• We need to build a mesh out of an array of prisms:      
void Mesh:: makePrismArray(...)

• Its arguments are a list of (convex) base polygons 
(in the xy-plane), and perhaps a vector d that 
describes the direction and amount of extrusion. 

• The vertex list contains the vertices of the cap and 
base polygons for each prism, and the individual 
walls, base, and cap of each prism are stored in the 
face list. 

• Drawing such a mesh involves some wasted effort, 
since walls that abut would be drawn (twice), even 
though they are ultimately invisible.



Special Case: Extruded Quadstrips

• Quadstrip (an OpenGL primitive) can be 
created and then extruded as for prism.  



Quadstrip Data Structure

• quad-strip = {p0, p1, p2, ...., pM-1}
• The vertices are understood to be taken in 

pairs, with the odd ones forming one edge 
of the quad-strip, and the even ones 
forming the other edge. 

• Not every polygon can be represented as 
a quad-strip. 



Drawing Extruded Quadstrips
• When a mesh is formed as an extruded quad-

strip, only 2M vertices are placed in the vertex 
list, and only the outside (2M-2) walls are 
included in the face list. Thus no redundant walls 
are drawn when the mesh is rendered. 

• A method for creating a mesh for an extruded 
quad-strip would take an array of 2D points and 
an extrusion vector as its parameters: 
void Mesh:: makeExtrudedQuadStrip(Point2 p[ ], 
int numPts, Vector3 d);



Example: Arch



Special Case: Twisted Extrusions

• Base is n-gon, top is scaled, translated,  
and possibly rotated version of base.

• Specifically, if the base polygon is P, with 
vertices {p0, p1, ..., pN-1}, the cap polygon 
has vertices P’ = { Mp0, Mp1, ..., MpN-1} 
where M is some 4 by 4 affine 
transformation matrix. 



Examples
• A), B): cap is 

smaller version 
of base. 

• C): cap is 
rotated 
through θ
about z-axis 
before 
translation. 

• D): cap P’ is 
rotated 
arbitrarily 
before 
translation. 



Segmented Extrusions
• Below: a square P extruded three times, in different 

directions with different tapers and twists. The first 
segment has end polygons M0P and M1P, where the 
initial matrix M0 positions and orients the starting end of 
the tube. The second segment has end polygons M1P 
and M2P, etc. 



Special Case: Segmented 
Extrusions

• We shall call the various transformed 
squares the “waists” of the tube. 

• In this example the vertex list of the mesh 
contains the 16 vertices M0p0, M0 p1, M0
p2, M0 p3, M1p0, M1p1, M1p2, M1p3, ..., 
M3p0, M3p1, M3p2, M3p3. 

• The “snake” used the matrices Mi to grow 
and shrink the tube to represent the body 
and head of a snake. 



Methods for Twisted Extrusions

• Multiple extrusions used, each with its own 
transformation. The extrusions are joined 
together end to end.

• The extrusion tube is wrapped around a 
space curve C, the spine of the extrusion 
(e.g., helix C(t) = (cos(t), sin(t), bt)).



Method for Twisted Extrusions (2)

• We get the curve values at various points 
ti and then build a polygon perpendicular 
to the curve at C(ti) using a Frenet frame.



Method for Twisted Extrusions (3)

• We create the Frenet frame at each point 
along the curve: at each value ti a 
normalized vector T(ti) tangent to the curve 
is computed. It is given by C’(ti), the 
derivative of C(ti).

• Then two normalized vectors, N(ti) and 
B(ti), which are perpendicular to T(ti) and 
to each other, are computed. These three 
vectors constitute the Frenet frame at ti. 



Method for Twisted Extrusions (5)

• Once the Frenet Frame is computed, the 
transformation matrix M that transforms the 
base polygon of the tube to its position and 
orientation in this frame is the transformation 
that carries the world coordinate system i, j, 
and k into this new coordinate system N(ti), 
B(ti), T(ti), and the origin of the world into the 
spine point C(ti). 

• Thus the matrix has columns consisting directly 
of N(ti), B(ti), T(ti), and C(ti) expressed in 
homogeneous coordinates:

M = (N(ti)| B(ti)| T(ti)| C(ti))



Method for Twisted Extrusions (4)

• Example: C(t) = (cos (t), sin(t), bt) (a helix)
• The tangent vector to the curve: T = derivative of 

C(t); specifically, T = (1 + b2)-1 (-sin(t), cos(t), b)
• The acceleration vector is the derivative of the 

tangent vector, and thus the second derivative of 
the curve C: A = (-cos(t), -sin(t), 0). A is 
perpendicular to T, because A·T = 0. We let B = 
TxA/|TxA|. B is called the binormal vector to the 
curve.

• A final vector N = BxT forms a reference frame, 
the Frenet frame, at point ti on the curve. N is 
perpendicular to both B and T.



Method for Twisted Extrusions (5)

• If the curve is awkward numerically, the 
derivatives for the reference frame vectors 
may be approximated over a small 
distance ε by T(ti) = (C(t+ε) - C(t-ε))/(2 ε), 
B(ti) = (C(t+ε) - 2C(t) + C(t-ε))/ε2.



Examples

a). Tangents to the helix.  b). Frenet frame 
at various values of t, for the helix. 



Examples

• Helix, C(t) = (cos t, sin 
t, bt).  A decagon (10 
sides) is wrapped 
around the helix.



Examples (2)

• Toroidal spiral, C(t) = (a + b cos(qt) 
cos(pt), (a + b cos(qt)) sin(pt), c sin(qt)). 

• A) p = 2, q = 5; B) p = 1, q = 7.



Examples (3)

• Helix with t-dependent scaling: Matrix Mi is 
multiplied by a matrix which provides t-
dependent scaling (g(t) = t) along the local 
x and y.
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Application of Frenet Frames
• Another application for Frenet frames is 

analyzing the motion of a car moving along a 
roller coaster.  

• If we assume a motor within the car is able to 
control its speed at any instant, then knowing the 
shape of the car’s path is enough to specify C(t).  

• Now if suitable derivatives of C(t) can be taken, 
the normal and binormal vectors for the car’s 
motion can be found and a Frenet frame for the 
car can be constructed for each relevant value of 
t.  



Application of Frenet Frames (2)

• This allows us to find the forces operating 
on the wheels of each car and the 
passengers.



Special Case: Discretely Swept 
Surfaces of Revolution

• Example: polygon positioned away from y 
axis and then rotated around y axis along 
some curve ((a) circle, (b) Lissajous 
figure).



Discretely Swept Surfaces of 
Revolution (2)

• Example: rotating a polyline around an 
axis to produce a 3D figure. 



Discretely Swept Surfaces of 
Revolution (3)

• This is equivalent to circularly sweeping
a shape about an axis.

• The resulting shape is often called a 
surface of revolution. Below: 3 versions 
of a pawn based on a mesh that is swept 
in discrete steps. 



Discretely Swept Surfaces of 
Revolution (3)

• Glass: polyline with Pj
=  (xj, yj, 0). 

• To rotate the polyline 
to K equispaced 
angles about the y-
axis: θi = 2πi/K, i = 0, 
1, 2, …, K, and
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Mesh Approximations to Smooth 
Objects

• Given a smooth surface, tesselate it: 
approximate it by triangles or 
quadrilaterals with vertices on the smooth 
surface, connected by straight lines not on 
the surface.

• If the mesh is fine enough (the number of 
faces is large enough), shading can make 
the surface look smooth.



Mesh Approximations to Smooth 
Objects (2)

• The faces have vertices that are found by 
evaluating the surface’s parametric 
representation at discrete points.  

• A mesh is created by building a vertex list 
and face list in the usual way, except now 
the vertices are computed from formulas. 

• The vertex normal vectors are computed 
by evaluating formulas for the normal to 
the smooth surface at discrete points.



Mesh Approximations to Smooth 
Objects (3)

• In Ch. 4.5, we used the planar patch given 
parametrically by P (u, v) = C + au + bv, where 
C is a point, a and b are vectors, and u and v
are in  [0, 1].
– This patch is a parallelogram in 3D with corner 

vertices C, C + a, C + b, and C + a + b.
• More general surface shapes require three 

functions X(),  Y(), and Z() so that the surface 
has parametric representation in point form P(u, 
v) =  (X(u, v), Y(u, v), Z(u, v)) with u and v
restricted to suitable intervals. 



Mesh Approximations to Smooth 
Objects (4)

• Different surfaces are characterized by 
different functions: X, Y, and Z. 
– The notion is that the surface is at (X(0, 0), 

Y(0, 0), Z(0, 0)) when both u and v are zero, 
at  (X(1, 0), Y(1, 0), Z(1, 0)) when u =  1 and v
=  0, and so on. 

• Letting u vary while keeping v constant 
generates a curve called a v-contour. 
Similarly, letting v vary while holding u
constant produces a u-contour. 



Mesh Approximations to Smooth 
Objects (2)

• Method: describe surface as P(u, v) = (X(u, v), 
Y(u, v), Z(u, v)) (parametric form) and use the 
implicit form for the equation of the surface: F(x, 
y, z) = 0.

• Given a point Q, Q is inside the object if F(Q) < 
0, on it if F(Q) = 0, and outside it if F(Q) > 0.

• Example: the plane that passes through point B
and has normal vector n is described by the 
equation  nx x + ny y + nz z = D (where D = n•B), 
so the implicit form for this plane is F(x, y, z) = nx
x + ny y + nz z - D. 



Mesh Approximations to Smooth 
Objects (3)

• Sometimes it is more convenient to think of F as 
a function of a point P, rather than a function of 
three variables x, y, and z, and we write F(P) = 0 
to describe all points that lie on the surface. 

• For the plane, we define F(P) = n·(P - B) and 
say that P lies in the plane if and only if F(P) = 
n·(P-B) is zero. 

• If we wish to work with coordinate frames with P 
= (x, y, z, 1)T, the implicit form for a plane is even 
simpler: F(P) = n·P, where n = (nx, ny, nz –D)T. 



Mesh Approximations to Smooth 
Objects (4)

• The normal to a surface at a point P(u0, v0) on the 
surface is found by considering a very small region of the 
surface around P(u0, v0).

• If the region is small enough and the surface varies 
smoothly, the region will be essentially flat and will have 
a well-defined normal direction. 



Mesh Approximations to Smooth 
Objects (5)

• The normal vector in parametric or gradient form is  
n (u0,v0) =              

n (x0, y0, z0) = 

• (Normalize n.)
• The result of applying an affine transformation M to 

the surface P(u,v) or F(x, y, z) is P(u, v) → MP(u, v), 
F(P) → F(M-1P) and n(u,v) → M-1(n(u,v)).
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Generic Sphere

• Center (0, 0, 0), radius 1; 
• F(x, y, z) = x2 + y2 + z2 -1 = 0, or F(P)=|P|2-1. 
• P(u, v) = (cos v cos u, cos v sin u, sin v), with 0 
≤v ≤ 2π, -π/2 ≤ u ≤ π/2



Sphere (2)
• u-contours are longitude lines (meridians), v-

contours are latitude lines (parallels).
• The normal vector (gradient) 2(x, y, z) is radially 

outward. 
• The parametric form is n(u, v) = -cos(v)p(u, v), 

also radially outward. The scale factor -cos(v) 
will disappear when we normalize n.

• We must use p(u,v) rather than -p(u,v) for the 
normal, so that it does indeed point radially 
outward.



Generic Tapered Cylinder
• Axis coincides with z-axis; circular cross section of 

radius 1 at base, s when z = 1; extends in z from 0 to 1. 
• The tapered cylinder with an arbitrary value of s provides 

formulas for the generic cylinder and cone by setting s to 
1 or 0, respectively.



Generic Tapered Cylinder (2)
• The wall of the tapered cylinder is given by the 

implicit form
for 0 < z < 1, and by the parametric form

• When the tapered cylinder is a solid object, we 
add two circular discs at its ends: a base and a 
cap. The cap is a circular portion of the plane z
= 1, characterized by the inequality x2 + y2 < s2, 
or given parametrically by P(u, v) = (v cos(u), v
sin(u), 1) for v in [0, s]. 

F x y z x y s z( , , ) ( ( ) )    2 2 21 1

P u v s v u s v u v( , ) (( ( ) ) cos( ), ( ( ) )sin( ), )    1 1 1 1



Generic Tapered Cylinder (3)
• The normal vector to the wall of the tapered 

cylinder is n(x, y, z) = (x, y, -(s - 1)(1+ (s - 1)z)), 
or in parametric form n(u, v) = (cos(u), sin(u), 1 
– s). 

• For the generic cylinder the normal is simply 
(cos(u), sin(u), 0). 

• The normal is directed radially away from the 
axis of the cylinder. For the tapered cylinder it is 
also directed radially, but shifted by a constant z-
component. 



Generic Cone

• A cone whose axis coincides with the z-
axis, has a circular cross section of 
maximum radius 1, and extends in z from 
0 to 1. It is a tapered cylinder with small 
radius of  s = 0. 



Generic Cone (2)

• Wall: F(x, y, z) = x2 + y2 - (1 - z)2 = 0   for 0 
< z < 1; parametric form P(u, v) = ((1-v) 
cos(u), (1- v) sin(u), v) for azimuth u in [0, 
2π] and v in [0, 1].  

• Using the results for the tapered cylinder 
again, the normal vector to the wall of the 
cone is (x, y, 1-z). 

• Fig. 6.54 shows normal vectors for all 
generic surfaces.



Mesh for the Generic Sphere

• We slice the sphere along azimuth lines and 
latitude lines. 

• We slice the sphere into nSlices slices around 
the equator and nStacks stacks from the South 
Pole to the North Pole. 

• The figure (next slide) shows the example of 10 
slices and 8 stacks.  

• The larger nSlices and nStacks are, the better 
the mesh approximates a true sphere.



Mesh for the Generic Sphere (2)



Mesh for the Generic Sphere (3)
• To make slices we need nSlices values of u 

around the equator between 0 and 2π. Usually 
these are chosen to be equispaced: ui = 
2πi/nSlices, i = 0, 1, ..., nSlices -1. 

• We put half of the stacks above the equator and 
half below. The top and bottom stacks will 
consist of triangles; all other faces will be 
quadrilaterals. 

• This requires we define (nStacks + 1) values of 
latitude: vj = π - π j/nStacks, j = 0, 1, ..., nStacks. 



Mesh for the Generic Sphere (4)
• The vertex list: put the north pole in pt[0], 

the bottom points of the top stack into the 
next 12 vertices, etc. There will be 98 
points. 

• The normal vector list: norm[k] is the 
normal for the sphere at vertex pt[k] in 
parametric form; n(u,v) is evaluated at 
(u,v) used for the points. 
– For the sphere this is particularly easy 

since norm[k] is the same as pt[k]. 



Mesh for the Generic Sphere (5)

• The face list: Put the top triangles in the 
first 12 faces, the 12 quadrilaterals of the 
next stack down in the next 12 faces, etc. 

• The first few entries in the face list will 
contain the data

number of vertices:  3 3 3 ...
vertex indices: 0 1 2 0 2 3 0 3 4 ...
normal indices: 0 1 2  0 2 3 0 3 4 ...



General Meshes
• Ultimately we need a method, such as 

makeSurfaceMesh(), that generates appropriate 
meshes for a given surface P(u, v). 

• Some graphics packages have routines that are 
highly optimized for triangles, making triangular 
meshes preferable to quadrilateral ones. 

• We can use the same vertices, but alter the face list 
by replacing each quadrilateral with two triangles.
– For instance, a face that uses vertices 2, 3, 15, 14 

might be subdivided into two triangles, one using 2, 3, 
15 and the other using 2, 15, 14.



Mesh for the Tapered Cylinder

• We use nSlices = 10 and 
nStacks = 1. 

• A decagon is used for the 
cap and base. 

• If you prefer to use only 
triangles, the walls, the 
cap, and the base could 
be dissected into triangles. 



Ruled Surfaces

• Ruled Surface: through every point, there 
passes at least one straight line lying entirely on 
the surface.

• Made by moving the ends of a straight line along 
curves. 



Ruled Surfaces (2)

• A cone is a ruled 
surface for which one 
of the curves, say, 
P0(u), is a single point 
P0(u) = P0, the apex 
of the cone,.

• P(u, v) =  (1 - v) P0 + 
v P1(u)  {a general 
cone}



Ruled Surfaces (3)

• A cylinder is a ruled surface for which 
P1(u) is a translated version of P0(u):  
P1(u) = P0(u) + d, for some vector d.



Ruled Surfaces (4)

• The general cylinder has the parametric 
form P(u, v) = P0(u) + dv.

• To be a true cylinder, the curve P0(u) is 
confined to lie in a plane. 
– If P0(u) is a circle the cylinder is a circular 

cylinder. 
– The direction d need not be perpendicular to 

this plane, but if it is, the surface is called a 
right cylinder. 



Ruled Surfaces (5)
• Double helix: P0(u) and 

P1(u) are both helixes 
that wind around each 
other. 

• Möbius strip (has only 
one edge). 

• Vaulted roof made up of 
four ruled surfaces. 

• Coons patch named after 
the legendary graphicist 
Steven Coons.



Coons Patches
• Interpolates 4 

boundary curves.
• P(u, v) = 

[p0v(v)(1-u) + 
p1v(v)u] + 
[pu0(u)(1-v) + 
pu1(u)v] - [(1-
u)(1-v)p0v(0) + 
u(1-v)p1v(0) +v(1-
u)p0v(1) + uv 
p1v(1)]



Surfaces of Revolution
• Produced by rotational sweep of profile 

curve C around an axis.
• Curve C(v) = (X(v), Z(v)) is revolved, 

generally around the z axis.
• u is the angle of rotation, and v determines 

the shape of the curve.
• When point (X(v), 0, Z(v)) is rotated by 

angle u, it becomes ((X(v)cos(u), 
X(v)sin(u), Z(v)).

• P(u, v) = (X(v)cos(u), X(v)sin(u), Z(v))



Surfaces of Revolution (2)

• The different positions of the curve C
around the axis are called meridians.

• Sweeping C completely around 
generates a full circle, so contours of 
constant v are circles, called 
parallels. 

• The normal vector is n (u, v) = X(v) 
[Ż(v)cos(u), Ż(v)sin(u), -X(v)].



Example
• The torus is generated by sweeping a circle displaced 

by a distance D along the x-axis about the z-axis. The 
circle has radius A, so its profile is C(v) = (D + A cos(v), 
A sin(v)). The torus has representation P(u, v) =  ((D + A
cos(v)) cos(u), (D + A cos(v)) sin(u), A sin(v))



Surfaces of Revolution (3)

• A mesh for a surface of revolution is built 
in a program in the usual way. 

• We choose a set of u and v values, {ui} 
and {vj}, and compute a vertex at each 
from P(ui, vj), and a normal direction from 
n(ui, vj). Polygonal faces are built by 
joining four adjacent vertices with straight 
lines. 



Example

• A model of the dome of the Taj Mahal in 
Agra, India. 



Tubes Based on 3D Curves
• We discussed tubes based on a “spine” curve 

C(t) meandering through 3D space in 6.4.3. 
• A polygon was placed at each of a selection of 

spine points and oriented according to the 
Frenet frame computed there. 

• Then corresponding points on adjacent polygons 
were connected to form a flat-faced tube along 
the spine.

• Here we do the same thing, except we compute 
the normal to the surface at each vertex so that 
smooth shading can be performed. 



Tubes based on 3-d Curves

• C(t) is a curve in 
space that forms 
the spine of a 
polygon translated 
along the curve.

• Circle (cos(u), sin 
(u), 0) moves along 
helix C.



Tubes based on 3-d Curves (2)

• The parametric equation is P(u, v) = C(v) + 
N(v)cos(u) + B(v)sin(u), where N and B
are the Frenet frame vectors. 

• Then we can build a mesh by sampling 
P(u, v) and building vertex, normal and 
face lists.



Surfaces which are Functions of 
Two Variables

• Define a single-valued height function y = 
f(x, z) of any sort you wish.



Surfaces which are Functions of 
Two Variables (2)

• Parametric form: P(u, v) = (u, f(u, v), v)
• Normal vector n(u, v) =

• Thus u-contours lie in planes of constant 
x, and v-contours lie in planes of constant 
z. 
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Particle Systems

• A particle system can keep track of an 
enormous number of particles, each with a 
position, a velocity, and perhaps a color, 
lifetime, size, degree of transparency, and 
shape.  

• Any of these attributes might be randomly 
chosen by a random number generator, 
depending on the needs of the application. 



Example
• An animation that 

simulates fire using a 
particle system.

• The central issue in 
particle systems is that 
each particle must be 
modeled with its own 
set of parameters, and 
as time moves on, the 
position and velocity of 
the particle must be 
tracked correctly.  

• Particle systems 
require a large amount 
of memory to store this 
information and a long 
time to update it all.



Physically Based Systems
• In physically based 

modeling, we 
describe in 
mathematical terms 
how the various 
forces in a system of 
objects interact to 
control the motion of 
these objects.

• Example: flags in the 
wind.



Physically Based Systems (2)

• One of the key ingredients is that different 
objects collide with one another and are possibly 
deformed in the process.  

• Describing such systems leads to very complex 
mathematics (ordinary differential equations, 
partial differential equations, etc.).  

• These often must be solved numerically which 
tends to make the associated algorithms rather 
slow. 



Physically Based Systems (3)

• In computer games, animation allows the 
modeling and viewing of terrain. The 
observer can fly over simulated terrain.

• A number of such animations are located 
on the book’s accompanying web site.  
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