

FIGURE 4.1 Three sample geometric problems that yield readily to vector analysis.

FIGURE 4.2 The familiar two-
and three-dimensional
coordinate systems.

FIGURE 4.3 The Big Dipper now and in AD 50,000.

FIGURE 4.4 A vector as a displacement.

FIGURE 4.5 The sum of two vectors.

FIGURE 4.6 Scaling a vector.

FIGURE 4.7 Subtracting vectors.

FIGURE 4.8 The set of vectors
representable by convex
combinations.

FIGURE 4.9 Finding the angle between two vectors.

FIGURE 4.10 The sign of the dot product.

FIGURE 4.11 The standard unit vectors.

FIGURE 4.12 The vector \mathbf{a}^{\perp} perpendicular to a.

FIGURE 4.13 Resolving a vector into two orthogonal vectors.

FIGURE 4.14 Reflection of a ray
from a surface.

FIGURE 4.15 Interpretation of the cross product.

FIGURE 4.16 Finding the plane through three given points.

FIGURE 4.17 Finding the normal vectors to faces.

FIGURE 4.18 A coordinate
frame positioned in "the world."

FIGURE 4.19 Adding points is not a valid operation.

FIGURE 4.20 The centroid of a
triangle as an affine combination.

```
float lerp(float a, float b, float t)
{
    return a + (b - a) * t; // return a float
}
```

FIGURE 4.21 Linear
interpolation effected by
lerp().

FIGURE 4.22 Tweening a T into
a house.

```
void Canvas:: drawTween(Point2 A[], Point2 B[], int n, float t)
{ // draw the tween at time t between polylines A and B
    for(int i = 0; i < n; i++)
    {
            Point2 P;
            P = Tween(A[i], B[i],t);
            if(i == 0) moveTo(P.x, P.y);
            else lineTo(P.x, P.y);
    }
}
```

FIGURE 4.23 Tweening two
polylines.

FIGURE 4.24 From man to woman. (Courtesy of Marc Infield.)

FIGURE 4.25 Face caricature:
Tweening and extrapolation.
(Courtesy of Susan Brennan.)

FIGURE 4.26 Bezier curves as
tweening.

FIGURE 4.27 Lines, segments, and rays.

FIGURE 4.28 Parametric representation $L(t)$ of a line.

FIGURE 4.29 Finding the point normal form for a line.

FIGURE 4.30 Moving between representations of a line.

FIGURE 4.31 Defining a plane parametrically.

FIGURE 4.32 Determining the equation of a plane.

FIGURE 4.33 Moving between
representations of a plane.

FIGURE 4.34 Mapping between
two spaces to define a planar
patch.

FIGURE 4.35 Many cases for two line segments.

FIGURE 4.36 Finding the excircle.

FIGURE 4.37 The perpendicular bisector of a segment.

FIGURE 4.38 Where does a ray
hit a line or a plane?

FIGURE 4.39 The direction of the ray is "along" or "against" \mathbf{n}.

FIGURE 4.40 Intersection
problems involving a line and a polygonal object.

FIGURE 4.41 Convex polygons
and polyhedra.

FIGURE 4.42 Examples of convex polygons.

FIGURE 4.43 Ray $A+\mathbf{c} t$ intersecting a convex polygon.

FIGURE 4.44 A segment clipped
by a polygon.

FIGURE 4.45 The candidate interval for a hit.

FIGURE 4.46 Testing when a ray
lies inside a convex polygon.

$\underline{\text { Line test }}$		$t_{\text {in }}$	$\underline{t_{\text {out }}}$
0		0	0.83
1		0	0.66
2		0	0.66
3		0	0.66
4		0.2	0.66
5		0.28	0.66

FIGURE 4.47 Updates on the
values of $t_{\text {in }}$ and $t_{\text {out }}$.

```
int CyrusBeckClip(LineSegment& seg, LineList L)
{
    double numer, denom; // used to find hit time for each line
    double tIn = 0.0, tOut = 1.0;
    Vector2 c, tmp;
    form vector:c=seg.second - seg.first
    for(int i = 0; i < L.num; i++) // chop at each bounding line
    {
        form vector tmp = L.line[i].pt - first
        numer = dot(L.line[i].norm, tmp);
        denom = dot(L.line[i].norm, c);
        if(!chopCI(tIn, tOut numer, denom,)) return 0; // early out
    }
// adjust the endpoints of the segment; do second one lst.
if (tOut < 1.0 ) // second endpoint was altered
{
        seg.second.x = seg.first.x + c.x * tOut;
        seg.second.y = seg.first.y + c.y * tOut;
}
if (tIn > 0.0) // first endpoint was altered
{
        seg.first.x = seg.first.x + c.x * tIn;
        seg.first.y = seg.first.y + c.y * tIn;
}
        return 1; // some segment survives
}
```

FIGURE 4.48 Pseudocode for
Cyrus-Beck clipper for a convex polygon, 2D case.

```
int chopCI(double& tIn, double& tOut, double numer, double denom)
{
    double tHit;
    if(denom < 0) // ray is entering
    {
        tHit = numer / denom;
        if(tHit > tOut) return 0; // early out
        else if(tHit > tIn) tIn = tHit; // take larger t
    }
    else if(denom > 0) // ray is exiting
    {
        tHit = numer / denom;
        if(tHit < tIn) return 0; // early out
        if(tHit < tout) tOut = tHit; // take smaller t
    }
    else // denom is 0: ray is parallel
    if(numer <= 0) return 0; // missed the line
    return 1; // CI is still non-empty
}
```

FIGURE 4.49 Clipping against a
single bounding line.

FIGURE 4.50 Where is a ray
inside an arbitrary polygon P ?

FIGURE 4.51 Clipping a line
against a polygon.

FIGURE 4.52 Tweening two polylines.

FIGURE 4.53 The inscribed
circle of $A B C$ is the excircle of RST .

FIGURE 4.54 The nine-point circle.

FIGURE 4.55 Is point Q inside polygon P ?

FIGURE 4.56 A 2D ray-tracing
experiment.

FIGURE 4.57 Clipping a polygon
against a polygon.

FIGURE 4.58
Sutherland-Hodgman polygon clipping.

FIGURE 4.59 Four cases for each edge of S.

FIGURE 4.60 Weiler-Atherton clipping.

FIGURE 4.61 Applying the Weiler-Atherton method.

FIGURE 4.62 Weiler-Atherton clipping: polygons with holes.

FIGURE 4.63 Polygons formed
by Boolean operations on
polygons.

FIGURE 4.64 Forming the union
and difference of two polygons.

