FUNCTIONAL DEPENDENCIES

+

Attributes are grouped together to form relations (tables)

Tables are put together to form a relational database schema

The above process 1s specified by the database designer
or by mapping an ER/EER diagram to a relational schema

We need to be able to measure how “good” a particular
grouping 1s, w.r.t. other possible groupings



The quality of a relational database
i schema is evaluated at two levels:

1 the logical (conceptual) level (how clear 1s the
meaning of the attributes =» easier to formulate queries)
U the implementation (storage) level (how the tuples are
stored and updated =» more efficient query execution)

Database design can be done using 2 methodologies:
top-down (start with some relations and refine the
decomposition until all requirements are met)
bottom-up (start with basic relationships between attributes
and build up relations)




GENERAL DESIGN GUIDELINES

il A relation should correspond to a single

entity type or a single relations

1p type

a0 A database should be designec

| SO as to

avold update (insert, delete, modify) anomalies

0 Limit the number of null values 1n tuples
(problems with JOIN, COUNT, SUM etc)

a Design relations schemas that can be
JOINed with equality conditions on either
primary or foreign keys (spurious tuples)



Concept of FD

+

0 Functional Dependency: a constraint
between two sets of attributes from the
database

a Universal relation schema: assemble
all the attributes in one big relation
R={A,, ... ;A } (theoretical concept)

a Used to define 1%, 274 3¢ | BCNF




Definition of FD

+

a0 X2 Y (X,Ysubsets of R) specifies a

limitation on the possible tuples 1n a potential
relation state r of R

a For any tuples t,,t, with t, [ X] =t,[X] we must
also have t,[Y]=t,[Y]

o The values of the & component of a tuple in r are
determined by the values of the X component. The
values of the X component uniquely (functionally)
determine the values of the o component



FD Terminology

a There 1s an FD from Xto &
0 Y1s functionally dependent on X

a X1s

e left-hand side of the FD

291s t

e right-hand side of the FD

0 X functionally determines in R 1ff

every two tuples that agree on their
X-values, agree on their Y-values



Remarks on FDs

+

o If X1s a candidate key for R,
then X=> Y for any subset Yof R

a2 X 2%Y1n R, does not mean Y2 X'in R

0 An FD 1s a semantic property of the attributes

0 Legal relation: 1s a relation state that satisfies
the specified FDs

a FDs specify constraints that must always hold




* Examples of FDs

Province, #DriverLicence] 2 SIN

0 In the EMPLOYEEPROJECT relation schema
Q SIN 2 ENAME
0 PNUMBER,~D (PNAME, PLOCATION]
a {SIN, PNUMBER]} 2 HOURS

0 Diagrammatic Notation for FDs:

FDs (horizontal lines) lhs (vertical lines)
rhs (pointing arrows)




A subtle point about FDs

0 An FD 1s a property of the relation
schema, not of a particular relation state

0 As a consequence, an FD cannot be
inferred from a given relation state r

0 However, 1t 1s sufficient to exhibit a
counterexample to show that a certain FD
cannot hold

A TEXT> COURSE ? COURSE 2> TEXT



i Inference Rules for FDs

0 F denotes the set of all FDs in R
0 Other FDs may be deduced from F

a F* (the closure of F) 1s the set of all
possible FDs deduced from F

0 Example: F={SI1n-> (ENAME, ADDRESS, BDATE,
DNUMBER), DNUMBER=D [DNAME,DMGRSIN} }

a0 We can infer the following F* elements:
SIN=> {@Wﬂ%ﬁ,@mg%IM,Slﬁ\feSlﬂ\f, DNUMBER=D DNAME




D*ﬂ FD X = Yis inferred from a set of FDs
F on R if X 9 holds in every legal

relation state r of R (if r satisfies all the
FDs in F, then r satisfies X 2 7")

0 A systematic way to establish FDs 1s
provided by a set of inference rules that can
be used to infer new FDs from given ones

0 NOTATIONS: F |= X2 ¥ & (X1} D2 X4 Z




A SET OF INFERENCE RULES

+

0 IR1 (reflexivity) ¥'subset of X, X 2> &

0 IR2 (augmentation) {X =2 v} |=XZ 2> YZ

0 IR3 (transitivity) {X =2 ¥, ¥ 2 Z} FX=2 Z
0 IR4 (decomposition) { X =2 ¥Z} |=X=2 ¥

0 IRS (union) {X =2 L X2 Z} = X2 YZ

0 IR6 (pseudo-transitivity)
X2 YWY 2> 2 FWX> Z




Comments on the Inference Rules

+

a Applying IR4 repeatedly we can decompose
an FD X>{4, A4,,..., An} into a set of FDs:

X2 A, X2 A,.... X2 An}
2 Applying IR5 repeatedly we do the opposite

aIR1, ..., IR6 can be proved from the
definition or by contradiction or by using
previously proved rules




Armstrong’s Axioms

+

o {IR1, IR2, IR3} Armstrong’s Axioms AA

a2 AA are sound (any FD inferred from F
using AA will hold in any relation state r
of R, that satisfies a given set of FDs F)

a0 AA are complete (we can compute the
closure F* of a given set of FDs F, using
exclusively AA )




Usage of AA In database design

+

m Specify a set F of semantically obvious
FDs on the attributes of R

= Use AA to infer additional FDs (2 steps)

s Determine each set X of attributes that
appear as lhs of FDs in F

= Determine the set X (closure of X'under F)
of all attributes functionally determined by X

based on F




i Algorithm to compute x+

INPUT: a set of FDs F, a set X of lhs of elements in F
OUTPUT: the set of attributes X * (closure of X under F )

STEP 1. Assign X " = X (justification: IR1)
STEP 2. Repeat
oldX ™ := X (for loop justification: IR3, IR4)
foreachFD Y2 Z in F do
if ¥V subsetof X T then Xt :=x" U Z
Until X" =oldX ™



Example of application of the
<¥sure computation algorithm

s In the EMPLOYEEPROJECT rclation schema

m F = 5109 envame, enumaER ernaAME ecocaTion;
{SIN, PNUMBER]? HOURS}

n SINS" = [SIN, ENAME]

s (PNUMBER]" = [PNUMBER, PNAME, PLOCATION}

s (SINPNUMBER}" = [SIN, PNUMBER, ENAME,
PNAME, PLOCATION, HOURS]

In general x* U o * different than (x U o )*



Equivalent sets of FDs

= Consider E, F two sets of FDs
m E is covered by F (F covers E), E subset of F*
= E, F equivalent, E"=F" in words:
s Every FD in F can be deduced from E and vice-versa

= Determine whether F covers E: a) compute X wrt F

forevery FD X2 ¥ in E b) check ¥'subset of X~
c) it b) 1s true for every FD 1n E, then F covers E.

s Determine whether K, K are equivalent: K covers K
and F covers E.



Minimal Sets of FDs

i A set of FDs F 1s minimal 1f:
= The rhs of every FD 1n F 1s a single attribute

= If we replace a FD X2 4 withaFD ¥ > 4
where Yis a proper subset of X', we will obtain

a set of FDs not equivalent to F

= [f we remove a FD from F, we will obtain a set
of FDs not equivalent to K

Minimal Set = canonical form & no redundancies
A minimal cover of a set of FDs F, is a minimal

set of FDs G, that is also equivalent to K




Algorithm to compute a minimal cover
i INPUT: a setof FDs F

OUTPUT: a minimal cover G of F

STEP 1. Assign G :=F
STEP 2. Replace each FD X2 {4, A4,,..., An}in G

by nFDs (X2 A, X2 A,,..., X2 An}
STEP 3. For each FD X= 4 in G,
For each attribute B of X,
if (G-{X=>.4}) U {(X-{B})>A} equiv. to G

then replace X241 by X~{B}>_1in G
STEP 4. For each remaining FD X2 A4 in G,

if G-{X=2 4} is equiv. to G
then remove X2 4 from G




:L Normalization

m Use FDs to describe the semantics of
relations schemas

= Assume that a set of FDs and a primary
key are given for each relation

m Define 15t 2nd 31d NF, BCNF (and higher NF)

= Evaluate cach relation against each NF
and decompose 1t (top-down design) in
order to obtain relations that satisfy NF




|

m Normalization Process

s Framework to analyze relations schemas based on
their keys and FDs among attributes

= Normal Form tests carried out on relation schemas
to normalize them to any desired degree

Normal Form of a relation:
the highest normal form condition satisfied by the relation

Other properties that a good relational schema must have:
nonadditive join (spurious tuples), dependency preservation




Surprise Quiz ! @

4

> Superkey Some of these definitions
- Key are useful in defining the

1st, 2nd | 3rd NF introduced
> Candidate Key by Codd in 1972

> Primary Key

> Foreign Key

member of some
candidate key of
the relation

Prime attribute

Nonprime attribute




i First Normal Form 1NF

» INF AToMICITY OF ATTRIBUTE DOMAINS

= Attribute values allowed by 1NF are single
indivisible atomic values from the attribute domain

= In particular, 1NF forbids
(a) multi-valued attributes
(b) nested relations

(c) relations as values of tuples



Normalization into 1NF (I)

+

= When a relation is not in 1NF there are 3 main
techniques to normalize 1t using the attribute A that
violates INF (case A is a composite attribute)

= Remove A and place it in a new relation together with
the primary key

= Expand the key, so that there will be a separate tuple for
each atomic value of A (pb: introduces redundancy)

= If a max number of values N, 1s known for A, replace A,
with N atomic attributes (pb: introduces null values)



Normalization into 1NF (II)

= When a relation 1s not in 1NF there is one other
technique to normalize 1t using the attribute A that
violates 1NF (case A is a multi-valued attribute)

= Remove A 1nto a new relation and propagate the primary
key into this new relation

s The primary key of the new relation will combine the
partial key of the nested relation and the primary key
of the original relation

= This process can be applied recursively to denest relations



Second Normal Form 2NF

] i!F FULL FD OF ALL NONPRIME

ATTRIBUTES ON PRIMARY KEY

s Full FD: xX-> % is a Full FD if removal of any
attribute of X destroys the FD

m Partial FD: X -> < is a Partial FD if removal of
some attribute of X does not destroy the FD

s If the primary key contains only one attribute then
the relation satisfies the 2NF criterion

s 2NF 1s concerned with FDs whose lhs attributes
are parts of the primary key



Normalization into 2NF

= [f a relation schema 1s not in 2NF, 1t can be
normalized to 2NF'. decomposed 1nto a number
of relations 1n which nonprime attributes are fully
functionally dependent on the primary key.

= 2NF normalization recipe:

= Set up a new relation for each partial key with
its dependent attribute(s)

= Keep a relation with the original primary key
and 1ts fully functionally dependent attribute(s)



*Third Normal Form 3NF

F NO NONPRIME ATTRIBUTE IS
TRANSITIVELY DEPENDENT ON
THE PRIMARY KEY OF R

m Transitive FD: X-> % is a Transitive FD in R if
there 1s a set of attributes Z (that 1s neither a

candidate key nor a subset of any key of R) such that
both X-> Z and Z-> % are valid FDs.

s Example: SIN DMGRSINis a transitive FD (Z =
DNUMBER not a key, neither a subset of the key)




Normalization into 3NF

s [f a relation schema is not in 3NF, 1t can be
normalized to 3NF': decomposed 1nto a number
of relations 1n which no nonprime attributes are
transitively dependent on the primary key.

= 3NF normalization recipe:

= Set up a new relation for each nonprime

attribute that 1s transitively dependent on the
primary key



General Definitions of 2NF, 3NF

= We want to design relation schemas that do not
contain neither partial nor transitive dependencies

= 2NF normalization disallows partial dependencies

= 3NF normalization disallows transitive dependencies

s These definitions of 2NF & 3NF take into account
only the primary key and not the candidate keys

= The more general definitions of 2NF & 3NF take into
account all candidate keys of a relation

m Prime attribute: part of any candidate key




General Definition of 2NF

4

= RISIN2NF IF EVERY NONPRIME
ATTRIBUTE IS FULLY FUNCTIONALLY
DEPENDENT ON EVERY KEY OFR

m Example: LOTS relation with 2 candidate keys
PROPERTY ID# and {COUNTY NAME, LOT#!

s LOTS violates 2NF because of FD3

s To normalize LOTS 1n 2NF we decompose it into 2
relations by removing the problematic nonprime attribute

s Both new relations are in 2NF



General Definition of 3NF

+

= RISIN3NFIF FOREVERY FD X & 1
EITHER (A) X IS ASUPERKEY OFR
OR (B) 715 A PRIME ATTRIBUTE OFR

n Example: LOTS2 1s in 3NF, LOTS1 1s not in 3NF
because of FD4 (which gives rise to a transitive FD)

= To normalize LOTS1 1n 3NF we decompose 1t
into 2 relations by removing the problematic
nonprime attribute together with the lhs of FD4



Boyce-Codd Normal Form BCNF

+

= Stronger requirement than 3NF

s Every relation in BCNF is also in 3NF, but not vice-versa

n Motivating Example: LOTS relation with FD1...FD4

= Suppose there are 1000s of lots but from only two counties

= (Suppose that lot sizes from countyl are 0.5, 0.6, 0.7 and lot sizes
from county?2 are 1.2, 1.5, 1.8, 2.1) =» we have an additional FD
FD5: AREA> COUNTY _NAME however, 3NF is not violated

= Since there are only 7 possible area values, FD5 could be
represented 1n a separate relation R(AAREA,COUNTY_NAME) to
avold repeating the same information the 1000s of tuples



BCNF

+

= RIS IN BCNF IF FOR EVERY FD X 2 1,
X IS ASUPERKEY OFR
= FD5 violates BCNF (AREA 1s not a superkey)

= To normalize LOTS1A in BCNF we decompose 1t
onto two relations by removing the problematic FD



