
FUNCTIONAL DEPENDENCIES

Attributes are grouped together to form relations (tables)

Tables are put together to form a relational database schema

The above process is specified by the database designer 
or by mapping an ER/EER diagram to a relational schema 

We need to be able to measure how “good” a particular
grouping is, w.r.t. other possible groupings



The quality of a relational database 
schema is evaluated at two levels:

the logical (conceptual) level (how clear is the 
meaning of the attributes easier to formulate queries)

the implementation (storage) level (how the tuples are 
stored and updated more efficient query execution)

Database design can be done using 2 methodologies: 
top-down (start with some relations and refine the 

decomposition until all requirements are met)
bottom-up (start with basic relationships between attributes

and build up relations)



GENERAL DESIGN GUIDELINES

A relation should correspond to a single 
entity type or a single relationship type
A database should be designed so as to 
avoid update (insert, delete, modify) anomalies
Limit the number of null values in tuples 
(problems with JOIN, COUNT, SUM etc)
Design relations schemas that can be 
JOINed with equality conditions on either 
primary or foreign keys (spurious tuples)



Concept of FD

Functional Dependency: a constraint 
between two sets of attributes from the 
database
Universal relation schema: assemble 
all the attributes in one big relation 
R={A1, … ,An} (theoretical concept)
Used to define 1st, 2nd, 3rd , BCNF



Definition of FD

X Y (X,Y subsets of R) specifies a 
limitation on the possible tuples in a potential 
relation state r of R
For any tuples t1,t2 with t1[X] =t2[X] we must 
also have t1[Y]=t2[Y]
The values of the Y component of a tuple in r are
determined by the values of the X component. The 
values of the X component uniquely (functionally) 
determine the values of the Y component



FD Terminology

There is an FD from X to Y
Y is functionally dependent on X
X is the left-hand side of the FD
Y is the right-hand side of the FD
X functionally determines Y in R iff 
every two tuples that agree on their    
X-values, agree on their Y-values



Remarks on FDs

If X is a candidate key for R,                     
then X Y for any subset Y of R
X Y in R, does not mean Y X in R
An FD is a semantic property of the attributes
Legal relation: is a relation state that satisfies 
the specified FDs
FDs specify constraints that must always hold



Examples of FDs

{Province, #DriverLicence} SIN
In the EMPLOYEEPROJECT relation schema

SIN ENAME
PNUMBER {PNAME, PLOCATION}
{SIN, PNUMBER} HOURS

Diagrammatic Notation for FDs:  
FDs (horizontal lines)  lhs (vertical lines) 
rhs (pointing arrows)



A subtle point about FDs

An FD is a property of the relation 
schema, not of a particular relation state
As a consequence, an FD cannot be 
inferred from a given relation state r
However, it is sufficient to exhibit a 
counterexample to show that a certain FD 
cannot hold 
TEXT COURSE ? COURSE TEXT



Inference Rules for FDs

F denotes the set of all FDs in R
Other FDs may be deduced from F
F+ (the closure of F) is the set of all 
possible FDs deduced from F
Example: F={SIN {ENAME, ADDRESS, BDATE, 
DNUMBER}, DNUMBER {DNAME,DMGRSIN}}
We can infer the following F+ elements: 
SIN {DNAME,DMGRSIN},SIN SIN, DNUMBER DNAME



An FD X Y is inferred from a set of FDs 
F on R if X Y holds in every legal 
relation state r of R (if r satisfies all the 
FDs in F, then r satisfies X Y )
A systematic way to establish FDs is 
provided by a set of inference rules that can 
be used to infer new FDs from given ones
NOTATIONS: F |= X Y & {X,Y } Z XY Z



A SET OF INFERENCE RULES

IR1 (reflexivity) Y subset of X, X Y
IR2 (augmentation) {X Y}  |= XZ YZ
IR3 (transitivity) {X Y, Y  Z}  |= X Z
IR4 (decomposition) {X YZ}  |= X Y
IR5 (union) {X Y, X Z}  |= X YZ
IR6 (pseudo-transitivity)                                   

{X Y, WY  Z}  |= WX Z



Comments on the Inference Rules

Applying IR4 repeatedly we can decompose 
an FD X {A1, A2,…, An} into a set of FDs: 
{X A1 , X A2,…, X An}
Applying IR5 repeatedly we do the opposite
IR1, …, IR6 can be proved from the 
definition or by contradiction or by using 
previously proved rules



Armstrong’s Axioms   

{IR1, IR2, IR3} Armstrong’s Axioms AA
AA are sound (any FD inferred from F
using AA will hold in any relation state r 
of R, that satisfies a given set of FDs F)
AA are complete (we can compute the 
closure F+ of a given set of FDs F, using 
exclusively AA ) 



Usage of AA in database design

Specify a set F of semantically obvious 
FDs on the attributes of R
Use AA to infer additional FDs (2 steps)

Determine each set X of attributes that 
appear as lhs of FDs in F
Determine the set X + (closure of X under F) 
of all attributes functionally determined by X
based on F



Algorithm to compute X +

INPUT: a set of FDs F, a set X of lhs of elements in F
OUTPUT: the set of attributes X + (closure of X under F )

STEP 1. Assign X +  := X (justification: IR1)

STEP 2. Repeat
oldX + := X + (for loop justification: IR3, IR4)

for each FD  Y  Z in F do 
if Y subset of X +  then X +  := X + U Z

Until   X + = oldX + 



Example of application of the 
closure computation algorithm

In the EMPLOYEEPROJECT relation schema

F = {SIN ENAME, PNUMBER {PNAME,PLOCATION}, 
{SIN,PNUMBER} HOURS}

{SIN}+ = {SIN, ENAME}
{PNUMBER}+ = {PNUMBER, PNAME, PLOCATION}
{SIN,PNUMBER}+ = {SIN, PNUMBER, ENAME, 
PNAME, PLOCATION, HOURS}

In general X + U Y  + different than (X U Y  )+



Equivalent sets of FDs

Consider E, F two sets of FDs
E is covered by F (F covers E),   E subset of F+

E, F equivalent,    E+ = F+ in words:
Every FD in F can be deduced from E and vice-versa

Determine whether F covers E:  a) compute X + wrt F 
for every FD X Y in E b) check Y subset of X +
c) if b) is true for every FD in E, then F covers E.
Determine whether E, F are equivalent: E covers F
and F covers E. 



Minimal Sets of FDs
A set of FDs F is minimal if:

The rhs of every FD in F is a single attribute 
If we replace a FD X A with a FD Y A 
where Y is a proper subset of X , we will obtain 
a set of FDs not equivalent to F
If we remove a FD from F, we will obtain a set 
of FDs not equivalent to F

Minimal Set canonical form & no redundancies 
A minimal cover of a set of FDs F, is a minimal
set of FDs G, that is also equivalent to F



INPUT: a set of FDs F
OUTPUT: a minimal cover G of F

STEP 1. Assign G := F

STEP 3. For each FD X A in G,
For each attribute B of X,

if (G-{X A}) U {(X-{B}) A} equiv. to G
then replace X A by X-{B} A in G

STEP 2. Replace each FD X {A1, A2,…, An} in G
by n FDs {X A1 , X A2,…, X An}

STEP 4. For each remaining FD X A in G,
if G-{X A} is equiv. to G
then remove X A from G

Algorithm to compute a minimal cover



Normalization

Use FDs to describe the semantics of 
relations schemas
Assume that a set of FDs and a primary 
key are given for each relation
Define 1st, 2nd, 3rd NF, BCNF (and higher NF)

Evaluate each relation against each NF 
and decompose it (top-down design) in 
order to obtain relations that satisfy NF



Normalization Process
Framework to analyze relations schemas based on 
their keys and FDs among attributes
Normal Form tests carried out on relation schemas 
to normalize them to any desired degree 

Normal Form of a relation:
the highest normal form condition satisfied by the relation

Other properties that a good relational schema must have:
nonadditive join (spurious tuples), dependency preservation



Surprise Quiz !

Superkey  
Key
Candidate Key
Primary Key
Foreign Key
Prime attribute
Nonprime attribute

Some of these definitions
are useful in defining the

1st , 2nd , 3rd NF introduced 
by Codd in 1972



First Normal Form 1NF

1NF Atomicity of attribute domains

Attribute values allowed by 1NF are single 
indivisible atomic values from the attribute domain
In particular, 1NF forbids  
(a) multi-valued attributes
(b) nested relations 
(c) relations as values of tuples 



Normalization into 1NF (I)

When a relation is not in 1NF there are 3 main 
techniques to normalize it using the attribute A that 
violates 1NF  (case A is a composite attribute)

Remove A and place it in a new relation together with 
the primary key
Expand the key, so that there will be a separate tuple for 
each atomic value of A (pb: introduces redundancy)
If a max number of values n, is known for A, replace A, 
with n atomic attributes (pb: introduces null values)



Normalization into 1NF (II)

When a relation is not in 1NF there is one other 
technique to normalize it using the attribute A that 
violates 1NF  (case A is a multi-valued attribute)

Remove A into a new relation and propagate the primary 
key into this new relation
The primary key of the new relation will combine the 
partial key of the nested relation and the primary key        
of the original relation
This process can be applied recursively to denest relations



Second Normal Form 2NF

2NF full FD of all nonprime 
attributes on primary key
Full FD: X Y is a Full FD if removal of any 
attribute of  X destroys the FD 
Partial FD: X Y is a Partial FD if removal of 
some attribute of  X does not destroy the FD 
If the primary key contains only one attribute then 
the relation satisfies the 2NF criterion
2NF is concerned with FDs whose lhs attributes     
are parts of the primary key 



Normalization into 2NF 

If a relation schema is not in 2NF, it can be 
normalized to 2NF: decomposed into a number 
of relations in which nonprime attributes are fully 
functionally dependent on the primary key.
2NF normalization recipe:

Set up a new relation for each partial key with 
its dependent attribute(s)
Keep a relation with the original primary key 
and its fully functionally dependent attribute(s)



Third Normal Form 3NF
3NF no nonprime attribute is 
transitively dependent on 
the primary key of R
Transitive FD: X Y is a Transitive FD in R if 
there is a set of attributes Z (that is neither a 
candidate key nor a subset of any key of R) such that 
both   X Z and Z Y are valid FDs.
Example: SIN DMGRSIN is a transitive FD (Z = 
DNUMBER not a key, neither a subset of the key)



Normalization into 3NF 

If a relation schema is not in 3NF, it can be 
normalized to 3NF: decomposed into a number 
of relations in which no nonprime attributes are 
transitively dependent on the primary key.
3NF normalization recipe:

Set up a new relation for each nonprime 
attribute that is transitively dependent on the 
primary key



General Definitions of 2NF, 3NF

We want to design relation schemas that do not 
contain neither partial nor transitive dependencies
2NF normalization disallows partial dependencies
3NF normalization disallows transitive dependencies
These definitions of 2NF & 3NF take into account  
only the primary key and not the candidate keys
The more general definitions of 2NF & 3NF take into 
account all candidate keys of a relation
Prime attribute: part of any candidate key



General Definition of 2NF

R is in 2NF if every nonprime 
attribute is fully functionally 
dependent on every key of R
Example:Example: LOTS relation with 2 candidate keys 
PROPERTY_ID# and {COUNTY_NAME, LOT#}
LOTS violates 2NF because of FD3
To normalize LOTS in 2NF we decompose it into 2 
relations by removing the problematic nonprime attribute
Both new relations are in 2NF



General Definition of 3NF

R is in 3NF if FOR every FD X  A
either (a) X is a superkey of R   
OR (B) A IS a prime attribute of R

Example:Example: LOTS2 is in 3NF, LOTS1 is not in 3NF 
because of FD4 (which gives rise to a transitive FD)

To normalize LOTS1 in 3NF we decompose it 
into 2 relations by removing the problematic 
nonprime attribute together with the lhs of FD4



Boyce-Codd Normal Form BCNF

Stronger requirement than 3NF
Every relation in BCNF is also in 3NF, but not vice-versa

Motivating Example:Motivating Example: LOTS relation with FD1…FD4
Suppose there are 1000s of lots but from only two counties
(Suppose that lot sizes from county1 are 0.5, 0.6, 0.7 and lot sizes 
from county2 are 1.2, 1.5, 1.8, 2.1) we have an additional FD      
FD5: AREA COUNTY_NAME however, 3NF is not violated
Since there are only 7 possible area values, FD5 could be 
represented in a separate relation R(AREA,COUNTY_NAME) R(AREA,COUNTY_NAME) to 
avoid repeating the same information the 1000s of tuples



BCNF

R is in BCNF if FOR every FD X  A ,
X is a superkey of R   

FD5 violates BCNF (AREA is not a superkey)
To normalize LOTS1A in BCNF we decompose it 
onto two relations by removing the problematic FD


