
Relational Algebra

• set of relational model operations to manipulate data

• enable the user to specify retrieval requests

• results are new relations, that can in turn be manipulated by the same
operations

Relational Algebra Expression:

sequence of relational algebra operations

The result of a relational algebra expr. is again a relation

relational algebra operations
↗ set-theoretic operations

↘ relational operations

1



The SELECT operation

select a subset of the tuples of a relation that satisfy a selection condition

(filter tuples that satisfy a condition)

Example: σDNO=4(EMPLOY EE)

Example: σSALARY >30000(EMPLOY EE)

Example: σ(DNO=4 AND SALARY >25000) OR (DNO=5 AND SALARY >30000)(EMPLOY EE)

2



general syntax of the SELECT operation:

σcondition(R)

. condition is a Boolean expression made up from clauses

• <attrib name> <comparison operator> <value>

• <attrib name> <comparison operator> <attrib name>

• comparison operator is one of =,≤,≤,≥,≥6= except when the attribute
domain is a set of unordered values (e.g. colors)

• value is an element of the attribute domain

• clauses can be combined with the boolean operators AND, OR, NOT

. R is a relation, in general a relational algebra expression

3



properties of the SELECT operation:

• Determination of the result of SELECT: apply the select condition to each tuple
and evaluate the condition

• SELECT operation is unary

• degree(σcondition(R)) = degree(R )

• # of tuples of σcondition(R) ≤ # of tuples of R

• selectivity of a condition: how many tuples are selected

• commutativity of the SELECT operation:
σcondition1(σcondition2(R)) = σcondition2(σcondition1(R))

• nested SELECT operations can be replaced with a multiple AND condition:
σc1

(σc2
(. . . (σcn

(R)))) = σc1 AND c2 AND ... AND cn
(R)

4



The PROJECT operation

project a relation wrt some attributes only

SELECT works on rows, PROJECT works on columns

Example: πLNAME,FNAME,SALARY (EMPLOY EE)

Example: πSEX,SALARY (EMPLOY EE)

5



general syntax/properties of the PROJECT
operation:

πattribute list(R)

• PROJECT operation is unary

• degree(πattribute list(R)) = # attributes in attributelist )

• # of tuples of πattribute list(R) ≤ # of tuples of R
(it can be less because of duplicate elimination)
(equality occurs when the attribute list is a superkey of R)

• commutativity does not hold for the PROJECT operation

• πl1(πl2(R)) = πl1(R) when l2 contains the attributes of l1

6



The RENAME operation & Sequences of Op-
erations

Sometimes we want to be able to give names to intermediate results of

relational algebra operations.

Thus we avoid complicated nested relational algebra expressions.

Example: πFNAME,LNAME,SALARY (σDNO=5(EMPLOY EE))

can be decomposed as follows:

DEP5 EMP ←− σDNO=5(EMPLOY EE)

RESULT ←− πFNAME,LNAME,SALARY (DEP5 EMP)

we can also rename the attributes of the result:

TMP ←− σDNO=5(EMPLOY EE)

R(FIRSTNAME, LASTNAME, SALARY) ←− πFNAME,LNAME,SALARY (TMP)

7



general syntax of the RENAME operation:

suppose we have a relation R of degree n ,

R(A1, A2, . . . , An)

we can rename the relation, the attributes or both:

• ρS(B1,B2,...,Bn)(R)

• ρS(R)

• ρ(B1,B2,...,Bn)(R)

8



Set Theoretic Operations

Relations are sets and as such they are subject to the usual set-theoretic

operations (merging sets).

DEP5 EMPS ←− σDNO=5(EMPLOYEE)

RES1 ←− πSIN(DEP5 EMPS)

RES2(SIN) ←− πSUPERSIN(DEP5 EMPS)

RES ←− RES1 ∪ RES2

RES will contain the SINs of all employees who either work in dpt 5 or

directly supervise an employee who works in dpt 5.

10



• The 3 set-theoretic operations, UNION, INTERSECTION & SET DIFFERENCE
are binary

• To ensure the applicability of the 3 set-theoretic operations, the Union Compatibility
condition must hold

• Union Compatibility:

R(A1, A2, . . . , An), S(B1, B2, . . . , Bn)

same degree n and dom(Ai) = dom(Bi), i = 1, . . . , n.

• UNION R ∪ S (commutative, duplicate elimination applies)

• INTERSECTION R ∩ S (commutative)

• SET DIFFERENCE R − S (non commutative)

• Convention: the resulting relation has as attribute names: A1, A2, . . . , An

• UNION & INTERSECTION are associative:
R ∪ (S ∪ T ) = (R ∪ S) ∪ T R ∩ (S ∩ T ) = (R ∩ S) ∩ T

11



CARTESIAN PRODUCT

• (alias CROSS PRODUCT or CROSS JOIN)

• binary operation, does not require Union Compatibility

• R(A1, A2, . . . , An) × S(B1, B2, . . . , Bm) =⇒ Q(A1, A2, . . . , An, B1, B2, . . . , Bm)

• degree(Q) = degree(R) + degree(S)

• # tuples in Q = (# tuples in R) ? (# tuples in S)

• in general the result of R × S does not make sense

• useful when followed by a selection that matches values of attributes of R, S

Example: retrieve the list of names of the dependents of each female employee

FEMALE EMPS ←− σSEX=F (EMPLOYEE)

EMPNAMES ←− πFNAME,LNAME,SIN(FEMALE EMPS)

EMP DEPENDENTS ←− EMPNAMES × DEPENDENT

ACTUAL DEPENDENTS ←− σSIN=ESIN(EMP DEPENDENTS)

RES ←− πFNAME,LNAME,DEPENDENT NAME(ACTUAL DEPENDENTS)

12



JOIN Operation

• denoted by ./

• used to combine related tuples from 2 relations into single tuples

• used to express relationships between relations

Example: JOIN

Retrieve the name of the manager of each department.

We need to combine each DEPARTMENT tuple with the EMPLOYEE tuple
whose SIN value matches the MGRSIN value in the DEPARTMENT tuple.

DEPT MGR ← DEPARTMENT ./MGRSIN=SIN EMPLOYEE

RES ← πDNAME,FNAME,LNAME(DEPT MGR)

MGRSIN is a foreign key, referential integrity. Do this example with Cartesian
Product.

13



general syntax: R ./join condition S

R(A1, . . . , An) ./ S(B1, . . . , Bm) ⇒ Q(A1, . . . , An, B1, . . . , Bm)

degree R ./join condition S = degree R + degree Q = n + m

the result of the join contains each combination of tuples (one from R

and one from S) whenever this combination satisfies the join condition.

(difference of join and cartesian product)

the join condition is specified on attributes of the two relations R and
S and is evaluated for each combination of tuples.

each combination for which the join condition evaluates to true, is in-
cluded in the result Q.

Nested JOINs:

((PROJECT ./DNUM=DNUMBER DEPARTMENT ) ./MGRSIN=SIN EMPLOY EE)

14



. general join condition:

< condition > AND . . . AND < CONDITION >

where each condition is of the form Ai θ Bj with Ai an attribute of R, Bj an
attribute of S, θ is one of the comparison operators {=, 6=, <,≤, >,≥}.
Note 1: Ai and Bj must have the same domain.

Note 2: Tuples whose join attribute values are NULL, do not appear in the
result.

Types of JOINs:

• THETA JOIN the join condition has the general form described above

• EQUIJOIN JOIN in which the only comparison operator used is =

• NATURAL JOIN [denoted by ?] EQUIJOIN followed by removal of the redundant
(same values) attribute(s)

15



Example: NATURAL JOIN

PROJ DEPT ←
PROJECT ? ρDNAME,DNUM,MGRSIN,MGRSTARTDATE(DEPARTMENT) Renaming is used to achieve
a common name (DNUM) for the JOIN ATTRIBUTE.

Example: NATURAL JOIN

DEPT LOCS ← DEPARTMENT ? DEPT LOCATIONS
The common join attribute DNUMBER is omitted from the notation.

. If no tuples satisfy the join condition, the result is an empty relation.

. If all tuples satisfy the join condition, the result is the cartesian product.

. # tuples in R ./c S ≤ # tuples in R · # tuples in S.

Join Selectivity: ratio of tuples in the result over the maximum number of
tuples.

16



Complete Set of RA operations

Fact:

The set of RA operations {σ, π,∪,−,×} is a complete set.

• INTERSECTION:
R ∩ S = (R ∪ S)− ((R− S) ∪ (S −R))

• JOIN: R ./c S = σc(R× S)

17



DIVISION Operation

• denoted by ÷
• useful for retrieval requests that contain a universal quantifier (∀)
• binary operation, defined as follows:

R(Z) ÷ S(X) = T (Y ) where X ⊂ Z and where Y = Z −X (Y denotes the set of
attributes of R that are not attributes of S)

a tuple t appears in the result T (Y ) if the Y value(s) of t appears in R combined
with every X value(s) of S.

• expression of DIVISION via the complete set of RA operations:

R(Z)÷ S(X) = πY (R)− πY ((S × πY (R))−R)

18



Example: DIVISION (1st abstract example)

R÷ S = T

R A B
a1 b1
a2 b1
a3 b1
a4 b1
a1 b2
a3 b2
a2 b3
a3 b3
a4 b3
a1 b4
a2 b4
a3 b4

S A
a1

a2

a3

T B
b1
b4

Which tuple(s) must we add to R so that b2 belongs to the result T?

Which tuple(s) must we take out from R so that b4 does not belong to the
result T?

19



Division again

Another point of view:
Analogy with integer division.

7/3 = 2 because 2 · 3 ≤ 7

A/B is the maximum integer Q s.t. Q ·B ≤ A

A÷B is the largest relation Q s.t. Q×B ⊆ A

Example: DIVISION (2nd abstract example)

A S R
s1 r1

s1 r2

s1 r3

s1 r4

s2 r1

s2 r2

s3 r2

s4 r2

s4 r4

B1 R
r2

B2 R
r2

r4

B3 R
r1

r2

r4

20



Compute A÷B1, A÷B2, A÷B3.

Other technique to compute division: Compute all s-values of A that are not
disqualified. An s value si is disqualified if by attaching an r-value rj from B,
we obtain (si, rj) 6∈ A.

Example: DIVISION (COMPANY example)

Retrieve the name of employees who work on all the projects that ”John
Smith” works on. Separate the query into 3 parts:

(a) Build the list of PNOs that JS works on:

SMITH ←− σFNAME=′John′AND LNAME=′Smith′(EMPL)
SMITH PNOS ←− πPNO(WORKS ON ./ESIN=SIN SMITH)

(b) Build a table that contains tuples < PNO, ESIN >

SIN PNOS ←− πESIN,PNO(WORKS ON)

(c) Apply DIVISION to get the result:
SINS(SIN) ←− SIN PNOS ÷ SMITH PNOS
RESULT −→ πFNAME,LNAME(SINS ? EMPLOY EE)



Aggregate Functions & Grouping

• specify mathematical aggregate functions on collections of values from the
database:

SUM, AVERAGE, MAXIMUM, MINIMUM

• COUNT is used to count tuples or values

• group the tuples of a relation according to the values of a certain attribute and
then apply an aggregate function to each group separately

syntax: <grouping attributes>F<function list>(R)

where < grouping attributes > is a list of attributes of R and < function list >

is a list of pairs of the form (< function >, < attribute >) where <

function > is one of SUM, AVERAGE, MAX, MIN, COUNT

The resulting relation has the grouping attributes plus one attribute for
each pair in the < function list >

21



Example: AGGREGATION & GROUPING

For each department retrieve its DNO, its # employees and their average
salary.

RES ← DNOFCOUNT SIN,AV ERAGE SALARY (EMPL)

using renaming: ρR(DNO,NO OF EMPLS,AV G SAL)(RES)

Example: AGGREGATION & GROUPING

If no renaming occurs, the attributes of the resulting relation are named by
concatenating the name of the function and the attribute in each pair of the
< function list >

DNOFCOUNT SIN,AV ERAGE SALARY (EMPLOY EE)

Example: AGGREGATION & GROUPING

If no grouping attributes are specified, the functions are applied to all the
tuples in the relation, so there will be only one tuple in the resulting relation

FCOUNT SIN,AV ERAGE SALARY (EMPLOY EE)

When aggregate functions are applied, duplicate elimination is not performed,
in order to compute SUM and AVERAGE accurately.

22



Recursive Closure

operation applied to recursive relationships, like supervision

what are the employees supervised by a certain employee?

what are the employees supervised by the employees supervised by a

certain employee?

we can specify an arbitrary level of nesting in these types of queries

using successive join operations.

23


