
STRUCTURED QUERY LANGUAGE (SQL)
Standard for relational databases
Differences between implementations of
SQL in commercial DBMSs.
If the programmer does not use exotic
features and both systems adhere to the
standard, conversion between code
written for two systems is much easier.
A database application program can
contain code to access data in two (or
more) different DBMSs.

We have seen one of the most important
formalisms of the relational data model.
Relational Algebra is important for
query processing and optimization and
gives us an idea of what kind of requests
we can specify on a relational database.
RA is beautiful but has the inconvenience
that the user must specify the order of
execution of the operations.
SQL provides a high-level declarative
interface, the user has to specify only
what the result of the query will be.

SQL contains some features from
Relational Algebra and tuple relational
calculus (another formalism for the
relational data model).
SQL is the standard language for
commercial RDBMSs.
In SQL we can create tables, define,
query and update relational data,
define views, specify security,
authorization, integrity constraints
SQL is both a DDL and a DML

Brief SQL history

ANSI+ISO SQL-86 (alias SQL1)
Current standard: SQL-92 (alias SQL2)
has 3 levels: Entry SQL,
Intermediate SQL, Full SQL
SQL:1999 SQL3, Object-oriented
features, recursive queries, enhanced
embedded SQL features, transaction
capabilities

Data Definition in SQL
Table (relation) Row (tuple) Column (attribute)
SQL2 commands for data definition:
CREATE, ALTER, DROP
Schema, Catalog concepts in SQL-92:

SQL schema = schema name+authorization
identifier+descriptors for schema elements (tables
constraints, views, domains) e.g.

CREATE SCHEMA MOVIES AUTHORIZATION IKOTSIRE;

Catalog = set of available schemas+constraints
info+authorization info+element descriptors

CREATE TABLE, Data types & Constraints

Specify a new relation (name &
attributes & constraints)
Each attribute is given a name and a
data types plus constraints (if any,
e.g. NOT NULL)
Key, entity integrity, referential
integrity constraints are also specified
CREATE TABLE MOVIES.FILM …
Attribute data types: numeric, string,
date, time, timestamp

Schema Evolution Commands

When a whole schema is not needed
DROP SCHEMA command

Two options: CASCADE, RESTRICT
DROP SCHEMA MOVIES CASCADE;
Delete MOVIES and all its tables, domains etc

DROP SCHEMA MOVIES RESTRICT;
Delete MOVIES only if it has no elements in it.
When a table is not needed DROP TABLE

DROP TABLE has the CASCADE,
RESTRICT options
RESTRICT: the table is deleted only if it
is not referenced in any constraints
Change the definition of a table
ALTER TABLE command
ALTER TABLE possible actions:
add/drop attributes/constraints, change
definitions of attributes

ALTER TABLE MOVIES.AWARD ADD
AWARDNAME VARCHAR(20); add attribute
Values for the new attribute must be provided for each
AWARD tuple (UPDATE command) otherwise the
default value NULL is assigned in all tuples
ALTER TABLE MOVIES.AWARD DROP YEAR
CASCADE|RESTRICT; drop attribute
RESTRICT no views or constraints reference the attr.
ALTER TABLE MOVIES.AWARD DROP/ADD
CONSTRAINT INT CASCADE|RESTRICT;
add/drop constraint (the constraint must have a name)

BASIC QUERIES IN SQL

Basic SQL statement for retrieving
information from the database: SELECT
SQL allows duplicate elements in the result
(as opposed to RA queries) multiset/set
Basic syntax of the SELECT command:

SELECT <attribute list>
FROM <table list>
WHERE <condition>;

Q0: Retrieve the birthdates and addresses of the
employees whose last name is Smith.

SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE LNAME = ‘Smith’;

This corresponds to the RA query:

π BDATE,ADDRESS (σ LNAME=‘Smith’(EMPLOYEE))

Q1: Retrieve the names and addresses of all employees who work for
the Research department.

SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME = ‘Research’ AND DNUMBER=DNO;

JOIN CONDITION: DNUMBER = DNO corresponds to a RA JOIN operation
Q2: For every project located in Stratford retrieve the project number,
the controlling dpt, and the manager’s last name and birthdate.

SELECT PNUMBER, DNUM, LNAME, BDATE
FROM PROJECT, EMPLOYEE, DEPARTMENT
WHERE DNUM=DNUMBER AND MGRSIN=SIN

AND PLOCATION=‘Stratford’;

CORRELATED NESTED QUERIES

Whenever a condition in the WHERE clause of an inner nested
query references an attribute of a relation of the FROM clause
of the outer query, the two (nested) queries are called
correlated.

Evaluation Mechanism: for each tuple (or combination of
tuples) of the outer query, the inner query is evaluated and
the outer query tuple is selected or not, accordingly.

EXISTS
Usage: check whether the result of a correlated

(inner) nested query is empty or not

Q16: Retrieve the names of each employee who has a
dependent with the same first name and the same sex as the
employee.

SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE EXISTS (SELECT *

FROM DEPENDENT
WHERE E.SIN=ESIN AND E.SEX=SEX

AND E.FNAME=DEPENDENT_NAME);

Q6: Retrieve the names of employees who have no dependents

NOT EXISTS

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPENDENT
WHERE SIN=ESIN);

Q7: Retrieve the names of managers who have at least 1 dependent
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS (SELECT * FROM DEPENDENT WHERE SIN=ESIN)

AND EXISTS (SELECT * FROM DEPARTMENT WHERE SIN=MGRSIN);

EXISTS-NOT EXISTS SEMANTICS

EXISTS(Q) is true when there is at least
one tuple in the result of query Q.
(the result of query Q is not empty)

NOT EXISTS(Q) is true when there are
no tuples in the result of query Q.
(the result of query Q is empty)

EXCEPT (set-theoretic difference)

Q3: Retrieve the name of each employee who works on
all the projects managed by department number 5.

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (

(SELECT PNUMBER FROM PROJECT WHERE DNUM=5)
EXCEPT

(SELECT PNO FROM WORKS_ON WHERE SIN=ESIN)
);

Explicit Sets of Values

We can use an explicit set of values instead of an inner
nested query in the WHERE-clause of an SQL statement.

This set of values must be delimited by parentheses.

Q17: Retrieve the SIN of all employees who work on project
number 1, 2 or 3.

SELECT DISTINCT ESIN
FROM WORKS_ON
WHERE PNO IN (1,2,3);

Substring Pattern Matching

Q12: Find all employees living in Stratford
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ADDRESS LIKE ‘%Stratford%’;

% matches zero or more characters (* in Linux)
_ matches one single character (? in Linux)

Q12A: Find all employees born in the 1950s

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE ‘_ _ 5 _%’;

Arithmetic Operators
Comparison Operators

Q13: show a hypothetical 10% raise for all employees
working in department number 5

SELECT FNAME, LNAME, 1.1*SALARY AS incrSalary
FROM EMPLOYEE
WHERE DNO = 5;

Q14: retrieve all employees working in department
number 5 whose salary is between $30,000 and $40,000

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE (SALARY BETWEEN 30000 AND 40000) AND

DNO =5;

NESTED QUERIES AND
SET/MULTISET COMPARISONS

Q: find all employees who work on the same
project and the same number of hours,

on some project that employee ‘123456789’ works on

SELECT DISTINCT ESIN
FROM WORKS_ON
WHERE (PNO,HOURS) IN

(SELECT PNO, HOURS
FROM WORKS_ON
WHERE SIN=‘123456789’);

We can compare tuples of (union-compatible) values, as
opposed to single individual values, using parentheses.

NESTED QUERIES AND
SET/MULTISET COMPARISONS

Q: find all employees whose salary is greater than the
salary of all the employees in department number 5.

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > ALL

(SELECT SALARY
FROM EMPLOYEE
WHERE DNO=5);

ALL/ANY SEMANTICS

u > ALL V is true if the value u is greater
than all the values in the set (multiset) S
u = ANY V is true if the value u is equal
to some value in the set (multiset) S

S is typically specified by a nested query
In some SQL implementations ANY
is called SOME

Ordering of Query Results

Q15: retrieve a list of employees and the projects they
are working on, ordered by department and within
each department ordered ABtically by last name

SELECT DNAME, LNAME, FNAME, PNAME
FROM EMPLOYEE, DEPARTMENT, WORKS_ON, PROJECT
WHERE DNUMBER=DNO AND SIN=ESIN AND

PNO=PNUMBER
ORDER BY DNAME, LNAME;

Default: ASC (ascending order)
ORDER BY DNAME DESC

NULL values in SQL

We can check whether a value in a tuple is NULL.
SQL provides two comparison operators, IS, IS NOT

Q18: Retrieve the names of all employees who do not have supervisors

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE SUPERSIN IS NULL;

SQL considers all null values as being different
end thus equality comparison is meaningless.

In case of a join condition, tuples with null
values are not included in the result

Attribute/Relation
Aliasing(Renaming)

Using the qualifier AS we can rename/alias
•attributes in the SELECT-clause
•relations in the FROM-clause

Q8: For each employee retrieve his/her last name and
the last name of his/her immediate supervisor

SELECT E.LNAME AS EMPL_NAME, S.LNAME AS SUPER_NAME
FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSIN = S.SIN;

The new (attribute) names will appear in the query result

Joined Tables

Usage: to be able to specify a table resulting from a
join operation, in the FROM-clause of a query

Q1: Retrieve the name and address of all employees
working in the “Research” department

SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)
WHERE DNAME= “Research”;

In RA terms, we separate the join and the project

Q1: with a NATURAL JOIN
SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN

(DEPARTMENT AS DEPT(DNAME,DNO,MSIN,MSDATE)))
WHERE DNAME= “Research”;

NATURAL JOIN:
no join condition specified,
an implicit join condition is applied to every
pair of attributes with the same name.

We renamed the attributes of the relation DEPARTMENT
to match the attribute DNO of the relation EMPLOYEE

SELECT PNUMBER, DNUM, LNAME, ADDRESS, BDATE
FROM ((PROJECT JOIN DEPARTMENT ON DNUM=DNUMBER)

JOIN EMPLOYEE ON MGRSIN=SIN)
WHERE PLOCATION= “Stratford”;

Q2: with 2 NESTED JOINs
Q2: For every project located in “Stratford”,

list the project number, the controlling department number
and the department manager’s last name, address and birthdate

AGGREGATE FUNCTIONS & GROUPING

Built-in functions: MAX, MIN, COUNT, SUM, AVG

The COUNT function returns the number of tuples in the result of a query

The functions MAX, MIN, SUM, AVG are applied
to a set (or multiset) of numeric values.

These functions can be used in the SELECT-clause or the
HAVING-clause of a query.

MIN, MAX can be used with attributes whose domains have a total order

Q19 Compute the sum of the salaries of all employees,
the maximum salary, the minimum salary and the
average salary

SELECT SUM(SALARY), MAX(SALARY),
MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE;

Q20 Compute the sum of the salaries of all employees of
the “Research” department as well as the max, min,
average salary in this department
SELECT SUM(SALARY), MAX(SALARY),

MIN(SALARY), AVG(SALARY)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME= “Research”;

Use aggregate functions to retrieve summary values

Q21 Compute the total number of employees
in the company

SELECT COUNT(*)
FROM EMPLOYEE;

SELECT COUNT(*)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME= “Research”;

Q22 Compute the number of employees
in the “Research” department

The * refers to rows, #tuples in the result of the query

The COUNT function can be used on columns too:

Q23 Count the number of all distinct salary values

SELECT COUNT(DISTINCT SALARY)
FROM EMPLOYEE;

COUNT(SALARY) is equivalent to: COUNT(*)

Use aggregate functions to select particular tuples

Use a correlated nested query with the aggregate
function in the WHERE-clause of an outer query

Q5 Retrieve the names of all employees
who have two or more dependents

SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE (SELECT COUNT(*)

FROM DEPENDENT
WHERE SIN=ESIN) >= 2;

The correlated inner query counts the
number of dependents of each employee

Apply aggregate functions to subgroups of tuples

Work with subgroups of tuples sharing
one (or more) common attribute value(s)

Group the tuples according to attribute(s)
Apply the aggregate function to each group separately

SELECT DNO, COUNT(*), AVG(SALARY)
FROM EMPLOYEE
GROUP BY DNO;

Q24 For each department retrieve the dept. number,
the number of employees and their average salary

clause GROUP BY

Q25 For each project retrieve the project number
the project name and the number of
employees who work on that project

SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME;

First we perform the join of the two relations
Then we perform the grouping

Apply aggregate functions to groups
that satisfy certain conditions

Q26 For each project with more than two
employees working on it, retrieve the
project number the project name and the
number of employees who work on that project

SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT(*) > 2;

clause HAVING

Q27 For each project retrieve the project number the
project name and the number of employees from
department 5 who work on that project

SELECT PNUMBER, PNAME, COUNT(*)
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER=PNO AND SIN=ESIN AND DNO=5
GROUP BY PNUMBER, PNAME;

Q28 For each department with more than five
employees working on it, retrieve the
department number and the number of
its employees making more than $40,000

SELECT DNUMBER, COUNT(*)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO AND SALARY > 40000
GROUP BY DNAME
HAVING COUNT(*) > 5;

SELECT DNUMBER, COUNT(*)
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO AND SALARY > 40000 AND

DNO IN (SELECT DNO
FROM EMPLOYEE
GROUP BY DNO
HAVING COUNT(*) > 5)

GROUP BY DNUMBER;

WRONG

Summary of SQL queries

Six clauses.
Only SELECT and FROM are mandatory
General Form: SELECT <attr/fct list>

FROM <table list>
WHERE <condition(s)>
GROUP BY <grouping attr>
HAVING <group condition>
ORDER BY <attr list>;

Conceptual Evaluation of a query:
apply the FROM clause (identify the tables involved)
Apply WHERE, GROUP BY, HAVING
Apply ORDER BY to sort the query result

For a SELECT-FROM-WHERE query:
for each combination of tuples (FROM clause) evaluate the
WHERE clause. If the result is true, retrieve the attributes
specified in the SELECT clause in the result table

INSERT (1)

Add a single tuple to a relation
Specify the relation name and a list of values
Values listed in the same order as in the CREATE
TABLE command
INSERT INTO EMPLOYEE
VALUES (‘John’,’L’,’Smith’,’950120230’,…);

INSERT (2)

Specify explicit attribute names corresponding to
the values provided in the INSERT command
Specify the relation name and a list of values
Values listed in the same order as in the CREATE
TABLE command
INSERT INTO EMPLOYEE(LNAME,DNO,SIN)
VALUES (‘Smith’,4,’ ’950120230’);
Attributes not specified set to NULL/DEFAULT

DELETE

DELETE: remove tuples (0, 1, more) from a table
Uses a WHERE clause to select the tuples
Missing WHERE clause deletion of all tuples
DELETE FROM EMPLOYEE
WHERE LNAME = ‘Smith’;
DELETE FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME = ‘Research’);

UPDATE

UPDATE: modify attribute values of one or more selected
tuples
Uses a WHERE clause to select the tuples to be modified
Primary Key Update Propagated actions (Ref. Integrity)
UPDATE PROJECT
SET PLOCATION=‘London’, DNUM = 5;
WHERE PNUMBER = 10;
UPDATE EMPLOYEE
SET SALARY = SALARY*1.1
WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME = ‘Research’);

Give all employees
of the Research
Dept. a 10% raise

VIEWS (1)

View == single table derived from other tables
The other tables can be existing tables or other
views and they are called the defining tables
Views are intermediate tables that do not exist
physcically virtual tables
Views can be queried just like other tables
Views are tables than need to be referenced
frequently, even though they don’t exist physically

VIEWS (2)

Example: instead of issuing frequently queries to
retrieve the employee name and the project names
the employee works on (this requires a JOIN) we
define a view as the result of this join and query
the view (this requires a single-table retrieval)
The tables EMPLOYEE, WORKS_ON and
PROJECT are the defining tables of the view

