
XML Databases

HTML is adequate to represent the structure of
documents for display purposes
HTML is inadequate to represent the structure of data
for database purposes
An application cannot distinguish first and last names,
based on HTML tags

XML (eXtensible Markup Language) was developed
HTML has a fixed set of tags.
XML allows the user to define new collections of tags
These new tags can be used to structure any type of
data that we need to transmit (i.e. over the Web)

XML was developed by a W3C WG
It provides a bridge between the document-oriented
view of data (HTML) and the schema-oriented view of
data (DBMS)
How do we encode the display (in a Web browser) of
the new XML user-defined tags?
XSL (eXtensible Style Language) is a way of
describing how an XML document should be displayed

Introduction to XML
Elements: (alias tags) are the primary building blocks of
an XML document.
The start of the content of an element ELM is marked
with <ELM> (start tag)
The end of the content of an element ELM is marked with
</ELM> (end tag)
XML elements must be properly nested and are case
sensitive
Example: <BOOK>

<AUTHOR>
<FNAME> John </FNAME>
<LNAME> Smith </LNAME>
</AUTHOR>
</BOOK>

Introduction to XML

Attributes: An element can have descriptive attributes
that provide additional information about it
The values of attributes (enclosed in quotes) are set
inside the start tag of an element <ELM attrib=“value”>
Entity references: shortcuts for portions of common
text or the content of external files. start: & end: ;
Whenever they appear in XML documents, they are
textually replaced by their content
5 predefined XML entity references:
< & > " '
They are also used to insert arbitrary Unicode
characters into the text.

Introduction to XML

Comments: start with <!- end with ->
DTDs (Document Type Declarations) sets of rules that
allows the user to specify their own sets of elements,
attributes and entities.
A DTD is a grammar that indicates which tags are
allowed, in what order they can appear and how they
can be nested.
We distinguish two types of XML documents:
An XML document is called valid, if there is a DTD
associated with it and the document is structured
according to the rules of the DTD.

Introduction to XML

An XML document is called well-formed, if it does not
have a DTD, but follows 3 structural guidelines:

1) Starts with an XML declaration

2) There is a root element that contains all other elements

3) All elements are properly nested

XML DTDs

DTD format:
<!DOCTYPE name [DTDdeclaration]>
DTDdeclaration is a description of the rules

XML DTDs

<!ELEMENT BOOKLIST (BOOK)*>
the elm BOOKLIST consists of zero or more BOOK elements

<!ELEMENT BOOKLIST (BOOK)+>
the elm BOOKLIST consists of at least one BOOK elements

<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>
the elm BOOK contains 3 elms
(? optional elm, 0 or 1 occurrence)

<!ELEMENT LASTNAME (#PCDATA)>
the elm LASTNAME does not contain other elements, but
contains text. PCDATA == Parsed Character Data (leaf node)

XML DTDs

Element type declaration syntax:
<!ELEMENT (contentType)>
5 possible content types:
(1) other elements
(2) #PCDATA (parsed character data)
(3) EMPTY
(4) ANY
(5) a regular expression:
(list of, exp*, exp?, exp+, exp1|exp2)

XML DTDs

Attributes of elements are declared
outside of the element
<!ATTLIST BOOK genre (Science|Fiction) #REQUIRED>

genre is an attribute of the elm BOOK
genre can take two values
genre is a required attribute
Attribute declaration syntax:
<!ATTLIST elmName (attName attType default)+>

XML DTDs

XML defines several possible attribute types:
string types, enumerated types …
<!ATTLIST BOOK edition CDATA “1”>
For enum. types, we list all possible values
For enum. types, we can also have a default
value (attribute value is set automatically)
#REQUIRED is a default specification
<!ATTLIST BOOK genre (Science|Fiction) “Science”>

XML-QL: Querying XML data

XML docs come with a lot of structure
We can use a high-level language to exploit this
structure to query XML data and retrieve the results.
Informal examples of XML-QL:
WHERE <BOOK>

<NAME>
<LASTNAME> $l </LASTNAME>

</NAME>
</BOOK> IN “www.server.com/books.xml”

CONSTRUCT <RESNAME> $l </RESNAME>

XML-QL: Querying XML data

XML-QL queries extract data from an XML document by
specifying a pattern of markups
We are interested in data nested inside a
BOOK/NAME/LASTNAME elements
For each part of the XML document that matches the
structure specified by the query, the variable l is bound to
the contents of the element LASTNAME
Variable names as prefixed by the $ sign
The result is an XML document:

<RESNAME> name1 </RESNAME>
<RESNAME> name2 </RESNAME>

XML-QL: Querying XML data

Find the lnames/fnames of all authors who wrote a
book that was published in 1980.
WHERE <BOOK> <NAME>

<LASTNAME> $l </LASTNAME>
<FIRSTNAME> $f </FIRSTNAME>

</NAME>
<PUBLISHED>1980</PUBLISHED>

</BOOK> IN “www.server.com/books.xml”
CONSTRUCT <RESNAME>

<FIRST> $f </FIRST>
<LAST> $l </LAST>

</RESNAME>

XML-QL: Querying XML data

For each year, find the last names of authors who wrote
a book published in that year.
WHERE <BOOK> $e </BOOK> IN “www.server.com/books.xml”,

<AUTHOR> $n </AUTHOR>,
<PUBLISHED> $p </PUBLISHED> IN $e

CONSTRUCT <RESNAME>
<PUBLISHED> $p </PUBLISHED>
WHERE <LASTNAME> $l </LASTNAME>

IN $n CONSTRUCT
<LASTNAME> $l </LASTNAME>

</RESNAME>

