XML Databases

e HTML is adequate to represent the structure of
documents for display purposes

e HTML is inadequate to represent the structure of data
for database purposes

e An application cannot distinguish first and last names,
based on HTML tags

® XML (extensible Markup Language) was developed
e HTML has a fixed set of tags.

e XML allows the user to define new collections of tags

e These new tags can be used to structure any type of
data that we need to transmit (i.e. over the Web)

XML was developed by a W3C WG

It provides a bridge between the document-oriented
view of data (HTML) and the schema-oriented view of
data (DBMS)

How do we encode the display (in a Web browser) of
the new XML user-defined tags?

XSL (eXtensible Style Language) is a way of
describing how an XML document should be displayed

Introduction to XML

Elements: (alias tags) are the primary building blocks of
an XML document.

The start of the content of an element ELM is marked
with <ELM> (start tag)

The end of the content of an element ELM is marked with

</ELM> (end tag)

XML elements must be properly nested and are case
sensitive

Example: <BOOK>
<AUTHOR>
<FNAME> John </FNAME>
<LNAME> Smith </LNAME>
</AUTHOR>

Introduction to XML

Attributes: An element can have descriptive attributes
that provide additional information about it

The values of attributes (enclosed in quotes) are set
Inside the start tag of an element <ELM attrib="value”>

Entity references: shortcuts for portions of common
text or the content of external files. start: & end: ;

Whenever they appear in XML documents, they are
textually replaced by their content

5 predefined XML entity references:
< & > " '

They are also used to insert arbitrary Unicode
characters into the text.

Introduction to XML

Comments: start with <!- end with ->

DTDs (Document Type Declarations) sets of rules that
allows the user to specify their own sets of elements,
attributes and entities.

A DTD is a grammar that indicates which tags are
allowed, in what order they can appear and how they
can be nested.

We distinguish two types of XML documents:

An XML document is called valid, if there is a DTD
associated with it and the document iIs structured
according to the rules of the DTD.

Introduction to XML

An XML document is called well-formed, if it does not
have a DTD, but follows 3 structural guidelines:

Starts with an XML declaration
There Is a root element that contains all other elements

All elements are properly nested

]

<ISITH004/>
<004/>
<QAHSITANd/>086T<IHSITdNd>
<ITLIL/>I8yoee] ysTT8ug oyL<ITLIL>
<HOHLNY/>
CANYNISYT/>uekeIe <y NISY > <THYNLSYIA/> Y U<ANYNLISHI>
<HOHLOY>
<, 101301, =01u88 Y00d>
<100d/>
<QAHSITENd/>186T<AHSITANd>
<ATLII/>RUqRURy 83 I0F SuTTeM<HTLII>
<YOHLOY/>
<IHYNLSYT/>wefeTe<aNYNISY T><IWYNLSUIA/>) U<INYNISHIL>
<HOHLOY>
<, U0T10T,=01u8d Y00g>
<ood/>
<QAHSITENd/>086T<ATHSITAN>
<HTLIL/>MeT Teotshyd Jo Iejoereq) oYI<ITLII>
<HOHINY/>
CHNYNLSYT/>Uemule J<ANYNISY > <ANVNLISHI A/ >PTeyd TH<IWYNISHI >
<HOHLOY>
<, I8A0OPICH,=1BUIOT ,080U810g,=01usd YO0d>
<1SITI00E>

<,Pap-eyo0q, WALSAS LSITHO09 ddALOOAi>
AW:MN%:HmﬂGHMﬁHMHm :wimeznmnﬂﬁauﬂm w0 T,=U0TSIBN AEMWV

XML DTDs

e DTD format: |
<IDOCTYPE name [DTDdeclaration]>

DTDdeclaration is a description of the rules

<!DOCTYPE BOOKLIST [
<!ELEMENT BOOKLIST (BOOK)x*>
<!ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>
<!ELEMENT AUTHOR (FIRSTNAME,LASTNAME)>
<!ELEMENT FIRSTNAME (#PCDATA)>
<!ELEMENT LASTNAME (#PCDATA)>
<!ELEMENT TITLE (#PCDATA)>
<!ELEMENT PUBLISHED (#PCDATA)>
<!ATTLIST BOOK genre (Science|Fiction) #REQUIRED>

<!ATTLIST BOOK format (Paperback|Hardcover) "Paperback'>
1>

XML DTDs

m<lELEMENT BOOKLIST (BOOK)*>

the elm BOOKLIST consists of zero or more BOOK elements

m<ELEMENT BOOKLIST (BOOK)+>

the elm BOOKLIST consists of at least one BOOK elements

= <|[ELEMENT BOOK (AUTHOR,TITLE,PUBLISHED?)>
the elm BOOK contains 3 elms
(? = optional elm, 0 or 1 occurrence)

u <|[ELEMENT LASTNAME (#PCDATA)

the elm LASTNAME does not contain other elements, but
contains text. PCDATA == Parsed Character Data (leaf node)

XML DTDs

e Element type declaration syntax:
<IELEMENT (contentType)>

® 5 possible content types:

(1) other elements

(2) #PCDATA (parsed character data)
(3) EMPTY

(4) ANY

(5) aregular expression:

(list of, exp*, exp?, exp+, expl|lexp2)

XML DTDs

e Attributes of elements are declared

outside of the element
o <IATTLIST BOOK genre (Science|Fiction) #REQUIRED>

e genre Is an attribute of the elm BOOK
e genre can take two values
e genre Is a required attribute

e Attribute declaration syntax:
<IATTLIST elmName (attName attType default)+>

XML DTDs

e XML defines several possible attribute types:
string types, enumerated types ...

o <IATTLIST BOOK edition CDATA "1“>
e For enum. types, we list all possible values

e For enum. types, we can also have a default
value (attribute value Is set automatically)

e #REQUIRED Is a default specification
o <IATTLIST BOOK genre (Science|Fiction) "Science">

XML-QL: Querying XML data

e XML docs come with a lot of structure

e We can use a high-level language to exploit this
structure to query XML data and retrieve the results.

e Informal examples of XML-QL.:

WHERE <BOOK>
<NAME>
<LASTNAME> $1 </LASTNAME>
</ NAME>
</BOOK> IN “www.server.com/books.xml”

CONSTRUCT <RESNAME> $1 </ RESNAME>

XML-QL: Querying XML data

XML-QL queries extract data from an XML document by
specifying a pattern of markups

We are interested in data nested inside a
BOOK/NAME/LASTNAME elements

For each part of the XML document that matches the
structure specified by the query, the variable | is bound to
the contents of the element LASTNAME

Variable names as prefixed by the $ sign

The result i1s an XML document:
<RESNAME> namel </RESNAME>
<RESNAME> name?2 </RESNAME>

XML-QL: Querying XML data

e Find the Inames/fnames of all authors who wrote a

book that was published in 1980.
WHERE <BOOK> <NAME>
<LASTNAME> $| </LASTNAME>
<FIRSTNAME> $f </FIRSTNAME>
</NAME>
<PUBLISHED>1980</PUBLISHED>

</BOOK> IN “www.server.com/books.xml”

CONSTRUCT <RESNAME>
<FIRST> $f </FIRST>
<LAST> $| </LAST>

</RESNAME >

XML-QL: Querying XML data

e For each year, find the last names of authors who wrote
a book published in that year.

WHERE <BOOK> $e </BOOK> IN “www.server.com/books.xml”,
<AUTHOR> $n </AUTHOR>,
<PUBLISHED> $p </PUBLISHED> IN $e

CONSTRUCT <RESNAME>
<PUBLISHED> $p </PUBLISHED>
WHERE <LASTNAME> $| </LASTNAME>
IN $n CONSTRUCT

<LASTNAME> $| </LASTNAME>
</RESNAME >

