
Disk Storage DevicesDisk Storage Devices

 Preferred secondary storage device for high y g g
storage capacity and low cost.

 Data stored as magnetized areas on magnetic
di k fdisk surfaces.

 A disk pack contains several magnetic disks
connected to a rotating spindleconnected to a rotating spindle.

 Disks are divided into concentric circular tracks
on each disk surface.o eac d s su ace
 Track capacities vary typically from 4 to 50 Kbytes

or more

Disk Storage Devices (contd)Disk Storage Devices (contd.)

 A track is divided into smaller blocks or sectors
 because it usually contains a large amount of information

 The division of a track into sectors is hard-coded on the
di k f d t b h ddisk surface and cannot be changed.
 One type of sector organization calls a portion of a track

that subtends a fixed angle at the center as a sector.g
 A track is divided into blocks.

 The block size B is fixed for each system.
 Typical block sizes range from B=512 bytes to B=4096 bytes.

 Whole blocks are transferred between disk and main
memory for processing.y p g

Disk Storage Devices (contd)Disk Storage Devices (contd.)

Disk Storage Devices (contd)Disk Storage Devices (contd.)
 A read-write head moves to the track that contains the

bl k t b t f dblock to be transferred.
 Disk rotation moves the block under the read-write head for

reading or writing.
A h i l di k bl k (h d) dd i t f A physical disk block (hardware) address consists of:
 a cylinder number (imaginary collection of tracks of same

radius from all recorded surfaces)
th t k b f b (ithi th li d) the track number or surface number (within the cylinder)

 and block number (within track).
 Reading or writing a disk block is time consuming

b f th k ti d t ti l d l (l t)because of the seek time s and rotational delay (latency)
rd.

 Double buffering can be used to speed up the transfer of
contiguous disk blockscontiguous disk blocks.

Buffering of blocks IBuffering of blocks I

Buffering of blocks IIBuffering of blocks II

RecordsRecords

 Fixed and variable length recordsg
 Records contain fields which have values of a

particular type
 E.g., amount, date, time, age

 Fields themselves may be fixed length or variable
lengthlength

 Variable length fields can be mixed into one
record:record:
 Separator characters or length fields are needed

so that the record can be “parsed.”

BlockingBlocking

 Blocking: g
 Refers to storing a number of records in one block

on the disk.
 Blocking factor (bfr) refers to the number of

records per block.
There may be empty space in a block if an There may be empty space in a block if an
integral number of records do not fit in one block.

 Spanned Records: Spanned Records:
 Refers to records that exceed the size of one or

more blocks and hence span a number of blocks.

Files of RecordsFiles of Records

 A file is a sequence of records, where each record is a q ,
collection of data values (or data items).

 A file descriptor (or file header) includes information that
d ib th fil h th fi ld d th i d tdescribes the file, such as the field names and their data
types, and the addresses of the file blocks on disk.

 Records are stored on disk blocks.Records are stored on disk blocks.
 The blocking factor bfr for a file is the (average) number

of file records stored in a disk block.
 A file can have fixed-length records or variable-length

records.

Files of Records (contd)Files of Records (contd.)
 File records can be unspanned or spannedp p

 Unspanned: no record can span two blocks
 Spanned: a record can be stored in more than one block

 The physical disk blocks that are allocated to hold the The physical disk blocks that are allocated to hold the
records of a file can be contiguous, linked, or indexed.

 In a file of fixed-length records, all records have the same
f t U ll d bl ki i d ith hformat. Usually, unspanned blocking is used with such
files.

 Files of variable-length records require additional g q
information to be stored in each record, such as
separator characters and field types.
 Usually spanned blocking is used with such files. y p g

Operation on FilesOperation on Files
 Typical file operations include:

OPEN R di th fil f d i t i t th t ill f t OPEN: Readies the file for access, and associates a pointer that will refer to a
current file record at each point in time.

 FIND: Searches for the first file record that satisfies a certain condition, and
makes it the current file record.

 FINDNEXT: Searches for the next file record (from the current record) that FINDNEXT: Searches for the next file record (from the current record) that
satisfies a certain condition, and makes it the current file record.

 READ: Reads the current file record into a program variable.
 INSERT: Inserts a new record into the file & makes it the current file record.
 DELETE: Removes the current file record from the file usually by marking the DELETE: Removes the current file record from the file, usually by marking the

record to indicate that it is no longer valid.
 MODIFY: Changes the values of some fields of the current file record.
 CLOSE: Terminates access to the file.

REORGANIZE: Reorganizes the file records REORGANIZE: Reorganizes the file records.
 For example, the records marked deleted are physically removed from the file

or a new organization of the file records is created.
 READ_ORDERED: Read the file blocks in order of a specific field of the file.

Unordered FilesUnordered Files

 Also called a heap or a pile file. Also called a heap or a pile file.
 New records are inserted at the end of the file.
 A linear search through the file records is A linear search through the file records is

necessary to search for a record.
 This requires reading and searching half the fileThis requires reading and searching half the file

blocks on the average, and is hence quite
expensive.

 Record insertion is quite efficient.
 Reading the records in order of a particular field

requires sorting the file records.

Ordered FilesOrdered Files
 Also called a sequential file.
 File records are kept sorted by the values of an ordering field.
 Insertion is expensive: records must be inserted in the correct order.

 It is common to keep a separate unordered overflow (or
transaction) file for new records to improve insertion efficiency;
this is periodically merged with the main ordered file.

 A binary search can be used to search for a record on its ordering
field valuefield value.
 This requires reading and searching log2 of the file blocks on the

average, an improvement over linear search.
 Reading the records in order of the ordering field is quite efficient Reading the records in order of the ordering field is quite efficient.

Ordered Files (contd)Ordered Files (contd.)

Average Access TimesAverage Access Times

 The following table shows the average access The following table shows the average access
time to access a specific record for a given type
of file with b blocks

Hashed FilesHashed Files
 Hashing for disk files is called External Hashing
 The file blocks are divided into M equal-sized buckets, numbered

bucket0, bucket1, ..., bucketM-1.
 Typically, a bucket corresponds to one (or a fixed number of) disk

bl kblock.
 One of the file fields is designated to be the hash key of the file.
 The record with hash key value K is stored in bucket i, where i=h(K),

and h is the hashing functionand h is the hashing function.
 Search is very efficient on the hash key.
 Collisions occur when a new record hashes to a bucket that is already

fullfull.
 An overflow file is kept for storing such records.
 Overflow records that hash to each bucket can be linked together.

INTERNAL HASHING

Hashed Files (contd)Hashed Files (contd.)
 There are numerous methods for collision resolution, including the

following:following:
 Open addressing: Proceeding from the occupied position

specified by the hash address, the program checks the
subsequent positions in order until an unused (empty) position is
f dfound.

 Chaining: For this method, various overflow locations are kept,
usually by extending the array with a number of overflow
positions. In addition, a pointer field is added to each record p , p
location. A collision is resolved by placing the new record in an
unused overflow location and setting the pointer of the occupied
hash address location to the address of that overflow location.

 Multiple hashing: The program applies a second hash function if Multiple hashing: The program applies a second hash function if
the first results in a collision. If another collision results, the
program uses open addressing or applies a third hash function
and then uses open addressing if necessary.

External Hashing for Disk FilesExternal Hashing for Disk Files

External Hashing for Disk Files (cont)External Hashing for Disk Files (cont.)

 To reduce overflow records, a hash file is typically , yp y
kept 70-80% full.

 The hash function h should distribute the records
if l h b kuniformly among the buckets

 Otherwise, search time will be increased because
many overflow records will existmany overflow records will exist.

 Main disadvantages of static external hashing:
 Fixed number of buckets M is a problem if the p

number of records in the file grows or shrinks.
 Ordered access on the hash key is quite inefficient

(requires sorting the records)(requires sorting the records).

Hashed Files Overflow handlingHashed Files - Overflow handling

Dynamic And Extendible Hashed
FilesFiles

 Dynamic and Extendible Hashing Techniquesy g q
 Hashing techniques are adapted to allow the dynamic

growth and shrinking of the number of file records.
Th t h i i l d th f ll i d i h hi These techniques include the following: dynamic hashing,
extendible hashing, and linear hashing.

 Both dynamic and extendible hashing use the binary y g y
representation of the hash value h(K) in order to access
a directory.

In dynamic hashing the directory is a binary tree In dynamic hashing the directory is a binary tree.
 In extendible hashing the directory is an array of size 2d

where d is called the global depth.

Dynamic And Extendible Hashing
(contd)(contd.)
 The directories can be stored on disk, and they expand or

h i k d i llshrink dynamically.
 Directory entries point to the disk blocks that contain the

stored records.
A i ti i di k bl k th t i f ll th bl k t An insertion in a disk block that is full causes the block to
split into two blocks and the records are redistributed
among the two blocks.

The directory is updated appropriately The directory is updated appropriately.
 Dynamic and extendible hashing do not require an

overflow area.
Li h hi d i fl b t d Linear hashing does require an overflow area but does
not use a directory.
 Blocks are split in linear order as the file expands.

Extendible
HashingHashing

Linear HashingLinear Hashing

