
'

&

$

%

CP 465 Database II

LEX-YACC

Ilias S. Kotsireas

ikotsire@wlu.ca

I. S. Kotsireas, Database II 1

'

&

$

%

LEX, YACC
• developed at Bell Labs in 1970’s

• tools for compiler development

• more generally: look for patterns in the input stream

• GNU, FSF distribute flex (fast Lex) and bison (replacement to YACC

(Yet Another Compiler Compiler)

• Windows users: ANTLR http://www.antlr.org/

(ANother Tool for Language Recognition)

• ftp ftp.oreilly.com anonymous ftp server

directory: published/oreilly/nutshell/lexyacc

• Main idea: write programs that transform structured input

• huge range of applications: text search (grep), prog. lang. compiler

I. S. Kotsireas, Database II 2

'

&

$

%

• two main tasks:

(1) divide the input stream into meaningful units

(2) discover the relationships among these units

(1) these units are called tokens (i.e. SQL keywords)

lexical analysis

Lex takes a set of descriptions of tokens (lex specification) and

produces a C routine that can identify these tokens. lexer

The token descriptions are specified via regular expressions.

(2) after the input has been divided into tokens, a program needs to

establish relationships among the tokens (i.e. SQL expressions,

statements, variables)

syntactic analysis, parsing

I. S. Kotsireas, Database II 3

'

&

$

%

List of rules that define the relationships between tokens: grammar

Yacc takes a description of a grammar (in its BNF notation) and

produces a C routine that can parse the grammar. parser

A Yacc parser detects:

• when a sequence of input tokens matches a one of the rules of the

grammar

• when a sequence of input tokens does not match any of the rules of the

grammar syntax error

Yacc parsers are easy to modify and maintain

SUMMARY
divide input stream into units, establish relationships among them

Lex & Yacc

I. S. Kotsireas, Database II 4

'

&

$

%

A simple Lex program
simple.l

%%

.|\n ECHO;

%%

copies standard input to standard output (Unix cat command)

compilation instructions

lex simple.l (produces the lexer, C program lex.yy.c)

cc lex.yy.cc -o simple -ll (produces the executable simple)

./simple (CNTR D to terminate)

I. S. Kotsireas, Database II 5

'

&

$

%

Word Recognizer (verbs)
Build a program that recognizes different types of English words.

Start with recognizing a set of verbs.

Run the program:

This will be easy

This: is not a verb

will: is a verb

be: is a verb

easy: is not a verb

I. S. Kotsireas, Database II 6

'

&

$

%

Structure of a Lex program
Definition Section

Contains any C code or header files

The code is surrounded by the delimiters %{ and %}

The code is copied by Lex directly into the generated C file

The symbol %% marks the end of the definition section

Rules Section

Each rule is made up of two parts:

◃ pattern (regular expression)
◃ action (any valid C code)

Patterns and actions are separated by whitespace

The lexer executes the action, when it recognizes the corresp. pattern

The symbol %% marks the end of the rules section

I. S. Kotsireas, Database II 7

'

&

$

%

The 4 rules of the Word Recognizer program:

• [\t]+ /* ignore whitespace */ ;

Pattern: a tab followed by a whitespace, once or more times

Action: ; (do nothing)

• is | am | ...

• [a-zA-Z]+ { printf("%s: is not a verb\n", yytext); }

Pattern: any ABtical string with at least one character

Action: printf statement

• .|\n { ECHO; /* normal default anyway */ }

Pattern: any single character other than a newline, matched by

\n

Action: ECHO; prints the matched input on the output

I. S. Kotsireas, Database II 8

'

&

$

%

Rules concerning matching

a verb will be matched by the verb rule and by the ABtical string rule

which of the corresp. two actions is to be executed?

consider the input tokens: ”is”, ”island” 2 disambiguation rules

• Lex patterns only match a given input string once.

• Lex executes the action for the longest possible match for the current

input.

User Subroutines Section

contains any legal C code, which is copied into the generated C file, after

the end of the generated code

In the main, we call yylex(); i.e. the C routine produced by Lex, the lexer

Word Recognizer (verbs, adverbs, adjectives, ...)

I. S. Kotsireas, Database II 9

'

&

$

%

Symbol Tables
Listing more words (extending to as many as we want, and as many

parts of speech as we want) is not a practical way to write this

program.

It would be more practical to build a table of words as the lexer is

running, so that we can add new words without

modifying/recompiling the Lex program.

Allow for dynamic declaration of parts of speech, as the lexer is

running, reading the words from an input file with the syntax:

noun door window

verb eat drink

This table of words is a simple symbol table commonly used in

lex/yacc

I. S. Kotsireas, Database II 10

'

&

$

%

Adding a symbol table changes the Lex program substantially:

BEFORE: put separate patterns in the lexer for each word to match

AFTER: a single pattern matches any word and we consult the

symbol table to decide which part of speech has been found

The names of the parts of speech (noun, verb, ...) become ”reserved

words”, since they introduce a declaration line.

We still have a separate lex pattern/action for each reserved word.

We also need to add symbol table maintenance routines:

• add word() puts a new word into the symbol table

• lookup word() looks up a word already entered

The variable state keeps track of whether we are looking up words,

or declaring them (in which case, it remembers the kind of words)

I. S. Kotsireas, Database II 11

'

&

$

%

When we see a line starting with a name of a part of speech, we set

the state variable to declare that kind of word.

If we see a

\n

then we switch back to the normal lookup state.

In the definition section, we define an enum, to record the types of

individual words.

The caret symbol matches a pattern at the beginning of the line.

We reset state to lookup, at the beginning of each line.

In the user subroutines section, we create/search a linked list of words.

I. S. Kotsireas, Database II 12

'

&

$

%

Yacc Grammars
We need to recognize specific sequences of tokens and perform

appropriate actions.

A description of such a set of actions is called a grammar.

Example we need to recognize common sentences. Simple sentence

types include: (noun verb) (noun verb noun)

Notation to describe grammars (BNF-like) →
(a set of tokens can be replaced by a new symbol)

Example

subject → noun | pronoun object → noun

sentence → subject verb object

AIM: build a Yacc grammar, parser.

modify our lexical analyzer to return values useful to the parser.

I. S. Kotsireas, Database II 13

'

&

$

%

Lexer-Parser Communication
We need to use a lex lexer and a yacc parser together

The parser is the higher-level routine, it calls the lexer yylex()

whenever it needs a token from the input

The lexer scans the input recognizing tokens

As soon as it finds a token of interest to the parser, it returns the

token’s code as the value of yylex()

Not all tokens are of interest to the parser (e.g. comments, whitespace)

For these ignored tokens, the lexer doesn’t return anything, it rather

continues on to the next token

I. S. Kotsireas, Database II 14

'

&

$

%

The lexer and the parser have to use the same token codes

Yacc defines the token codes (usually as small integers) with the

define preprocessor

define NOUN 257

define VERB 259

define ADVERB 260

...

Token code 0 ; end of input

Yacc can optionally write a C header file containing all the token

definitions y.tab.h

This file is included in the lexer and the preprocessor symbols are used

in the lexer action code.

I. S. Kotsireas, Database II 15

'

&

$

%

Differences with the previous lexer

• we changed the part of speech names used in the lexer, agree with the

token names in the parser

• we added return statements to pass to the parser the token codes for

the words that it reognizes

• we added a rule to mark the end of a sentence (period followed by a

newline)

• we omitted the main routine, as it will now be provided within the

parser

I. S. Kotsireas, Database II 16

'

&

$

%

Yacc Parser
• similar structure to that of a lex lexer

• definition section: code block enclosed in %{ and %}

• definitions of all the tokens we expect to receive from the lexer

• we choose token names in a meaningful manner, uppercase

• the rules section is enclosed in %% and %%

• user subroutines section: main() calls repeatedly yyparse() until the

lexer’s input file finishes

• yyparse() is the C routine generated by Yacc, the parser

I. S. Kotsireas, Database II 17

'

&

$

%

The Rules Section

In the Rules Section, we describe the grammar as a set of production

rules

Rule structure: (lhs : rhs) lhs is a name, rhs is a list of symbols,

action code

By default, the first rule is the highest-level rule (it contains the

action executed when we parse the sentence)

User Subroutines Section

Two routines: main() and yyerror() (provided by the lexer)

Upon recognizing subject subject, yyerror() recognizes the special

rule error

I. S. Kotsireas, Database II 18

'

&

$

%

Lex/Yacc compilation instructions

lex example.l (generates the file lex.yy.c)

yacc -d example.y (generates the files y.tab.c y.tab.h)

cc -c lex.yy.c y.tab.c (compiles the C files)

cc -o example lex.yy.o y.tab.o -ll

(links the files and produces the executable example)

./example (CNTR D to terminate)

I. S. Kotsireas, Database II 19

