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Preface 
 
 
This document explains how to construct a compiler using lex and yacc. Lex and yacc are tools 
used to generate lexical analyzers and parsers. I assume you can program in C, and understand 
data structures such as linked-lists and trees. 
 
The introduction describes the basic building blocks of a compiler and explains the interaction 
between lex and yacc. The next two sections describe lex and yacc in more detail. With this 
background, we construct a sophisticated calculator. Conventional arithmetic operations and 
control statements, such as if-else and while, are implemented. With minor changes, we convert 
the calculator into a compiler for a stack-based machine. The remaining sections discuss issues 
that commonly arise in compiler writing. Source code for examples may be downloaded from the 
web site listed below. 
 
Permission to reproduce portions of this document is given provided the web site listed below is 
referenced, and no additional restrictions apply. Source code, when part of a software project, 
may be used freely without reference to the author. 
 
 
Tom Niemann 
Portland, Oregon 
web site:  epaperpress.com
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Introduction 
Until 1975, writing a compiler was a very time-consuming process. Then Lesk [1975] and 
Johnson [1975] published papers on lex and yacc. These utilities greatly simplify compiler writing. 
Implementation details for lex and yacc may be found in Aho [1986]. Lex and yacc are available 
from 
 

• Mortice Kern Systems (MKS), at www.mks.com, 
• GNU flex and bison, at www.gnu.org, 
• Ming, at www.mingw.org, 
• Cygwin, at www.cygwin.com 

 
The version from MKS is a high-quality commercial product that retails for about $300US. GNU 
software is free. Output from flex may be used in a commercial product, and, as of version 1.24, 
the same is true for bison. Cygwin is a 32-bit Windows ports of the GNU software. In fact Cygwin 
is a port of the Unix operating system to Windows, complete with compilers gcc and g++. To 
install download and run the setup executable. Under devel install bison, flex, gcc-g++, and 
make. Under editors install vim. Lately I've been using flex and bison under the cygwin 
environment. 
 

Lexical Analyzer

Syntax Analyzer

a = b + c * d

id1 = id2 + id3 * id4

=

+

*
id1

source code

tokens

syntax tree

id2

id3 id4

load id3
mul id4
add id2
store id1

Code Generator

generated code

 
  

Figure 1: Compilation Sequence 
  
Lex generates C code for a lexical analyzer, or scanner. It uses patterns that match strings in the 
input and converts the strings to tokens. Tokens are numerical representations of strings, and 
simplify processing. This is illustrated in Figure 1. 
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As lex finds identifiers in the input stream, it enters them in a symbol table. The symbol table may 
also contain other information such as data type (integer or real) and location of the variable in 
memory. All subsequent references to identifiers refer to the appropriate symbol table index. 
 
Yacc generates C code for a syntax analyzer, or parser. Yacc uses grammar rules that allow it to 
analyze tokens from lex and create a syntax tree. A syntax tree imposes a hierarchical structure 
on tokens. For example, operator precedence and associativity are apparent in the syntax tree. 
The next step, code generation, does a depth-first walk of the syntax tree to generate code. 
Some compilers produce machine code, while others, as shown above, output assembly. 
 

lex

yacc

cc

bas.y

bas.l lex.yy.c

y.tab.c

bas.exe

source

compiled output
(yylex)

(yyparse)

y.tab.h

 
  

Figure 2: Building a Compiler with Lex/Yacc 
 
Figure 2 illustrates the file naming conventions used by lex and yacc. We'll assume our goal is to 
write a BASIC compiler. First, we need to specify all pattern matching rules for lex (bas.l) and 
grammar rules for yacc (bas.y). Commands to create our compiler, bas.exe, are listed below: 
 

yacc –d bas.y                   # create y.tab.h, y.tab.c 
lex bas.l                       # create lex.yy.c 
cc lex.yy.c y.tab.c –obas.exe   # compile/link 

 
Yacc reads the grammar descriptions in bas.y and generates a parser, function yyparse, in file 
y.tab.c. Included in file bas.y are token declarations. The –d option causes yacc to generate 
definitions for tokens and place them in file y.tab.h. Lex reads the pattern descriptions in bas.l, 
includes file y.tab.h, and generates a lexical analyzer, function yylex, in file lex.yy.c. 
 
Finally, the lexer and parser are compiled and linked together to form the executable, bas.exe. 
From main, we call yyparse to run the compiler. Function yyparse automatically calls yylex to 
obtain each token. 
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Lex 
Theory 
The first phase in a compiler reads the input source and converts strings in the source to tokens. 
Using regular expressions, we can specify patterns to lex that allow it to scan and match strings 
in the input. Each pattern in lex has an associated action. Typically an action returns a token, 
representing the matched string, for subsequent use by the parser. To begin with, however, we 
will simply print the matched string rather than return a token value. We may scan for identifiers 
using the regular expression 
 

letter(letter|digit)* 
 

This pattern matches a string of characters that begins with a single letter, and is followed by zero 
or more letters or digits. This example nicely illustrates operations allowed in regular expressions: 
 

• repetition, expressed by the “*” operator 
• alternation, expressed by the “|” operator 
• concatenation 

 
Any regular expression expressions may be expressed as a finite state automaton (FSA). We can 
represent an FSA using states, and transitions between states. There is one start state, and one 
or more final or accepting states. 
 

0 1 2
letter

letter or digit

otherstart

 
 

Figure 3: Finite State Automaton 
 
In Figure 3, state 0 is the start state, and state 2 is the accepting state. As characters are read, 
we make a transition from one state to another. When the first letter is read, we transition to state 
1. We remain in state 1 as more letters or digits are read. When we read a character other than a 
letter or digit, we transition to state 2, the accepting state. Any FSA may be expressed as a 
computer program. For example, our 3-state machine is easily programmed: 
  

start:  goto state0 
 
state0: read c 
        if c = letter goto state1 
        goto state0 
 
state1: read c 
        if c = letter goto state1 
        if c = digit goto state1 
        goto state2 
 
state2: accept string 

 
This is the technique used by lex. Regular expressions are translated by lex to a computer 
program that mimics an FSA. Using the next input character, and current state, the next state is 
easily determined by indexing into a computer-generated state table. 
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Now we can easily understand some of lex’s limitations. For example, lex cannot be used to 
recognize nested structures such as parentheses. Nested structures are handled by incorporating 
a stack. Whenever we encounter a “(”, we push it on the stack. When a “)” is encountered, we 
match it with the top of the stack, and pop the stack. Lex, however, only has states and 
transitions between states. Since it has no stack, it is not well suited for parsing nested structures. 
Yacc augments an FSA with a stack, and can process constructs such as parentheses with ease. 
The important thing is to use the right tool for the job. Lex is good at pattern matching. Yacc is 
appropriate for more challenging tasks. 

Practice 
  
  

Metacharacter Matches 
. any character except newline 
\n newline 
* zero or more copies of the preceding expression 
+ one or more copies of the preceding expression 
? zero or one copy of the preceding expression 
^ beginning of line 
$ end of line 
a|b a or b
(ab)+ one or more copies of ab (grouping) 
"a+b" literal "a+b" (C escapes still work) 
[] character class 

 
Table 1: Pattern Matching Primitives 

 
  

Expression Matches 
abc abc 
abc* ab abc abcc abccc ... 
abc+ abc abcc abccc ... 
a(bc)+ abc abcbc abcbcbc ... 
a(bc)? a abc 
[abc] one of: a, b, c
[a-z] any letter, a-z 
[a\-z] one of: a, -, z
[-az] one of: -, a, z
[A-Za-z0-9]+ one or more alphanumeric characters  
[ \t\n]+ whitespace 
[^ab] anything except: a, b
[a^b] one of: a, ^, b
[a|b] one of: a, |, b
a|b one of: a, b

 
Table 2: Pattern Matching Examples 

 
Regular expressions in lex are composed of metacharacters (Table 1). Pattern matching 
examples are shown in Table 2. Within a character class, normal operators lose their meaning. 
Two operators allowed in a character class are the hyphen (“-”) and circumflex (“^”). When used 
between two characters, the hyphen represents a range of characters. The circumflex, when 
used as the first character, negates the expression. If two patterns match the same string, the 
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longest match wins. In case both matches are the same length, then the first pattern listed is 
used. 
 

... definitions ... 
%% 
... rules ... 
%% 
... subroutines ... 

 
Input to Lex is divided into three sections, with %% dividing the sections. This is best illustrated 
by example. The first example is the shortest possible lex file: 
 
    %% 
 
Input is copied to output, one character at a time. The first %% is always required, as there must 
always be a rules section. However, if we don’t specify any rules, then the default action is to 
match everything and copy it to output. Defaults for input and output are stdin and stdout, 
respectively. Here is the same example, with defaults explicitly coded: 
 
    %% 
        /* match everything except newline */ 
    .   ECHO; 
        /* match newline */ 
    \n  ECHO; 
 
    %% 
 
    int yywrap(void) { 
        return 1; 
    } 
 
    int main(void) { 
        yylex(); 
        return 0; 
    } 
 
Two patterns have been specified in the rules section. Each pattern must begin in column one. 
This is followed by whitespace (space, tab or newline), and an optional action associated with the 
pattern. The action may be a single C statement, or multiple C statements enclosed in braces. 
Anything not starting in column one is copied verbatim to the generated C file. We may take 
advantage of this behavior to specify comments in our lex file. In this example there are two 
patterns,  “.” and “\n”, with an ECHO action associated for each pattern. Several macros and 
variables are predefined by lex. ECHO is a macro that writes code matched by the pattern. This is 
the default action for any unmatched strings. Typically, ECHO is defined as: 
 
    #define ECHO fwrite(yytext, yyleng, 1, yyout) 
 
Variable yytext is a pointer to the matched string (NULL-terminated), and  yyleng is the length of 
the matched string. Variable yyout is the output file, and defaults to stdout. Function yywrap is 
called by lex when input is exhausted. Return 1 if you are done, or 0 if more processing is 
required. Every C program requires a main function. In this case, we simply call yylex, the main 
entry-point for lex. Some implementations of lex include copies of main and yywrap in a library, 
eliminating the need to code them explicitly. This is why our first example, the shortest lex 
program, functioned properly. 
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Name Function 
int yylex(void) call to invoke lexer, returns token 
char *yytext pointer to matched string 
yyleng length of matched string 
yylval value associated with token 
int yywrap(void) wrapup, return 1 if done, 0 if not done 
FILE *yyout output file 
FILE *yyin input file 
INITIAL initial start condition 
BEGIN condition switch start condition 
ECHO write matched string 

 
Table 3: Lex Predefined Variables 

 
Here’s a program that does nothing at all. All input is matched, but no action is associated with 
any pattern, so there will be no output. 
 
    %% 
    . 
    \n 
 
The following example prepends line numbers to each line in a file. Some implementations of lex 
predefine and calculate yylineno. The input file for lex is yyin, and defaults to stdin. 
 
    %{ 
        int yylineno; 
    %} 
    %% 
    ^(.*)\n    printf("%4d\t%s", ++yylineno, yytext); 
    %% 
    int main(int argc, char *argv[]) { 
        yyin = fopen(argv[1], "r"); 
        yylex(); 
        fclose(yyin); 
    } 
 
The definitions section is composed of substitutions, code, and start states. Code in the 
definitions section is simply copied as-is to the top of the generated C file, and must be bracketed 
with “%{“ and “%}” markers. Substitutions simplify pattern-matching rules. For example, we may 
define digits and letters: 
 

digit  [0-9] 
letter [A-Za-z] 
%{ 
    int count; 
%} 
%% 
    /* match identifier */ 
{letter}({letter}|{digit})*      count++; 
%% 
int main(void) { 
    yylex(); 
    printf("number of identifiers = %d\n", count); 
    return 0; 
} 
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Whitespace must separate the defining term and the associated expression. References to 
substitutions in the rules section are surrounded by braces ({letter}) to distinguish them from 
literals. When we have a match in the rules section, the associated C code is executed. Here is a 
scanner that counts the number of characters, words, and lines in a file (similar to Unix wc): 
 

%{ 
    int nchar, nword, nline; 
%} 
%% 
\n         { nline++; nchar++; } 
[^ \t\n]+  { nword++, nchar += yyleng; } 
.          { nchar++; } 
%% 
int main(void) { 
    yylex(); 
    printf("%d\t%d\t%d\n", nchar, nword, nline); 
    return 0; 
} 
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Yacc 
Theory 
Grammars for yacc are described using a variant of Backus Naur Form (BNF). This technique 
was pioneered by John Backus and Peter Naur, and used to describe ALGOL60. A BNF 
grammar can be used to express context-free languages. Most constructs in modern 
programming languages can be represented in BNF. For example, the grammar for an 
expression that multiplies and adds numbers is 
 

E -> E + E 
E -> E * E 
E -> id 

 
Three productions have been specified. Terms that appear on the left-hand side (lhs) of a 
production, such as E (expression) are nonterminals. Terms such as id (identifier) are terminals 
(tokens returned by lex) and only appear on the right-hand side (rhs) of a production. This 
grammar specifies that an expression may be the sum of two expressions, the product of two 
expressions, or an identifier. We can use this grammar to generate expressions: 
 

E -> E * E   (r2) 
  -> E * z   (r3)  
  -> E + E * z  (r1) 
  -> E + y * z  (r3) 
  -> x + y * z  (r3) 

 
At each step we expanded a term, replacing the lhs of a production with the corresponding rhs. 
The numbers on the right indicate which rule applied. To parse an expression, we actually need 
to do the reverse operation. Instead of starting with a single nonterminal (start symbol) and 
generating an expression from a grammar, we need to reduce an expression to a single 
nonterminal. This is known as bottom-up or shift-reduce parsing, and uses a stack for storing 
terms. Here is the same derivation, but in reverse order: 
 

 1  . x + y * z  shift 
 2  x . + y * z  reduce(r3) 
 3  E . + y * z  shift 
 4  E + . y * z  shift 
 5  E + y . * z  reduce(r3) 
 6  E + E . * z  shift 
 7  E + E * . z  shift 
 8  E + E * z .  reduce(r3) 
 9  E + E * E .  reduce(r2)   emit multiply 
10  E + E .   reduce(r1)   emit add 
11  E .    accept 

 
Terms to the left of the dot are on the stack, while remaining input is to the right of the dot. We 
start by shifting tokens onto the stack. When the top of the stack matches the rhs of a production, 
we replace the matched tokens on the stack with the lhs of the production. Conceptually, the 
matched tokens of the rhs are popped off the stack, and the lhs of the production is pushed on 
the stack. The matched tokens are known as a handle, and we are reducing the handle to the lhs 
of the production. This process continues until we have shifted all input to the stack, and only the 
starting nonterminal remains on the stack. In step 1 we shift the x to the stack. Step 2 applies rule 
r3 to the stack, changing x to E. We continue shifting and reducing, until a single nonterminal, the 
start symbol, remains in the stack. In step 9, when we reduce rule r2, we emit the multiply 
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instruction. Similarly, the add instruction is emitted in step 10. Thus, multiply has a higher 
precedence than addition. 
 
Consider, however, the shift at step 6. Instead of shifting, we could have reduced, applying rule 
r1. This would result in addition having a higher precedence than multiplication. This is known as 
a shift-reduce conflict. Our grammar is ambiguous, as there is more than one possible derivation 
that will yield the expression. In this case, operator precedence is affected. As another example, 
associativity in the rule 
 

E -> E + E 
 
is ambiguous, for we may recurse on the left or the right. To remedy the situation, we could 
rewrite the grammar, or supply yacc with directives that indicate which operator has precedence. 
The latter method is simpler, and will be demonstrated in the practice section. 
 
The following grammar has a reduce-reduce conflict. With an id on the stack, we may reduce to 
T, or reduce to E. 
 

E -> T 
E -> id 
T -> id 

 
Yacc takes a default action when there is a conflict. For shift-reduce conflicts, yacc will shift. For 
reduce-reduce conflicts, it will use the first rule in the listing. It also issues a warning message 
whenever a conflict exists. The warnings may be suppressed by making the grammar 
unambiguous. Several methods for removing ambiguity will be presented in subsequent sections. 

Practice, Part I 
 

... definitions ... 
%% 
... rules ... 
%% 
... subroutines ... 

 
Input to yacc is divided into three sections. The definitions section consists of token declarations, 
and C code bracketed by “%{“ and “%}”. The BNF grammar is placed in the rules section, and 
user subroutines are added in the subroutines section.  
 
This is best illustrated by constructing a small calculator that can add and subtract numbers. We’ll 
begin by examining the linkage between lex and yacc. Here is the definitions section for the yacc 
input file: 
 

%token INTEGER 
 
This definition declares an INTEGER token. When we run yacc, it generates a parser in file 
y.tab.c, and also creates an include file, y.tab.h: 
 

#ifndef YYSTYPE 
#define YYSTYPE int 
#endif 
#define INTEGER 258 
extern YYSTYPE yylval; 
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Lex includes this file and utilizes the definitions for token values. To obtain tokens, yacc calls 
yylex. Function yylex has a return type of int, and returns the token. Values associated with the 
token are returned by lex in variable yylval. For example, 
 

[0-9]+      { 
                yylval = atoi(yytext); 
                return INTEGER; 
            } 

 
would store the value of the integer in yylval, and return token INTEGER to yacc. The type of 
yylval is determined by YYSTYPE. Since the default type is integer, this works well in this case. 
Token values 0-255 are reserved for character values. For example, if you had a rule such as 
 

[-+]        return *yytext;   /* return operator */ 
 
the character value for minus or plus is returned. Note that we placed the minus sign first so that 
it wouldn’t be mistaken for a range designator. Generated token values typically start around 258, 
as lex reserves several values for end-of-file and error processing. Here is the complete lex input 
specification for our calculator: 
 

%{ 
#include <stdlib.h> 
void yyerror(char *); 
#include "y.tab.h" 
%} 
 
%% 
 
[0-9]+      { 
                yylval = atoi(yytext); 
                return INTEGER; 
            } 
 
[-+\n]      return *yytext; 
 
[ \t]     ; /* skip whitespace */ 
 
.           yyerror("invalid character"); 
 
%% 
 
int yywrap(void) { 
    return 1; 
} 

 
Internally, yacc maintains two stacks in memory; a parse stack and a value stack. The parse 
stack contains terminals and nonterminals, and represents the current parsing state. The value 
stack is an array of YYSTYPE elements, and associates a value with each element in the parse 
stack. For example, when lex returns an INTEGER token, yacc shifts this token to the parse 
stack. At the same time, the corresponding yylval is shifted to the value stack. The parse and 
value stacks are always synchronized, so finding a value related to a token on the stack is easily 
accomplished. Here is the yacc input specification for our calculator: 
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%{ 
    int yylex(void); 
    void yyerror(char *); 
%} 
 
%token INTEGER 
 
%% 
 
program: 
        program expr '\n'         { printf("%d\n", $2); } 
        |  
        ; 
 
expr: 
        INTEGER                   { $$ = $1; } 
        | expr '+' expr           { $$ = $1 + $3; } 
        | expr '-' expr           { $$ = $1 - $3; } 
        ; 
 
%% 
 
void yyerror(char *s) { 
    fprintf(stderr, "%s\n", s); 
  return 0; 
} 
 
int main(void) { 
    yyparse(); 
    return 0; 
} 

 
The rules section resembles the BNF grammar discussed earlier. The left-hand side of a 
production, or nonterminal, is entered left-justified, followed by a colon. This is followed by the 
right-hand side of the production. Actions associated with a rule are entered in braces. 
 
By utilizing left-recursion, we have specified that a program consists of zero or more expressions. 
Each expression terminates with a newline. When a newline is detected, we print the value of the 
expression. When we apply the rule 
 

expr: expr '+' expr          { $$ = $1 + $3; } 
 
we replace the right-hand side of the production in the parse stack with the left-hand side of the 
same production. In this case, we pop “expr '+' expr” and push “expr”. We have reduced the 
stack by popping three terms off the stack, and pushing back one term. We may reference 
positions in the value stack in our C code by specifying “$1” for the first term on the right-hand 
side of the production, “$2” for the second, and so on. “$$” designates the top of the stack after 
reduction has taken place. The above action adds the value associated with two expressions, 
pops three terms off the value stack, and pushes back a single sum. Thus, the parse and value 
stacks remain synchronized. 
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Numeric values are initially entered on the stack when we reduce from INTEGER to expr. After 
INTEGER is shifted to the stack, we apply the rule 
 

expr: INTEGER   { $$ = $1; } 
 
The INTEGER token is popped off the parse stack, followed by a push of expr. For the value 
stack, we pop the integer value off the stack, and then push it back on again. In other words, we 
do nothing. In fact, this is the default action, and need not be specified. Finally, when a newline is 
encountered, the value associated with expr is printed. 
 
In the event of syntax errors, yacc calls the user-supplied function yyerror. If you need to modify 
the interface to yyerror, you can alter the canned file that yacc includes to fit your needs. The last 
function in our yacc specification is main … in case you were wondering where it was. This 
example still has an ambiguous grammar. Yacc will issue shift-reduce warnings, but will still 
process the grammar using shift as the default operation. 

Practice, Part II 
In this section we will extend the calculator from the previous section to incorporate some new 
functionality. New features include arithmetic operators multiply, and divide. Parentheses may be 
used to over-ride operator precedence, and single-character variables may be specified in 
assignment statements. The following illustrates sample input and calculator output: 

 
user:  3 * (4 + 5) 
calc:  27 
user:  x = 3 * (4 + 5) 
user:  y = 5 
user:  x  
calc:  27 
user:  y  
calc:  5   
user:  x + 2*y 
calc:  37 

 
The lexical analyzer returns VARIABLE and INTEGER tokens. For variables, yylval specifies an 
index to sym, our symbol table. For this program, sym merely holds the value of the associated 
variable. When INTEGER tokens are returned, yylval contains the number scanned. Here is the 
input specification for lex: 
  

%{ 
    #include <stdlib.h> 
    void yyerror(char *); 
    #include "y.tab.h" 
%} 
 
%% 
 
    /* variables */ 
[a-z]       { 
                yylval = *yytext - 'a'; 
                return VARIABLE; 
            } 
 
    /* integers */ 
[0-9]+      { 
                yylval = atoi(yytext); 
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                return INTEGER; 
            } 
 
    /* operators */ 
[-+()=/*\n] { return *yytext; } 
 
    /* skip whitespace */ 
[ \t]      ; 
 
    /* anything else is an error */ 
.               yyerror("invalid character"); 
 
%% 
 
int yywrap(void) { 
    return 1; 
} 

 
The input specification for yacc follows. The tokens for INTEGER and VARIABLE are utilized by 
yacc to create #defines in y.tab.h for use in lex. This is followed by definitions for the arithmetic 
operators. We may specify %left, for left-associative, or %right, for right associative. The last 
definition listed has the highest precedence. Thus, multiplication and division have higher 
precedence than addition and subtraction. All four operators are left-associative. Using this 
simple technique, we are able to disambiguate our grammar. 
  

%token INTEGER VARIABLE 
%left '+' '-' 
%left '*' '/' 
 
%{ 
    void yyerror(char *); 
    int yylex(void); 
    int sym[26]; 
%} 
 
%% 
 
program: 
        program statement '\n' 
        |  
        ; 
 
statement: 
        expr                      { printf("%d\n", $1); } 
        | VARIABLE '=' expr       { sym[$1] = $3; } 
        ; 
 
expr: 
        INTEGER 
        | VARIABLE                { $$ = sym[$1]; } 
        | expr '+' expr           { $$ = $1 + $3; } 
        | expr '-' expr           { $$ = $1 - $3; } 
        | expr '*' expr           { $$ = $1 * $3; } 
        | expr '/' expr           { $$ = $1 / $3; } 
        | '(' expr ')'            { $$ = $2; } 
        ; 
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%% 
 
void yyerror(char *s) { 
    fprintf(stderr, "%s\n", s); 
    return 0; 
} 
 
int main(void) { 
    yyparse(); 
    return 0; 
} 
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Calculator 
Description 
This version of the calculator is substantially more complex than previous versions. Major 
changes include control constructs such as if-else and while. In addition, a syntax tree is 
constructed during parsing. After parsing, we walk the syntax tree to produce output. Two 
versions of the tree walk routine are supplied: 
 

• an interpreter that executes statements during the tree walk, and 
• a compiler that generates code for a hypothetical stack-based machine. 

 
To make things more concrete, here is a sample program, 
 

x = 0; 
while (x < 3) { 
    print x; 
    x = x + 1; 
} 

 
with output for the interpretive version, 
 

0 
1 
2 

 
and output for the compiler version, and 
 

    push  0 
    pop   x 
L000: 
    push  x 
    push  3 
    compLT 
    jz   L001 
    push  x 
    print 
    push    x 
    push    1 
    add 
    pop     x 
    jmp     L000 
L001: 
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a version that generates a syntax tree. 
 

Graph 0: 
 
    [=] 
     | 
   |----| 
   |    | 
 id(X) c(0) 
 
Graph 1: 
 
               while 
                 | 
     |----------------| 
     |                | 
    [<]              [;] 
     |                | 
   |----|     |----------| 
   |    |     |          | 
 id(X) c(3) print       [=] 
              |          | 
              |     |-------| 
              |     |       | 
            id(X) id(X)    [+] 
                            | 
                          |----| 
                          |    | 
                        id(X) c(1) 

 
The include file contains declarations for the syntax tree and symbol table. The symbol table, 
sym, allows for single-character variable names. A node in the syntax tree may hold a constant 
(conNodeType), an identifier (idNodeType), or an internal node with an operator 
(oprNodeType). A union encapsulates all three variants,  and nodeType.type is used to 
determine which structure we have. 
 
The lex input file contains patterns for VARIABLE and INTEGER tokens. In addition, tokens are 
defined for 2-character operators such as EQ and NE. Single-character operators are simply 
returned as themselves. 
 
The yacc input file defines YYSTYPE, the type of yylval, as 
 

%union { 
    int iValue;     /* integer value */ 
    char sIndex;     /* symbol table index */ 
    nodeType *nPtr;    /* node pointer */ 
}; 

 
This causes the following to be generated in y.tab.h: 
 

typedef union { 
    int iValue;     /* integer value */ 
    char sIndex;     /* symbol table index */ 
    nodeType *nPtr;    /* node pointer */ 
} YYSTYPE; 
extern YYSTYPE yylval; 
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Constants, variables, and nodes can be represented by yylval in the parser’s value stack. Notice 
the type definitions 
 

%token <iValue> INTEGER 
%type <nPtr> expr 

 
This binds expr to nPtr, and INTEGER to iValue in the YYSTYPE union. This is required so that 
yacc can generate the correct code. For example, the rule 
 

expr: INTEGER { $$ = con($1); } 
 
should generate the following code. Note that yyvsp[0] addresses the top of the value stack, or 
the value associated with INTEGER. 
 

yylval.nPtr = con(yyvsp[0].iValue); 
  
The unary minus operator is given higher priority than binary operators as follows: 
 

%left GE LE EQ NE '>' '<' 
%left '+' '-' 
%left '*' '/' 
%nonassoc UMINUS 

 
The %nonassoc indicates no associativity is implied. It is frequently used in conjunction with 
%prec to specify precedence of a rule. Thus, we have 
 

expr: '-' expr %prec UMINUS { $$ = node(UMINUS, 1, $2); } 
 
indicating that the precedence of the rule is the same as the precedence of token UMINUS. And, 
as defined above, UMINUS has higher precedence than the other operators. A similar technique 
is used to remove ambiguity associated with the if-else statement (see If-Else Ambiguity). 
 
The syntax tree is constructed bottom-up, allocating the leaf nodes when variables and integers 
are reduced. When operators are encountered, a node is allocated and pointers to previously 
allocated nodes are entered as operands. 
 
After the tree is built, function ex is called to do a depth-first walk of the syntax tree. A depth-first 
walk visits nodes in the order that they were originally allocated. This results in operators being 
applied in the order that they were encountered during parsing. Three versions of ex are 
included: an interpretive version, a compiler version, and a version that generates a syntax tree. 
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Include File 
 
typedef enum { typeCon, typeId, typeOpr } nodeEnum; 
 
/* constants */ 
typedef struct { 
    int value;                  /* value of constant */ 
} conNodeType; 
 
/* identifiers */ 
typedef struct { 
    int i;                      /* subscript to sym array */ 
} idNodeType; 
 
/* operators */ 
typedef struct { 
    int oper;                   /* operator */ 
    int nops;                   /* number of operands */ 
    struct nodeTypeTag *op[1];  /* operands (expandable) */ 
} oprNodeType; 
 
typedef struct nodeTypeTag { 
    nodeEnum type;              /* type of node */ 
 
    /* union must be last entry in nodeType */ 
    /* because operNodeType may dynamically increase */ 
    union { 
      conNodeType con;        /* constants */ 
      idNodeType id;          /* identifiers */ 
      oprNodeType opr;        /* operators */ 
    }; 
} nodeType; 
 
extern int sym[26]; 
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Lex Input 
 
%{ 
#include <stdlib.h> 
#include "calc3.h" 
#include "y.tab.h" 
void yyerror(char *); 
%} 
 
%% 
 
[a-z]       {  
                yylval.sIndex = *yytext - 'a'; 
                return VARIABLE; 
            } 
 
[0-9]+      { 
                yylval.iValue = atoi(yytext); 
                return INTEGER; 
            } 
 
[-()<>=+*/;{}.] { 
                return *yytext; 
             } 
 
">="            return GE; 
"<="            return LE; 
"=="            return EQ; 
"!="            return NE; 
"while"         return WHILE; 
"if"            return IF; 
"else"          return ELSE; 
"print"         return PRINT; 
 
[ \t\n]+        ;       /* ignore whitespace */ 
 
.               yyerror("Unknown character"); 
%% 
int yywrap(void) { 
    return 1; 
} 
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Yacc Input 
 
%{ 
#include <stdio.h> 
#include <stdlib.h> 
#include <stdarg.h> 
#include "calc3.h" 
 
/* prototypes */ 
nodeType *opr(int oper, int nops, ...); 
nodeType *id(int i); 
nodeType *con(int value); 
void freeNode(nodeType *p); 
int ex(nodeType *p); 
int yylex(void); 
 
void yyerror(char *s); 
int sym[26];                    /* symbol table */ 
%} 
 
%union { 
    int iValue;                 /* integer value */ 
    char sIndex;                /* symbol table index */ 
    nodeType *nPtr;             /* node pointer */ 
}; 
 
%token <iValue> INTEGER 
%token <sIndex> VARIABLE 
%token WHILE IF PRINT 
%nonassoc IFX 
%nonassoc ELSE 
 
%left GE LE EQ NE '>' '<' 
%left '+' '-' 
%left '*' '/' 
%nonassoc UMINUS 
 
%type <nPtr> stmt expr stmt_list 
 
  
%% 
 
program: 
  function                { exit(0); } 
  ; 
 
function: 
    function stmt         { ex($2); freeNode($2); } 
  | /* NULL */ 
  ; 
 
stmt: 
    ';'                     { $$ = opr(';', 2, NULL, NULL); } 
  | expr ';'                { $$ = $1; } 
  | PRINT expr ';'          { $$ = opr(PRINT, 1, $2); } 
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  | VARIABLE '=' expr ';'   { $$ = opr('=', 2, id($1), $3); } 
  | WHILE '(' expr ')' stmt { $$ = opr(WHILE, 2, $3, $5); } 
  | IF '(' expr ')' stmt %prec IFX { $$ = opr(IF, 2, $3, $5); } 
  | IF '(' expr ')' stmt ELSE stmt 
                            { $$ = opr(IF, 3, $3, $5, $7); } 
  | '{' stmt_list '}'       { $$ = $2; } 
    ; 
 
stmt_list: 
    stmt                  { $$ = $1; } 
  | stmt_list stmt        { $$ = opr(';', 2, $1, $2); } 
  ; 
 
expr: 
    INTEGER               { $$ = con($1); } 
  | VARIABLE              { $$ = id($1); } 
  | '-' expr %prec UMINUS { $$ = opr(UMINUS, 1, $2); } 
  | expr '+' expr         { $$ = opr('+', 2, $1, $3); } 
  | expr '-' expr         { $$ = opr('-', 2, $1, $3); } 
  | expr '*' expr         { $$ = opr('*', 2, $1, $3); } 
  | expr '/' expr         { $$ = opr('/', 2, $1, $3); } 
  | expr '<' expr         { $$ = opr('<', 2, $1, $3); } 
  | expr '>' expr         { $$ = opr('>', 2, $1, $3); } 
  | expr GE expr          { $$ = opr(GE, 2, $1, $3); } 
  | expr LE expr          { $$ = opr(LE, 2, $1, $3); } 
  | expr NE expr          { $$ = opr(NE, 2, $1, $3); } 
  | expr EQ expr          { $$ = opr(EQ, 2, $1, $3); } 
  | '(' expr ')'          { $$ = $2; } 
  ; 
 
  
%% 
 
#define SIZEOF_NODETYPE ((char *)&p->con - (char *)p) 
 
nodeType *con(int value) { 
    nodeType *p; 
    size_t nodeSize; 
 
    /* allocate node */ 
    nodeSize = SIZEOF_NODETYPE + sizeof(conNodeType); 
    if ((p = malloc(nodeSize)) == NULL) 
        yyerror("out of memory"); 
 
    /* copy information */ 
    p->type = typeCon; 
    p->con.value = value; 
 
    return p; 
} 
 
nodeType *id(int i) { 
    nodeType *p; 
    size_t nodeSize; 
 
    /* allocate node */ 
    nodeSize = SIZEOF_NODETYPE + sizeof(idNodeType); 
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    if ((p = malloc(nodeSize)) == NULL) 
        yyerror("out of memory"); 
 
    /* copy information */ 
    p->type = typeId; 
    p->id.i = i; 
 
    return p; 
} 
 
nodeType *opr(int oper, int nops, ...) { 
    va_list ap; 
    nodeType *p; 
    size_t nodeSize; 
    int i; 
 
    /* allocate node */ 
    nodeSize = SIZEOF_NODETYPE + sizeof(oprNodeType) + 
        (nops - 1) * sizeof(nodeType*); 
    if ((p = malloc(nodeSize)) == NULL) 
        yyerror("out of memory"); 
 
    /* copy information */ 
    p->type = typeOpr; 
    p->opr.oper = oper; 
    p->opr.nops = nops; 
    va_start(ap, nops); 
    for (i = 0; i < nops; i++) 
        p->opr.op[i] = va_arg(ap, nodeType*); 
    va_end(ap); 
    return p; 
} 
 
void freeNode(nodeType *p) { 
    int i; 
 
    if (!p) return; 
    if (p->type == typeOpr) { 
        for (i = 0; i < p->opr.nops; i++) 
            freeNode(p->opr.op[i]); 
    } 
    free (p); 
} 
 
void yyerror(char *s) { 
    fprintf(stdout, "%s\n", s); 
} 
 
int main(void) { 
    yyparse(); 
    return 0; 
} 
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Interpreter 
 
#include <stdio.h> 
#include "calc3.h" 
#include "y.tab.h" 
 
int ex(nodeType *p) { 
    if (!p) return 0; 
    switch(p->type) { 
    case typeCon:       return p->con.value; 
    case typeId:        return sym[p->id.i]; 
    case typeOpr: 
    switch(p->opr.oper) { 
      case WHILE:   while(ex(p->opr.op[0])) 
                        ex(p->opr.op[1]); return 0; 
      case IF:      if (ex(p->opr.op[0])) 
                        ex(p->opr.op[1]); 
                    else if (p->opr.nops > 2) 
                        ex(p->opr.op[2]); 
                    return 0; 
      case PRINT:   printf("%d\n", ex(p->opr.op[0]));               
                  return 0; 
      case ';':     ex(p->opr.op[0]); 
                    return ex(p->opr.op[1]); 
      case '=':     return sym[p->opr.op[0]->id.i] = 
                        ex(p->opr.op[1]); 
      case UMINUS: return -ex(p->opr.op[0]); 
      case '+': return ex(p->opr.op[0]) + ex(p->opr.op[1]); 
      case '-': return ex(p->opr.op[0]) - ex(p->opr.op[1]); 
      case '*': return ex(p->opr.op[0]) * ex(p->opr.op[1]); 
      case '/': return ex(p->opr.op[0]) / ex(p->opr.op[1]); 
      case '<': return ex(p->opr.op[0]) < ex(p->opr.op[1]); 
      case '>': return ex(p->opr.op[0]) > ex(p->opr.op[1]); 
      case GE:  return ex(p->opr.op[0]) >= ex(p->opr.op[1]); 
      case LE:  return ex(p->opr.op[0]) <= ex(p->opr.op[1]); 
      case NE:  return ex(p->opr.op[0]) != ex(p->opr.op[1]); 
      case EQ:  return ex(p->opr.op[0]) == ex(p->opr.op[1]); 
    } 
  } 
  return 0; 
} 
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Compiler 
 
#include <stdio.h> 
#include "calc3.h" 
#include "y.tab.h" 
 
static int lbl; 
 
int ex(nodeType *p) { 
    int lbl1, lbl2; 
 
    if (!p) return 0; 
    switch(p->type) { 
    case typeCon:        
        printf("\tpush\t%d\n", p->con.value);  
        break; 
    case typeId:         
        printf("\tpush\t%c\n", p->id.i + 'a');  
        break; 
    case typeOpr: 
        switch(p->opr.oper) { 
        case WHILE: 
            printf("L%03d:\n", lbl1 = lbl++); 
            ex(p->opr.op[0]); 
            printf("\tjz\tL%03d\n", lbl2 = lbl++); 
            ex(p->opr.op[1]); 
            printf("\tjmp\tL%03d\n", lbl1); 
            printf("L%03d:\n", lbl2); 
            break; 
        case IF: 
            ex(p->opr.op[0]); 
            if (p->opr.nops > 2) { 
                /* if else */ 
                printf("\tjz\tL%03d\n", lbl1 = lbl++); 
                ex(p->opr.op[1]); 
                printf("\tjmp\tL%03d\n", lbl2 = lbl++); 
                printf("L%03d:\n", lbl1); 
                ex(p->opr.op[2]); 
                printf("L%03d:\n", lbl2); 
            } else { 
                /* if */ 
                printf("\tjz\tL%03d\n", lbl1 = lbl++); 
                ex(p->opr.op[1]); 
                printf("L%03d:\n", lbl1); 
            } 
            break; 
         
  
        case PRINT:      
            ex(p->opr.op[0]); 
            printf("\tprint\n"); 
            break; 
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        case '=':        
            ex(p->opr.op[1]); 
            printf("\tpop\t%c\n", p->opr.op[0]->id.i + 'a'); 
            break; 
        case UMINUS:     
            ex(p->opr.op[0]); 
            printf("\tneg\n"); 
            break; 
        default: 
            ex(p->opr.op[0]); 
            ex(p->opr.op[1]); 
            switch(p->opr.oper) { 
            case '+':   printf("\tadd\n"); break; 
            case '-':   printf("\tsub\n"); break;  
            case '*':   printf("\tmul\n"); break; 
            case '/':   printf("\tdiv\n"); break; 
            case '<':   printf("\tcompLT\n"); break; 
            case '>':   printf("\tcompGT\n"); break; 
            case GE:    printf("\tcompGE\n"); break; 
            case LE:    printf("\tcompLE\n"); break; 
            case NE:    printf("\tcompNE\n"); break; 
            case EQ:    printf("\tcompEQ\n"); break; 
            } 
        } 
    } 
    return 0; 
} 
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Graph 
/* source code courtesy of Frank Thomas Braun */ 
 
#include <stdio.h> 
#include <string.h> 
 
#include "calc3.h" 
#include "y.tab.h" 
 
int del = 1; /* distance of graph columns */ 
int eps = 3; /* distance of graph lines */ 
 
/* interface for drawing (can be replaced by "real" graphic using GD or 
other) */ 
void graphInit (void); 
void graphFinish(); 
void graphBox (char *s, int *w, int *h); 
void graphDrawBox (char *s, int c, int l); 
void graphDrawArrow (int c1, int l1, int c2, int l2); 
 
/* recursive drawing of the syntax tree */ 
void exNode (nodeType *p, int c, int l, int *ce, int *cm); 
 
/***********************************************************/ 
 
/* main entry point of the manipulation of the syntax tree */ 
int ex (nodeType *p) { 
    int rte, rtm; 
 
    graphInit (); 
    exNode (p, 0, 0, &rte, &rtm); 
    graphFinish(); 
    return 0; 
} 
 
/*c----cm---ce---->                       drawing of leaf-nodes 
 l leaf-info 
 */ 
 
/*c---------------cm--------------ce----> drawing of non-leaf-nodes 
 l            node-info 
 *                | 
 *    -------------     ...---- 
 *    |       |               | 
 *    v       v               v 
 * child1  child2  ...     child-n 
 *        che     che             che 
 *cs      cs      cs              cs 
 * 
 */ 
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void exNode 
    (   nodeType *p, 
        int c, int l,        /* start column and line of node */ 
        int *ce, int *cm     /* resulting end column and mid of node */ 
    ) 
{ 
    int w, h;           /* node width and height */ 
    char *s;            /* node text */ 
    int cbar;       /* "real" start column of node (centred above 
subnodes) */ 
    int k;              /* child number */ 
    int che, chm;       /* end column and mid of children */ 
    int cs;             /* start column of children */ 
    char word[20];      /* extended node text */ 
 
    if (!p) return; 
 
    strcpy (word, "???"); /* should never appear */ 
    s = word; 
    switch(p->type) { 
        case typeCon: sprintf (word, "c(%d)", p->con.value); break; 
        case typeId:  sprintf (word, "id(%c)", p->id.i + 'A'); break; 
        case typeOpr: 
            switch(p->opr.oper){ 
                case WHILE:     s = "while"; break; 
                case IF:        s = "if";    break; 
                case PRINT:     s = "print"; break; 
                case ';':       s = "[;]";     break; 
                case '=':       s = "[=]";     break; 
                case UMINUS:    s = "[_]";     break; 
                case '+':       s = "[+]";     break; 
                case '-':       s = "[-]";     break; 
                case '*':       s = "[*]";     break; 
                case '/':       s = "[/]";     break; 
                case '<':       s = "[<]";     break; 
                case '>':       s = "[>]";     break; 
                case GE:        s = "[>=]";    break; 
                case LE:        s = "[<=]";    break; 
                case NE:        s = "[!=]";    break; 
                case EQ:        s = "[==]";    break; 
            } 
            break; 
    } 
 
    /* construct node text box */ 
    graphBox (s, &w, &h); 
    cbar = c; 
    *ce = c + w; 
    *cm = c + w / 2; 
 
    /* node is leaf */ 
    if (p->type == typeCon || p->type == typeId || p->opr.nops == 0) { 
        graphDrawBox (s, cbar, l); 
        return; 
    } 
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    /* node has children */ 
    cs = c; 
    for (k = 0; k < p->opr.nops; k++) { 
        exNode (p->opr.op[k], cs, l+h+eps, &che, &chm); 
        cs = che; 
    } 
 
    /* total node width */ 
    if (w < che - c) { 
        cbar += (che - c - w) / 2; 
        *ce = che; 
        *cm = (c + che) / 2; 
    } 
 
    /* draw node */ 
    graphDrawBox (s, cbar, l); 
 
    /* draw arrows (not optimal: children are drawn a second time) */ 
    cs = c; 
    for (k = 0; k < p->opr.nops; k++) { 
        exNode (p->opr.op[k], cs, l+h+eps, &che, &chm); 
        graphDrawArrow (*cm, l+h, chm, l+h+eps-1); 
        cs = che; 
    } 
} 
 
/* interface for drawing */ 
 
#define lmax 200 
#define cmax 200 
 
char graph[lmax][cmax]; /* array for ASCII-Graphic */ 
int graphNumber = 0; 
 
void graphTest (int l, int c) 
{   int ok; 
    ok = 1; 
    if (l < 0) ok = 0; 
    if (l >= lmax) ok = 0; 
    if (c < 0) ok = 0; 
    if (c >= cmax) ok = 0; 
    if (ok) return; 
    printf ("\n+++error: l=%d, c=%d not in drawing rectangle 0, 0 ... 
%d, %d",  
        l, c, lmax, cmax); 
    exit (1); 
} 
 
void graphInit (void) { 
    int i, j; 
    for (i = 0; i < lmax; i++) { 
        for (j = 0; j < cmax; j++) { 
            graph[i][j] = ' '; 
        } 
    } 
} 
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void graphFinish() { 
    int i, j; 
    for (i = 0; i < lmax; i++) { 
        for (j = cmax-1; j > 0 && graph[i][j] == ' '; j--); 
        graph[i][cmax-1] = 0; 
        if (j < cmax-1) graph[i][j+1] = 0; 
        if (graph[i][j] == ' ') graph[i][j] = 0; 
    } 
    for (i = lmax-1; i > 0 && graph[i][0] == 0; i--); 
    printf ("\n\nGraph %d:\n", graphNumber++); 
    for (j = 0; j <= i; j++) printf ("\n%s", graph[j]); 
    printf("\n"); 
} 
 
void graphBox (char *s, int *w, int *h) { 
    *w = strlen (s) + del; 
    *h = 1; 
} 
 
void graphDrawBox (char *s, int c, int l) { 
    int i; 
    graphTest (l, c+strlen(s)-1+del); 
    for (i = 0; i < strlen (s); i++) { 
        graph[l][c+i+del] = s[i]; 
    } 
} 
 
void graphDrawArrow (int c1, int l1, int c2, int l2) { 
    int m; 
    graphTest (l1, c1); 
    graphTest (l2, c2); 
    m = (l1 + l2) / 2; 
    while (l1 != m) { 
        graph[l1][c1] = '|'; if (l1 < l2) l1++; else l1--; 
    } 
    while (c1 != c2) { 
        graph[l1][c1] = '-'; if (c1 < c2) c1++; else c1--; 
    } 
    while (l1 != l2) { 
        graph[l1][c1] = '|'; if (l1 < l2) l1++; else l1--; 
    } 
    graph[l1][c1] = '|'; 
} 
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More Lex 
Strings 
Quoted strings frequently appear in programming languages. Here is one way to match a string in 
lex: 
 
    %{ 
        char *yylval; 
        #include <string.h> 
    %} 
    %% 
    \"[^"\n]*["\n] { 
               yylval = strdup(yytext+1); 
               if (yylval[yyleng-2] != '"') 
                   warning("improperly terminated string"); 
               else 
                   yylval[yyleng-2] = 0; 
               printf("found '%s'\n", yylval); 
         } 
 
The above example ensures that strings don’t cross line boundaries, and removes enclosing 
quotes. If we wish to add escape sequences, such as \n or \", start states simplify matters: 
 
    %{ 
    char buf[100]; 
    char *s; 
    %} 
    %x STRING 
 
    %% 
 
    \"              { BEGIN STRING; s = buf; } 
    <STRING>\\n     { *s++ = '\n'; } 
    <STRING>\\t     { *s++ = '\t'; } 
    <STRING>\\\"    { *s++ = '\"'; } 
    <STRING>\"      {  
                      *s = 0; 
                      BEGIN 0; 
                      printf("found '%s'\n", buf); 
                    } 
    <STRING>\n      { printf("invalid string"); exit(1); } 
    <STRING>.       { *s++ = *yytext; } 
 
Exclusive start state STRING is defined in the definition section. When the scanner detects a 
quote, the BEGIN macro shifts lex into the STRING state. Lex stays in the STRING state, 
recognizing only patterns that begin with <STRING>, until another BEGIN is executed. Thus, we 
have a mini-environment for scanning strings. When the trailing quote is recognized, we switch 
back to state 0, the initial state. 
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Reserved Words 
If your program has a large collection of reserved words,  it is more efficient to let lex simply 
match a string, and determine in your own code whether it is a variable or reserved word. For 
example, instead of coding 
 

"if"            return IF; 
"then"          return THEN; 
"else"          return ELSE; 
 
{letter}({letter}|{digit})*  { 
         yylval.id = symLookup(yytext); 
         return IDENTIFIER; 
     } 

 
where symLookup returns an index into the symbol table, it is better to detect reserved words 
and identifiers simultaneously, as follows: 
 

{letter}({letter}|{digit})*  { 
         int i; 
 
         if ((i = resWord(yytext)) != 0) 
             return (i); 
         yylval.id = symLookup(yytext); 
         return (IDENTIFIER); 
     } 

 
This technique significantly reduces the number of states required, and results in smaller scanner 
tables. 

Debugging Lex 
Lex has facilities that enable debugging. This feature may vary with different versions of lex, so 
you should consult documentation for details. The code generated by lex in file lex.yy.c includes 
debugging statements that are enabled by specifying command-line option “-d”. Debug output in 
flex (a GNU version of lex) may be toggled on and off by setting yy_flex_debug. Output includes 
the rule applied and corresponding matched text. If you’re running lex and yacc together, specify 
the following in your yacc input file: 
 

extern int yy_flex_debug; 
int main(void) { 
    yy_flex_debug = 1; 
    yyparse(); 
} 

 
Alternatively, you may write your own debug code by defining functions that display information 
for the token value, and each variant of the yylval union. This is illustrated in the following 
example. When DEBUG is defined, the debug functions take effect, and a trace of tokens and 
associated values is displayed. 
 

%union { 
    int ivalue; 
    ... 
}; 
 
%{ 
#ifdef DEBUG 
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    int dbgToken(int tok, char *s) { 
        printf("token %s\n", s); 
        return tok; 
    } 
    int dbgTokenIvalue(int tok, char *s) { 
        printf("token %s (%d)\n", s, yylval.ivalue); 
        return tok; 
    } 
    #define RETURN(x) return dbgToken(x, #x) 
    #define RETURN_ivalue(x) return dbgTokenIvalue(x, #x) 
#else 
    #define RETURN(x) return(x) 
    #define RETURN_ivalue(x) return(x) 
#endif 
%} 
 
%% 
 
[0-9]+      { 
                yylval.ivalue = atoi(yytext); 
                RETURN_ivalue(INTEGER); 
            } 
 
"if"        RETURN(IF); 
"else"      RETURN(ELSE); 

 

More Yacc 
Recursion 
When specifying a list, we may do so using left recursion, 

 
list: 
  item 
  | list ',' item 
  ; 

 
or right recursion: 
 

list: 
  item 
  | item ',' list 

 
If right recursion is used, all items on the list are pushed on the stack. After the last item is 
pushed, we start reducing. With left recursion, we never have more than three terms on the stack, 
since we reduce as we go along. For this reason, it is advantageous to use left recursion. 

If-Else Ambiguity 
A shift-reduce conflict that frequently occurs involves the if-else construct. Assume we have the 
following rules: 
 

stmt: 
 IF expr stmt 
 | IF expr stmt ELSE stmt 
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   ... 
 
and the following state: 
 

IF expr stmt IF expr stmt . ELSE stmt 
 
We need to decide if we should shift the ELSE, or reduce the IF expr stmt at the top of the stack. 
If we shift, then we have 
 

IF expr stmt IF expr stmt . ELSE stmt 
IF expr stmt IF expr stmt ELSE . stmt 
IF expr stmt IF expr stmt ELSE stmt . 
IF expr stmt stmt . 
 

where the second ELSE is paired with the second IF. If we reduce, we have 
 
 

IF expr stmt IF expr stmt . ELSE stmt 
IF expr stmt stmt . ELSE stmt 
IF expr stmt . ELSE stmt 
IF expr stmt ELSE . stmt 
IF expr stmt ELSE stmt . 

 
where the second ELSE is paired with the first IF. Modern programming languages pair an ELSE 
with the most recent unpaired IF, so the former behavior is expected. This works well with yacc, 
since default behavior, when a shift-reduce conflict is encountered, is to shift. 
 
Although yacc does the right thing, it also issues a shift-reduce warning message. To remove the 
message, give IF-ELSE a higher precedence than the simple IF statement: 

 
%nonassoc IFX 
%nonassoc ELSE 
 
   stmt:  
     IF expr stmt %prec IFX 
     | IF expr stmt ELSE stmt 

Error Messages 
A nice compiler gives the user meaningful error messages. For example, not much information is 
conveyed by the following message: 
 

syntax error 
 
If we track the line number in lex, then we can at least give the user a line number: 
 

void yyerror(char *s) { 
    fprintf(stderr, "line %d: %s\n", yylineno, s); 
} 

 
When yacc discovers a parsing error, default action is to call yyerror, and then return from yylex 
with a return value of one. A more graceful action flushes the input stream to a statement 
delimiter, and continues to scan: 
 

stmt: 
         ';' 
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        | expr ';' 
        | PRINT expr ';' 
        | VARIABLE '=' expr '; 
        | WHILE '(' expr ')' stmt     
        | IF '(' expr ')' stmt %prec IFX 
        | IF '(' expr ')' stmt ELSE stmt 
        | '{' stmt_list '}' 
        | error ';' 
        | error '}' 
        ; 

 
The error token is a special feature of yacc that will match all input until the token following error 
is found. For this example, when yacc detects an error in a statement it will call yyerror, flush 
input up to the next semicolon or brace, and resume scanning. 

Inherited Attributes 
The examples so far have used synthesized attributes. At any point in a syntax tree we can 
determine the attributes of a node based on the attributes of its children. Consider the rule 
 

expr: expr '+' expr        { $$ = $1 + $3; } 
 
Since we are parsing bottom-up, the values of both operands are available, and we can 
determine the value associated with the left-hand side. An inherited attribute of a node depends 
on the value of a parent or sibling node. The following grammar defines a C variable declaration: 
 

decl: type varlist 
type: INT | FLOAT 
varlist:  
        VAR       { setType($1, $0); } 
    | varlist ',' VAR   { setType($3, $0); } 

 
Here is a sample parse: 
 

. INT VAR 
INT . VAR 
type . VAR 
type VAR . 
type varlist . 
decl . 

 
When we reduce VAR to varlist, we should annotate the symbol table with the type of the 
variable. However, the type is buried in the stack. This problem is resolved by indexing back into 
the stack. Recall that $1 designates the first term on the right-hand side. We can index 
backwards, using $0, $-1, and so on. In this case, $0 will do just fine. If you need to specify a 
token type, the syntax is $<tokentype>0, angle brackets included. In this particular example, 
care must be taken to ensure that type always precedes varlist. 

Embedded Actions 
Rules in yacc may contain embedded actions: 
 

list: item1 { do_item1($1); } item2 { do_item2($3); } item3 
 
Note that the actions take a slot in the stack, so do_item2 must use $3 to reference item2. 
Actually, this grammar is transformed by yacc into the following: 
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list: item1 _rule01 item2 _rule02 item3 
_rule01: { do_item1($0); } 
_rule02: { do_item2($0); } 

Debugging Yacc 
Yacc has facilities that enable debugging. This feature may vary with different versions of yacc, 
so you should consult documentation for details. The code generated by yacc in file y.tab.c 
includes debugging statements that are enabled by defining YYDEBUG and setting it to a non-
zero value. This may also be done by specifying command-line option “-t”. With YYDEBUG 
properly set, debug output may be toggled on and off by setting yydebug. Output includes tokens 
scanned and shift/reduce actions. 
 

%{ 
#define YYDEBUG 1 
%} 
%% 
... 
%% 
int main(void) { 
    #if YYDEBUG 
        yydebug = 1; 
    #endif 
    yylex(); 
} 

 
In addition, you can dump the parse states by specifying command-line option "-v". States are 
dumped to file y.output, and are often useful when debugging a grammar. Alternatively, you can 
write your own debug code by defining a TRACE macro, as illustrated below. When DEBUG is 
defined, a trace of reductions, by line number, is displayed. 
 

%{ 
#ifdef DEBUG 
#define TRACE printf("reduce at line %d\n", __LINE__); 
#else 
#define TRACE 
#endif 
%} 
 
%% 
 
statement_list: 
          statement   
                { TRACE $$ = $1; } 
        | statement_list statement        
                { TRACE $$ = newNode(';', 2, $1, $2); } 
        ; 
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