Word Recognizer, verb/not a verb

hi

/*

* this sample demonstrates (very) simple recognition:
* a verb/mnot a verb.

*/

h}Y
ol

[\t 1+ /* ignore white space */ ;

is |

am |

are |
were |
was |

be |
being |
been |
do |
does |
did |
will |
would |
should |
can |
could |
has |
have |
had |

go { printf("%s: is a verb\n", yytext); }

[a-zA-Z]+ { printf("%s: is not a verb\n", yytext); }
.\n { ECHO; /#* normal default anyway */ }
he

main()
{

yylex();
}




Word Recognizer, verbs and other parts of speech

3t

/*

* We expand upon the first example by adding recognition of some other
* parts of speech.

*/

h}
hh

[\t 1+ /* ignore white space */ ;

is |

am |

are |
were |
was |

be |
being |
been |
do |
does |
did |
will |
would |
should |
can |
could |
has |
have |
had |

go { printf("%s: is a verb\n", yytext); }

very |

simply |

gently |

quietly |

calmly |

angrily { printf("%s: is an adverb\n", yytext); }

to |

from |

behind |

above |

below |

between |

below { printf("%s: is a preposition\n", yytext); }

if |
then |
and |



but |
or { printf("%s: is a conjunction\n", yytext); }

their |

my |

your |

his |

her |

its { printf("%s: is an adjective\n", yytext); }

I

you |

he |

she |

we |

they { printf("%s: is a pronoun\n", yytext); }

[a-zA-Z]+ {
printf("%s: don’t recognize, might be a noun\n", yytext);

}

\&. [\n { ECHO; /#* normal default anyway */ }
%o
main()
{
yylex();

}




Word Recognizer with a Symbol Table, Definition Section

3t
/*
* Word recognizer with a symbol table.

*/

enum {
LOOKUP = 0, /* default - looking rather than defining. */
VERB,
ADJ,
ADV,
NOUN,
PREP,
PRON,
CONJ
3

int state;
int add_word(int type, char *word) ;

int lookup_word(char *word);

h}




Word Recognizer with a Symbol Table, Rules Section

%o
\n { state = LOOKUP; } /* end of line, return to default state */

“verb { state = VERB; }
~adj { state = ADJ; }
~adv { state = ADV; }
“noun { state = NOUN; }
"prep { state = PREP; }
“pron { state = PRON; }
“conj { state = CONJ; }
[a-zA-Z]+ A

/* a normal word, define it or look it up */
if (state != LOOKUP) {
/* define the current word */
add_word(state, yytext);
} else {
switch(lookup_word(yytext)) {
case VERB: printf("%s: verb\n", yytext); break;
case ADJ: printf("%s: adjective\n", yytext); break;
case ADV: printf("%s: adverb\n", yytext); break;
case NOUN: printf("%s: noun\n", yytext); break;
case PREP: printf("Ys: preposition\n", yytext); break;
case PRON: printf("%s: pronoun\n", yytext); break;
case CONJ: printf("%s: conjunction\n", yytext); break;
default:
printf("%s: don’t recognize\n", yytext);
break;

}
}

/* ignore anything else */ ;

ol




Word Recognizer with a Symbol Table, User Subroutines Section

main()
{

yylex();
}

/* define a linked list of words and types */
struct word {

char *word_name;

int word_type;

struct word *next;

};
struct word *word_list; /* first element in word list */
extern void *malloc();

int add_word(int type, char *word)

{
struct word *wp;
if (lookup_word(word) != LOOKUP) {
printf("!!! warning: word %s already defined \n", word);
return 0;
}
/* word not there, allocate a new entry and link it on the list */
wp = (struct word *) malloc(sizeof (struct word));
wp->next = word_list;
/* have to copy the word itself as well */
wp—->word_name = (char *) malloc(strlen(word)+1);
strcpy (wp—>word_name, word);
wp->word_type = type;
word_list = wp;
return 1; /* it worked */
}

int lookup_word(char *word)

struct word *wp = word_list;
/* search down the list looking for the word */
for(; wp; wp = wp—>next) {
if (strcmp (wp—>word_name, word) == 0)
return wp->word_type;

return LOOKUP; /* not found */




Build a lexical analyzer to be used by a higher-level parser

A

/* We now build a lexical analyzer to be used by a higher-level parser. */
#include "y.tab.h" /* token codes from the parser */

#define LOOKUP O /* default - not a defined word type. */

int state;

h}

Yy
\n { state = LOOKUP; }
\.\n { state = LOOKUP;
return 0; /* end of sentence */ }

“verb { state = VERB; }

~adj { state = ADJECTIVE; }
~adv { state = ADVERB; }
“noun { state = NOUN; }

“prep { state = PREPOSITION; 2
“pron { state = PRONOUN; }
“conj { state = CONJUNCTION; }
[a-zA-Z]+ {

if (state !'= LOOKUP) {
add_word(state, yytext);
} else {
switch(lookup_word(yytext)) {
case VERB:
return(VERB) ;
case ADJECTIVE:
return(ADJECTIVE) ;
case ADVERB:
return (ADVERB) ;
case NOUN:
return (NOUN) ;
case PREPOSITION:
return (PREPOSITION) ;
case PRONOUN:
return (PRONOUN) ;
case CONJUNCTION:
return (CONJUNCTION) ;
default:
printf("%s: don’t recognize\n", yytext);
/* don’t return, just ignore it */

}




same User Subroutines Section

/* define a linked list of words and types */
struct word {

char *word_name;

int word_type;

struct word *next;

};
struct word *word_list; /* first element in word list */
extern void *malloc();

int add_word(int type, char *word)

{
struct word *wp;
if (lookup_word(word) != LOOKUP) {
printf("!!! warning: word %s already defined \n", word);
return O;
}
/* word not there, allocate a new entry and link it on the list */
wp = (struct word *) malloc(sizeof (struct word));
wp—>next = word_list;
/* have to copy the word itself as well */
wp—>word_name = (char *) malloc(strlen(word)+1);
strcpy (wp->word_name, word);
wp—>word_type = type;
word_list = wp;
return 1; /* it worked */
}

int lookup_word(char *word)
struct word *wp = word_list;

/* search down the list looking for the word */
for(; wp; wp = wp—>next) {
if (strcmp (wp—>word_name, word) == 0)
return wp->word_type;
}
return LOOKUP; /* not found */




Simple YACC sentence parser

3t

/*
* A lexer for the basic grammar to use for recognizing english sentences.
*/

#include <stdio.h>

ht

%token NOUN PRONOUN VERB ADVERB ADJECTIVE PREPOSITION CONJUNCTION
he

sentence: subject VERB object { printf("Sentence is valid.\n"); }

’

subject: NOUN

| PRONOUN
object: NOUN
hh

extern FILE *yyin;

main()
{
while(!feof (yyin)) {
yyparse () ;
}
}

yyerror (s)
char *s;
{
fprintf (stderr, "¥s\n", s);
}




