ODL Notes

CP465 Databases II

Dr. 1Ilias S. Kotsireas

ikotsire@wlu.ca

Wilfrid Laurier University

Introduction

ODL is a specification language used to define
the specifications of object types that conform to
the ODMG Object Model.

Guiding Principles of ODL design:

e support all semantic constructs of the ODMG
Object Model

e be programming language independent

e Not intended to be a full programming lan-
guage

ODL defines the characteristics of types, includ-
ing their properties and operations.

ODL defines only the signatures of operations
(does not define the methods that implement
those operations)

What can we define in ODL

1. Type characteristics
(supertype, name of extent, keys)

2. Instance Properties
(attributes & relationships of the type’'s in-
stances)

3. arelationship spec. names and defines a traver-
sal path (designation of the target type and
the inverse traversal path) for a relationship

4. Operations
e.g. void, raise exceptions

We will illustrate the use of ODL to declare the schema for
a sample university database application.

Object types (defined by classes) are shown as rectangles.
Object types (defined by interfaces) are shown as ovals.

Relationship types are shown as lines.
Cardinalities 1 : 1,1 : N, M : N are indicated by arrows.

Large grey arrows run from subtype to supertype.
(is-a, ISA)

Large black arrows denote extends.
Inheritance of state & behavior.

Salary
has_ prerequisites

is_ prerequisite_for
has_sections
TA
is_section_of

Professor

teaches

Student Section

is_taken_by is_taught_by

Figure 3-2. Graphical Representation of Schema

module ODMGExample {
exception NoSuchEmployee();
exception AlreadyOffered(};
exception NotOffered(};
exception IneligibleForTenure{};
exception UnsatisfiedPrerequisites{};
exception SectionFull{};
exception CourseFull{};
exception NotRegisteredinSection{};
exception NotRegisteredForThatCourse{},

struct Address {string college, string room_number; };

class Department
(extent departments)

{
attribute string name;
relationship list<Professor> has_professors
inverse Professor::works_in;
relationship list<Course> offers_courses
inverse Course::offered_by;
h
class Course
(extent courses)
{

attribute string name;
attribute string number;
relationship Department offered_by
inverse Department::offers_courses;
relationship list<Section> has_sections
inverse Section::is_section_of;
relationship set<Course> has_prerequisites
inverse Course::is_prerequisite_for;
relationship set<Course> is_prerequisite_for
inverse Course::has_prerequisites;
boolean offer (in unsigned short semester)
raises (AlreadyOffered);
boolean drop (in unsigned short semester) raises (NotOffered);

class Section
(extent sections)
{
attribute string number;
relationship Professor is_taught_by
inverse Professor::teaches;
relationship TA has_TA
inverse TA::assists;
relationship Course is_section_of
inverse Course::has_sections;
relationship set<Student> is_taken_by
inverse Student::takes;

1

class Salary

{
attribute float base;
attribute float overtime;
attribute float bonus;

5

class Employee
(extent employees)

{
attribute string name;
attribute short id;
attribute Salary annual_salary;
void hire();
void fire() raises (NoSuchEmployee);
I

class Professor extends Employee
(extent professors)
{
attribute enum Rank {full, associate, assistant} rank;
relationship Department works_in
inverse Department::has_professors;
relationship set<Section> teaches
inverse Section::is_taught_by;
short grant_tenure() raises (IneligibleForTenure);

interface StudentIF
{
attribute string name;
attribute string student_id;
attribute Address dorm_address;
relationship set<Section> takes
inverse Section::is_taken_by;
boolean register_for_course (in unsigned short course,
in unsigned short Section)
raises (UnsatisfiedPrerequisites, SectionFull, CourseFull);
void drop_course (in Course c)
raises (NotRegisteredForThatCourse);
void assign_major (in Department d);
short transfer (in Section old_section,
in Section new_section) -
raises (SectionFull, NotRegisteredInSection);
5
classTA extends Employee : StudentlF
{
relationship Section assists
inverse Section::has_TA;
attribute string name;
attribute string student_id,;
attribute struct Address dorm_address;
relationship set<Section> takes
inverse Section::is_taken_by;
I8
class Student : StudentIF
(extent students)

{
attribute string name;
attribute string student_id,;
attribute struct Address dorm_address;
relationship set<Section> takes
inverse Section::is_taken_by;
h

	ODLnotes
	ODMG-ODL-example
	ODL-page67
	ODL-page68
	ODL-page69
	ODL-page70

