
ODMG 3.0 Notes

CP465 Databases II

Dr. Ilias S. Kotsireas

ikotsire@wlu.ca

Wilfrid Laurier University

1. Overview

2. Object Model

3. Object Specification Languages

(a) Object Definition language, ODL

(b) Object Interchange Format, OIF

4. Object Query Language, OQL

5. ODMG C++/Java Bindings

1



Overview

ODMG∗ is a standard implemented by:

• object database management systems, ODBMSs

(store objects directly)

• object-to-database mappings, ODMs (convert

objects in relational and then store them)

ODBMSs and ODMs are referred to with the

common term: Object Data Management Sys-

tems, ODMSs

Importance of a Standard

Lack of standard for storing objects in databases

⇒ limitations to object application portability across

database systems.

ODMG enables many vendors to support and en-

dorse a common object interface to which cus-

tomers write their database applications.

∗Object Data Management Group

2



ODMG Goals:

1. define a set of spec/tions that allow a devel-

oper to write portable applications

2. data scheme, progr. lang. binding, data ma-

nip/tion, query languages must be portable

3. source code portability

4. combining the strongest features of the prod-

ucts currently available

ODMG member companies cover almost the en-

tire spectrum of the ODMS industry.

The ODMG standard has become the de facto

standard for this industry.

3



ODMG Scope/Aims:

An ODMS transparently integrates database ca-

pability with the application programming lan-

guage.

We distinguish two kinds of ODMSs:

ODBMS: is a DBMS that integrates database

capabilities with object-oriented programming lan-

guage capabilities.

ODM: is a system that integrates relational (or

other non-object DBMSs) with object-oriented

programming language capabilities.

Both type of ODMS make database objects ap-

pear as programming language objects, in one or

more existing programming languages.

An ODMS extends the progr. lang. with per-

sistent data, concurrency control, data recovery,

queries and other database capabilities.

4



ODMG 3.0 Major Components

1. Object Model:
based on the OMG Object Model, with added
components, such as relationships

2. Object Specification Languages:
(a) ODL: specification language used to de-
fine the object types that conform to the ODMG
Object Model
(b) OIF: specification language used to dump/load
the current state of an ODMS to/from a file
or a set of files

3. Object Query Language, OQL:
is a declarative (non-procedural) language for
querying and updating ODMS objcts.
based on SQL, but supports more powerful
capabilities

4. ODMG C++ (Java/Smalltalk) Binding:
how to write portable C++ code that manip-
ulates persistent objects: C++ OML
(object manipulation language)
a version of ODL that uses C++ syntax
a mechanism to invoke OQL
procedures for operations on ODMSs and trans-
actions

5



Object Model

The Object Model specifies the constructs sup-

ported by an ODMG-compliant ODMS.

The Object Model specifies the kinds of seman-

tics that can be defined explicitly to an ODMS:

(a) determine the characteristics of objects

(b) how objects can be related to each other

(c) how objects can be named and identified

6



Constructs supported by an ODMS:

1. basic modeling primitives:
object (has a unique ID), literal (has no ID)

2. obj./lit. are categorized by their types
all elements of a given type have a common
set of properties/behavior/operations
An object is an instance of its type

3. the state of an object is defined by the values
it carries for a set of properties (attributes of
the object, relationships btw. the object and
one or more other objects)
The state of an object can change over time.

4. the behavior of an object is defined by the
set of operations that can be executed on (or
by) the object.
Operations may have a list of I/O parameters,
each with a specified time.
Operations may also return a typed result.

5. An ODMS stores objects, enabling them to
be shared by multiple users and applications.
An ODMS is based on a schema that is de-
fined in ODL.
An ODMS contains instances of the types de-
fined by its schema.

7



The ODMG Object Model specifies the meaning

of:

objects, literals, types, operations, properties, at-

tributes, relationships etc.

An application developer uses the constructs of

the ODMG Object Model to define the object

model for their application.

The application’s object model specifies particular

types,

(e.g. Document, Author, Publisher, Chapter)

and the operations/properties of each of these

types.

The application’s object model is the ODMS’s

(logical) schema.

The ODMG Object Model includes significantly

richer semantics than the relational model:

it declares relationships and operations explicitly.

8



Types:
Specifications & Implementations

A definition of a type has two aspects:

(1) an (external) specification

(2) one or more (internal) implementations

The specification defines the external character-

istics of the type, visible to the users:

(a) operations that can be invoked on it instances

(b) properties (state variables) whose values can

be accessed

(c) exceptions that can be raised by its operations

An implementation defines the internal aspects of

the objects of the type:

implementation of the type’s operations.

An implementation of a type is determined by a

language binding.

9



An external specification of a type consists of an

implementation-independent, abstract description

of the operations exceptions and properties that

are visible to the user of the type.

An interface definition is a specification that

defines only the abstract behavior of an object

type.

A class definition is a specification that defines

the abstract behavior and abstract state of an

object type.

A class is an extended interface with information

for ODMS schema definition.

A literal definition defines only the abstract state

of a literal type.

10



Example:

interface Employee { ... };

class Person { ... };

struct Complex {float re; float im; };

interface Employee defines only the abstract be-

havior of Employee objects

class Person defines both the abstract behavior

and the abstract state of Person objects

the struct Complex defines only the abstract state

of Complex number literals

In addition to the struct definition and the primi-

tive literal datatypes boolean, char, short, long,

float, double, octet, string, ODL defines decla-

rations for user-defined collection, union, enu-

meration literal types.

11



Implementation of an Object Type

An implementation of an Object Type consists of

a representation and a set of methods.

representation = data structure derived from the

type’s abstract state by a language binding:

∀ property contained in the abstract state

∃ an instance variable of an appropriate type de-

fined

methods = procedure bodies that are derived from

the type’s abstract behavior by the language bind-

ing:

∀ operation defined in the type’s abstract behav-

ior

∃ a definition of a method

This method implements the externally visible be-

havior of an object type.

A method can read or modify the rep. of an

object’s state, or invoke operations defined on

other objects.

12



There can be methods in an implementation that

have no direct counterparts to the operations in

the type’s specification.

The internals of an implementation are not visible

to the users of the objects.

Each language binding also defines an implemen-

tation mapping for literal types.

Some languages (e.g. C++) have constructs

that can be used to represent (structured) literals

directly, i.e. struct.

Some other languages (e.g. Java/Smalltalk) do

not have such constructs. These language bind-

ings map each literal type into constructs that

can be directly supported using object classes.

C++ and Java handle directly floating-point datatypes,

so they would bind the float elements of the

Complex literals accordingly.

13



Encapsulation

The disctinction/separation between specification

and implementation is how the Object Model re-

flects encapsulation.

ODL is used to specify the external specifications

of types in application object models.

Language bindings define the C++/Java con-

structs used to specify the implementations of

these specifications.

A type can have more than one implementation.

(i.e. one C++ and one Java)

(i.e. two C++ for two different machine archi-

tectures)

Usually, only one implementation is used any par-

ticular program.

Separating the specifications from the implemen-

tations keeps the semantics of the type from be-

ing tangled with representation details.

14



Object-oriented languages, C++, Java, Smalltalk

have classes.

These are implementation classes and should not

be confused with the abstract classes defined in

the Object Model.

Each language binding defines a mapping between

abstract classes and its language’s implementa-

tion classes.



Subtyping &
Inheritance of Behavior

The ODMG Object Model includes inheritance-

based type-subtype relationships, commonly rep-

resented in graphs.

Each node is a type and each arc connects one

type (supertype) to another type (subtype).

The type-subtype relationship is also called an is-

a or an ISA or a generalization/specialization

relationship.

The supertype is the more general type, the sub-

type is the more specialized.

Example

interface Employee { ... };

interface Professor : Employee { ... };

interface AssociateProfessor : Professor { ... };

15



Professor inherits from Employee.

AssociateProfessor inherits from Employee and

Professor.

An instance of the subtype is also an instance of

the supertype.

An object’s most specific type is the type that

describes all the behavior and properties of the

instance.

The most specific type of an AssociateProfessor

object is the AssociateProfessor interface. This

object carries additional type information from

the Professor and Employee interfaces.

An AssociateProfessor instance has all behaviors

defined in the AssociateProfessor interface and in-

herits all behaviors defined in the Professor, Em-

ployee interfaces.

16


