(a) Interface
Class STUDENT
- 11
Relationships - p»—» 1:N
-+—=———»—» MN
Interface(is-a) Class inheritance
Inheritance inheritance using extends
using "
(b) Has_faculty
Has_majors Y Offers
PERSON ————»| DEPARTMENT |-
“Works_in v Majors_in P
/ / Completed_sections el
FACULTY STUDENT | t—————— | COURSE
AN Registered_in A
A | Advises Has_sections
Y Students
Advisor Y
|
> GRAD_STUDENT‘ SECTION |=—==—
On_committee_of Committee Of_course
Figure 21.5
An example of a database schema. (a) Graphical notation for
representing ODL schemas. (b) A graphical object database

schema for part of the UNIVERSITY database (GRADE and
DEGREE classes are not shown).

L»»| CURR_SECTION
Registered_students

class PERSON Figure 21.6

(extent PERSONS Possible ODL schema for the
key Ssn) UNIVERSITY database of
{ attribute struct Pname { string Fname, Figure 21.5(b) (continued).
string Mname,
string Lname } Name;
attribute string Ssn;
attribute date Birth_date;
attribute enum Gender{M, F} Sex;
attribute struct Address { short No,

string Street,
short Apt_no,

string City,
string State,
short Zip } Address;
short Agel); L
class FACULTY extends PERSON
(extent FACULTY)
{ attribute string Rank;
attribute float Salary;
attribute string Office;
attribute string Phone;

relationship DEPARTMENT Works_in inverse DEPARTMENT::Has faculty;

relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::Advisor;

relationship set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;
void give_raise(in float raise);

void promote(in string new rank); };
class GRADE
(extent GRADES)
(
attribute enum GradeValues{A,B,C,D,F|, P} Grade;

relationship SECTION Section inverse SECTION::Students;
relationship STUDENT Student inverse STUDENT::Completed_sections; };

class STUDENT extends PERSON

(extent STUDENTS)
{ attribute string Class;
attribute Department Minors_in;

relationship Department Majors_in inverse DEPARTMENT::Has_majors;
relationship set<GRADE> Completed_sections inverse GRADE::Student;
relationship set<CURR_SECTION> Registered_in inverse CURR_SECTION::Registered_students;

void change_major(in string dname) raises(dname_not_valid);
float gpal);

void register(in short secno) raises(section_not_valid);

void assign_grade(in short secno; in GradeValue grade)

raises(section_not_valid,grade_not_valid): };

Figure 21.6 class DEGREE

(continued) { attribute string College;
Possible ODL schema attribute string Degree;
for the UNIVERSITY attribute string Year; };
,‘ifgz?:s; fg(b)b class GRAD_STUDENT extends STUDENT
(extent GRAD_STUDENTS)
{ attribute set<Degree> Degrees;

relationship Faculty_advisor inverse FACULTY::Advises;
relationship set<FACULTY> Committee inverse FACULTY::On_committee_of;

void assign_advisor(in string Lname; in string Fname)
raises(faculty_not_valid);
void assign_committee_member(in string Lname; in string Fname)

raises(faculty_not_valid); };
class DEPARTMENT

(extent DEPARTMENTS
key Dname)

{ attribute string Dname;
attribute string Dphone;
attribute string Doffice;
attribute string College;
attribute FACULTY Chair;

relationship set<FACULTY> Has_faculty inverse FACULTY::Works_in;
relationship set<STUDENT> Has_majors inverse STUDENT::Majors_in;
relationship set<COURSE> Offers inverse COURSE::Offered_by; };

class COURSE

(extent COURSES
key Cno)

{ attribute string Cname;
attribute string Cno;
attribute string Description;

relationship set<SECTION> Has_sections inverse SECTION::Of _course;
relationship <DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };

class SECTION
(extent SECTIONS)
{ attribute short Sec_no;
attribute string Year,;
attribute enum Quarter{Fall, Winter, Spring, Summer}

Qtr;
relationship set<Grade> Students inverse Grade::Section;
relationship COURSE Of_course inverse COURSE::Has_sections; };

class CURR_SECTION extends SECTION
(extent CURRENT_SECTIONS)
{ relationship set<STUDENT> Registered_students
inverse STUDENT::Registered_in
void register_student(in string Ssn)
raises(student_not_valid, section_full); };

Object Query Language (OQL)

= OQL is ODMG’s query language

» OQL works closely with programming languages
such as C++

= Embedded OQL statements return objects that
are compatible with the type system of the host
language

s OQL’s syntax is similar to SQL with additional
features for objects

Slide 21- 1

Simple OQL Queries

s Basic syntax: SELECT...FROM...WHERE...
= SELECT d.name
« FROM d in departments
= WHERE d.college = ‘Engineering’;

= An entry point to the database is needed for
each query, it can be any named persistent
object

= An extent name (e.g., departments in the above
example) may serve as an entry point

Slide 21- 2

lterator Variables

m lterator variables are defined whenever a
collection is referenced in an OQL query

= In the previous example d serves as an iterator
and ranges over each object in the collection
s Syntactical options for specifying an iterator:
= d In departments
» departments d
= departments as d

Slide 21- 3

Data Type of Query Results

= [he data type of a query result can be any type
defined in the ODMG model

= A query does not have to follow the
SELECT .. FROM .. WHERE .. format

m A persistent name on its own can serve as a
qguery whose result is a reference to the
persistent object.

Example:

= departments; CS department;
whose types are set<Departments>, Department resp.

Slide 21- 4

Path Expressions

s A path expression is used to specify a path to
attributes and objects in an entry point

= A path expression starts at a persistent object
name, or at an iterator variable

= [he name will be followed by zero or more

relationship or attribute names, connected using
the dot notation

» CS_department.Chair; (returns a Faculty object)
» CS_department.Chair.Rank; (returns a string)

= CS_department.Has_faculty;
(returns a set<Faculty> object)

Slide 21- 5

CS_department.Has faculty.Rank
should give the ranks of the CS dpt. Faculty {

v

The object returned would have an ambiguous
type: set<string> or bag<string>

We need to use an iterator variable
select distinct F.Rank

from F in CS_department.Has_faculty;
distinct - set<string> duplicate elimination

Example of an interator variable defined in the
from clause to range over a restricted collection

Slide 21- 6

= In general, an OQL query can return a result with a complex

structure specified in the query itself, using struct
Example: CS_department.Chair.Advises;

returns an object of type set<GRAD STUDENT>

= Retrieve the names and a list of previous degrees of each

graduate student: degrees is defined by an embedded query

select struct (name : struct (Iname:S.name.Lname,
fname:S.name.Fname),

degrees : (select struct (deg:D.Degree,
yr:D.Year, clg:D.College)
from D in S.Degrees))
from S in CS_department.Chair.Advises;

s The iterators S, D range over the corresp. collections

Slide 21- 7

m Attributes, relationships and operation names can
be used interchangeably within path expressions,
as long as the OQL type system is not violated.

» select struct(lname:S.name.Lname,fname:S.name.Fname,gpa:S.gpa)
from S in CS_department.Has_majors
where S.Class="senior”
order by gpa desc, Iname asc, fname asc;

m Retrieve the names and the GPA of all senior
students majoring in CS, ordered by GPA

Slide 21- 8

Views as Named Objects

The define keyword in OQL is used to specify an
identifier for a named query

The name should be unique; if not, the results will
replace an existing named query

Once a query definition is created, it will persist
until deleted or redefined

A view definition can include parameters
(arguments)

Slide 21- 9

An Example of an OQL View

= A view (== named query) to retrieve the set of
students minoring in a given department:

define has _minor(deptName) as
select S

from S 1In STUDENTS

where S.Minors_i1n.Dname=deptName

= has_minor can now be used in OQL queries:
= has_minor(“Computer Science?’);

= Returns a set of students minoring in CS
= Model inverse rels. that are not used frequently.

Slide 21- 10

Single Elements from Collections

= An OQL query returns a collection

= OQL’'s element operator can be used to return a

single element from a singleton collection that

contains one element:

element(select d
from d 1n DEPARTMENTS

where d.dname = “Computer Science’);

» If the collection is empty or has more than one
elements, an exception is raised

s Since a dpt. name is unique across all dpts.
the result should be one department.

Slide 21- 11

Collection Operators, Aggregate Functions

s OQL supports a number of aggregate operators that
can be applied to query results

= [he aggregate operators operate over a collection
and include

= Min, max, count, sum, avg
s count returns an integer type
= MIn, max, sum, avg
return the same type as the operand collection type

Slide 21- 12

Examples of OQL Aggregate Operators

= [he number of students minoring in CS:
count(S 1n has minor(“Computer Science’));

= [he average GPA of all senior students majoring
In Business:

avg (select s.gpa
from S 1In STUDENTS

where s.class = “senior’ and
s.Majors_i1n.Dname =“Business’);

Slide 21- 13

s Aggregate operators can be applied to any
collection of the appropriate type and can be
used in any part of the query:

select D.Dname

from D in DEPARTMENTS
where count(D.Has_majors) > 100;

= Retrieve all dept. names that have more than 100
majors.

Slide 21- 14

Membership and Quantification

s OQL provides membership and quantification
operators that return a Boolean type, T/F
= (e In C)
returns true if e is a member of the collection c

« (For all e In c: Db)
returns true if all e elements of collection c satisfy b

= (exists e In c: b)
returns true if at least one e in collection c satisfies b

Slide 21- 15

An Example of Membership

s Retrieve the names of all students who completed
DB1:

select s.Pname.Fname, s.Pname.Lname
from S 1IN STUDENTS
where “DB1” iIn

(select c.Cname

from c In
s.Completed_sections.Section.of_course);

Slide 21- 16

Queries returning T/F results

Is Jeremy a CS student?

Jeremy 1n has_minor(“Computer Science?));

Are all CS grad. Students advised by CS faculty?

for all G In

(select S
from S 1In GRAD STUDENTS
where S.Majors_i1n.Dname=*“CS™)

G.Advisor In CS DEPARTMENT.Has faculty;

An illustration of inheritance: S.Majors_in

Slide 21- 17

An exists query

m Does any graduate CS major have a GPA >=47
m exiIsts G 1In

(select S
from S 1In GRAD STUDENTS
where S.Majors_i1n.Dname=*“CS”)

G.Gpa >= 4;

Slide 21- 18

Ordered Collection Expressions

m Collections that are lists or arrays allow retrieving
their first, last, and ith elements

» OQL provides additional operators for extracting
a sub-collection and concatenating two lists

= Query expressions that involve lists or arrays can
Invoke these operations

s OQL also provides operators for ordering the
results

Slide 21- 19

An Example of Ordered Collection

= Retrieve the last name of the faculty member who
earns the highest salary:

= (assuming there is only one such person)

first (select struct
(Iname: f.Pname.Lname,
salary:f.Salary)
from T 1n FACULTY
order by f.Salary desc);

Slide 21- 20

Another Example of Ordered Collection

= Retrieve the top three CS majors, based on GPA

(select struct

(Iname:f.Pname.Lnhame,gpa:s.Gpa)
from s 1In CS _department.Has majors
order by gpa desc)[0:2];

Slide 21- 21

	schema4OQL
	schemaODLexample
	schema
	schema-ODL-a
	schema-ODL-b

	ENACh21final

	OQL

