

Slide 21- 1

Object Query Language (OQL)

OQL is ODMG’s query language
OQL works closely with programming languages
such as C++
Embedded OQL statements return objects that
are compatible with the type system of the host
language
OQL’s syntax is similar to SQL with additional
features for objects

Slide 21- 2

Simple OQL Queries

Basic syntax: SELECT…FROM…WHERE…
SELECT d.name
FROM d in departments
WHERE d.college = ‘Engineering’;

An entry point to the database is needed for
each query, it can be any named persistent
object
An extent name (e.g., departments in the above
example) may serve as an entry point

Slide 21- 3

Iterator Variables

Iterator variables are defined whenever a
collection is referenced in an OQL query
In the previous example d serves as an iterator
and ranges over each object in the collection
Syntactical options for specifying an iterator:

d in departments
departments d
departments as d

Slide 21- 4

Data Type of Query Results

The data type of a query result can be any type
defined in the ODMG model
A query does not have to follow the
SELECT … FROM … WHERE … format
A persistent name on its own can serve as a
query whose result is a reference to the
persistent object.
Example:

departments; CS_department;
whose types are set<Departments>, Department resp.

Slide 21- 5

Path Expressions

A path expression is used to specify a path to
attributes and objects in an entry point
A path expression starts at a persistent object
name, or at an iterator variable
The name will be followed by zero or more
relationship or attribute names, connected using
the dot notation

CS_department.Chair; (returns a Faculty object)
CS_department.Chair.Rank; (returns a string)
CS_department.Has_faculty;

(returns a set<Faculty> object)

Slide 21- 6

CS_department.Has_faculty.Rank
should give the ranks of the CS dpt. Faculty ۞
The object returned would have an ambiguous
type: set<string> or bag<string>
We need to use an iterator variable
select distinct F.Rank
from F in CS_department.Has_faculty;
distinct set<string> duplicate elimination
Example of an interator variable defined in the
from clause to range over a restricted collection

Slide 21- 7

In general, an OQL query can return a result with a complex
structure specified in the query itself, using struct
Example: CS_department.Chair.Advises;
returns an object of type set<GRAD_STUDENT>
Retrieve the names and a list of previous degrees of each
graduate student: degrees is defined by an embedded query
select struct (name : struct (lname:S.name.Lname,

fname:S.name.Fname),
degrees : (select struct (deg:D.Degree,

yr:D.Year, clg:D.College)
from D in S.Degrees))

from S in CS_department.Chair.Advises;
The iterators S, D range over the corresp. collections

Slide 21- 8

Attributes, relationships and operation names can
be used interchangeably within path expressions,
as long as the OQL type system is not violated.
select struct(lname:S.name.Lname,fname:S.name.Fname,gpa:S.gpa)
from S in CS_department.Has_majors
where S.Class=“senior”
order by gpa desc, lname asc, fname asc;
Retrieve the names and the GPA of all senior
students majoring in CS, ordered by GPA

Slide 21- 9

Views as Named Objects

The define keyword in OQL is used to specify an
identifier for a named query
The name should be unique; if not, the results will
replace an existing named query
Once a query definition is created, it will persist
until deleted or redefined
A view definition can include parameters
(arguments)

Slide 21- 10

An Example of an OQL View

A view (== named query) to retrieve the set of
students minoring in a given department:

define has_minor(deptName) as
select S
from S in STUDENTS
where S.Minors_in.Dname=deptName

has_minor can now be used in OQL queries:
has_minor(‘Computer Science’);
Returns a set of students minoring in CS
Model inverse rels. that are not used frequently.

Slide 21- 11

Single Elements from Collections
An OQL query returns a collection
OQL’s element operator can be used to return a
single element from a singleton collection that
contains one element:
element(select d

from d in DEPARTMENTS
where d.dname = ‘Computer Science’);

If the collection is empty or has more than one
elements, an exception is raised
Since a dpt. name is unique across all dpts.
the result should be one department.

Slide 21- 12

Collection Operators, Aggregate Functions

OQL supports a number of aggregate operators that
can be applied to query results
The aggregate operators operate over a collection
and include

min, max, count, sum, avg

count returns an integer type
min, max, sum, avg
return the same type as the operand collection type

Slide 21- 13

Examples of OQL Aggregate Operators

The number of students minoring in CS:
count(S in has_minor(‘Computer Science’));

The average GPA of all senior students majoring
in Business:
avg (select s.gpa

from s in STUDENTS
where s.class = ‘senior’ and

s.Majors_in.Dname =‘Business’);

Slide 21- 14

Aggregate operators can be applied to any
collection of the appropriate type and can be
used in any part of the query:

select D.Dname
from D in DEPARTMENTS
where count(D.Has_majors) > 100;

Retrieve all dept. names that have more than 100
majors.

Slide 21- 15

Membership and Quantification

OQL provides membership and quantification
operators that return a Boolean type, T/F

(e in c)
returns true if e is a member of the collection c
(for all e in c: b)
returns true if all e elements of collection c satisfy b
(exists e in c: b)
returns true if at least one e in collection c satisfies b

Slide 21- 16

An Example of Membership

Retrieve the names of all students who completed
DB1:
select s.Pname.Fname, s.Pname.Lname
from s in STUDENTS
where ‘DB1’ in
(select c.Cname
from c in

s.Completed_sections.Section.of_course);

Slide 21- 17

Queries returning T/F results

Is Jeremy a CS student?
Jeremy in has_minor(‘Computer Science’));

Are all CS grad. Students advised by CS faculty?
for all G in
(select S
from S in GRAD_STUDENTS
where S.Majors_in.Dname=“CS”)
: G.Advisor in CS_DEPARTMENT.Has_faculty;

An illustration of inheritance: S.Majors_in

Slide 21- 18

An exists query

Does any graduate CS major have a GPA >= 4?
exists G in
(select S
from S in GRAD_STUDENTS
where S.Majors_in.Dname=“CS”)
: G.Gpa >= 4;

Slide 21- 19

Ordered Collection Expressions

Collections that are lists or arrays allow retrieving
their first, last, and ith elements
OQL provides additional operators for extracting
a sub-collection and concatenating two lists
Query expressions that involve lists or arrays can
invoke these operations
OQL also provides operators for ordering the
results

Slide 21- 20

An Example of Ordered Collection

Retrieve the last name of the faculty member who
earns the highest salary:
(assuming there is only one such person)

first (select struct
(lname: f.Pname.Lname,

salary:f.Salary)
from f in FACULTY
order by f.Salary desc);

Slide 21- 21

Another Example of Ordered Collection

Retrieve the top three CS majors, based on GPA

(select struct
(lname:f.Pname.Lname,gpa:s.Gpa)

from s in CS_department.Has_majors
order by gpa desc)[0:2];

	schema4OQL
	schemaODLexample
	schema
	schema-ODL-a
	schema-ODL-b

	ENACh21final

	OQL

