
Object Databases

CP465 Databases II

Dr. Ilias S. Kotsireas

ikotsire@wlu.ca

Wilfrid Laurier University

1. Object Identity

2. Object Structure

3. Type Constructors

4. Encapsulation of:

(a) Operations

(b) Methods

(c) Persistence

1



Object Identity

An ODMS provides a unique identity to each

independent object stored in the database.

This feature is implemented via a system-generated

object identifier (OID).

Values of OIDs are not visible to the external user.

OIDs are used internally by the system to iden-

tify each object uniquely and to create/manage

references between objects.

OIDs are immutable (don’t change over time)

OIDs should be used only once (even if the ob-

ject is removed, its OID is not used)

Therefore OIDs should not depend on:

(a) object attribute values

(b) physical address of the object in storage

Long integers are commonly used as OIDs.

A hash table is used to map the OID values to

the physical address.

2



Object Structure

Most ODMS allow for the representation of

objects and values.

Objects have OIDs. Values do not have OIDs.

A value is typically stored within an object and

cannot be referenced from other objects.

Some systems allow for structured values.

In Object Databases the state (current value) of

a object can be constructed from other

objects/values using certain type constructors.

Formal way to represent such objects: triplet

(i, c, v) = (OID, type constructor, object state/value)

v is interpreted based on the constructor c.

Type constructors in the Object Model:

atom, tuple, set, list, bag, array.

3



The atom constructor is used to represent all

basic atomic values: integers, reals, strings, booleans.

• c = atom, v = atomic value

• c = set, v = {i1, . . . , in} set of OIDs of objects

of the same type

• c = tuple, v = < a1 : i1, . . . , an : in >

instance variable (attribute name) : OID

• c = list, v = [i1, . . . , in] ordered list of OIDs

of objects of the same type

• c = array, v = 1-dimensional array of OIDs,

(has a max. # of elements)

Difference between sets and bags:

duplication is allowed (multi-sets)

Arbitrary nesting of type constructors is allowed

The state of an object that is not of type atom,

refers to other objects by their OIDs.

The only case where an actual value appears is in

the state of an object of type atom.

4



Example of a complex object

o1 = (i1, atom,”London”)

o2 = (i2, atom,”Waterloo”)

o3 = (i3, atom,”Hamilton”)

o4 = (i4, atom,5)

o5 = (i5, atom,”Research”)

o6 = (i6, atom,”November20,2000”)

o7 = (i7, set, {i1, i2, i3})
o8 = (i8, tuple, < dname : i5, dnum : i4, manager : i9,

locations : i7, employees : i10, projects : i11 >)

o9 = (i9, tuple, < manager : i12, mgrStartDate : i6 >)

o10 = (i10, set, {i12, i13, i14})
o11 = (i11, set, {i15, i16, i17})
o12 = (i12, tuple, <fname:i18, minit:i19, lname:i20,

SIN : i21, . . . , salary : i26, dpt : i8 >)

• o1 − o6 represent atomic values

• o7 set-valued object, represents the set of lo-

cations for dpt. 5

• o8 tuple-valued object, represents dpt. 5

(some attributes have atomic values and some

not)

• o12 represents an employee of dpt. 5 Research

5



An object can be represented as a graph struc-

ture that can be constructed by applying the type

constructors recursively:

1. create a node for each object oi

2. label each node with the OID and type constr.

for object oi

3. create a node for each basic atomic value

(and label it with this value)

4. if oi has an atomic value, draw a directed arc

from the node representing oi to the node rep-

resenting this value

5. if oi has a constructed value, draw a directed

arc from the node representing oi to a node

represented the constructed value

6



Slide 20- 3Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Object Equality

(1) two objects are said to have identical states

(deep equality), if the graphs representing their

states are identical, including same OIDs at every

level.

(2) two objects are said to have equal states

(shallow equality), if the graphs representing their

states have identical structure, some internal nodes

can have objects with different OIDs.

Example: Identical vs Equal Objects

o1 = (i1, tuple, < a1 : i4, a2 : i6 >)

o2 = (i2, tuple, < a1 : i5, a2 : i6 >)

o3 = (i3, tuple, < a1 : i4, a2 : i6 >)

o4 = (i4, atom,10)

o5 = (i5, atom,10)

o6 = (i6, atom,20)

The objects o1 and o2 have equal states,

but not identical states.

The objects o1 and o3 have identical states.

7



Type Constructors

ODL is used to define the object types for a par-
ticular database.

The type constructors are used to define the data
structures for an object database schema.
(definitions of operations/methods go into the
schema as well)

Attributes that refer to other objects are
references to other objects and serve to
represent relationships among the object types.

A binary relationship can be represented in one
direction, or it can have an inverse reference.

Example

The attribute Employees of Department has as
its value a set of Employee OIDs.

The attribute Department of Employee is the in-
verse reference.

ODMG allows inverses to be explicitly declared,
to ensure consistency.

8



Slide 20- 4Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Encapsulation of
Operations, Methods, Persistence

Main Idea define the behavior of a type of ob-
ject based on the operations that can be exter-
nally applied to objects of that type.

The internal structure of the object is hidden.

The object is accessible only through a number
of predefined operations:
creation, destruction, update object state, retrieve
parts of the object state, perform a calculation.

The implementation of an operation can be spec-
ified in a programming language.

External users of the object can only see the
interface of the object type, which defines the
name & arguments of each operation.

The implementation is hidden from the external
users.

signature the interface part of each operation

method the operation implementation

9



A method is invoked by sending a message to the

object, that will execute the corresp. method.

Part of the execution may involve sending another

message to another object.

Problem The requirement that all objects are

completely encapsulated is too stringent, for database

applications.

Solution Divide the structure of the object into

visible and hidden attributes (instance variables).

The visible attributes can be accessed via OQL.

The hidden attributes can be accessed by prede-

fined operations only.

class object type definition + definitions of oper-

ations for that type

Typical operations: object constructor, object

destructor, object modifier operations, retrieval

dot notation

apply an operation to an object, refer to an attrib.

10



Slide 20- 5Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



Object Persistence via
Naming and Reachability

An ODMS is used in conjunction with an OO

progr. lang.

An object is typically created by an application

program, by invoking the object constructor op-

eration.

Not all objects are meant to be stored perma-

nently in the database.

Transient objects exist in the executing program

and are lost when the program execution termi-

nates.

Persistent objects are stored in the database

and stay there after program execution termi-

nates.

Typical mechanisms for achieving object persis-

tence: Naming and Reachability.

11



Naming

giving an object a unique persistent name through

which it can be retrieved by a program.

the named persistent objects are used as entry

points to the database. users and applications

can start their database access.

for large databases with thousands of objects, it’s

impractical to give names to all objects.

Reachability

most objects are made persistent by making them

reachable from some persistent object.

object B is reachable from object A, if a sequence

of references in the object graph lead from A to

B.

if we create a named persistent object N , whose

state is a set/list of objects of some type T , then

we can make objects of type T persistent by sim-

ply adding them to the set/list.

(making them reachable from N)

12



Slide 20- 6Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley


