Association Rules in Data Mining I

- Association Rules show relationships (not inherent in the data) between data items
- Example:
 - purchase product A \rightarrow purchase product B
- Different from functional dependencies
- Association Rules do not represent causality or correlation
- Association Rules detect common usage of items
- Database = set of transactions, each involving items

Association Rules in Data Mining II

- Association rules are frequently used with the market-basket data model.
 - A market basket corresponds to the sets of items a consumer purchases during one visit to a supermarket.
- The set of items purchased by customers is known as an itemset.
- An association rule AR is of the form X=>Y, where X ={x₁, x₂, ..., x_n}, and Y = {y₁,y₂, ..., y_m} are sets of items, with x_i and y_i being distinct items for all i and all j.
- This AR (also noted LHS => RHS) states that: if the customer buys X, they are also likely to buy Y.
- The **itemset** of this AR is LHS **U** RHS
 - Interesting association rules are measured by their support and confidence.

Association Rules Confidence and Support

Denote an AR by LHS => RHS

Support:

- The support of an AR is the percentage of transactions that contain all of the items in the itemset, LHS U RHS.
- It refers to how frequently the specific itemset LHS U RHS occurs in the database.
- If the support is low, this means that there is no overwhelming evidence that items in LHS U RHS occur together, i.e LHS => RHS is not a plausible AR

Confidence:

- The confidence of an AR is the conditional probability that the items of RHS will be purchased when the items of the LHS are purchased.
- It refers to how strong is the implication LHS => RHS
- Confidence is computed as support(LHS U RHS) / support(LHS)
 - of all transactions containing LHS, how many contain RHS

Slide 28- 3

Example Transaction id Time

Time	Items_bought
6:35	milk, bread, cookies, juice
7:38	milk, juice
8:05	milk, eggs
8:40	bread, cookies, coffee
	6:35 7:38 8:05

Consider the two ARs: milk => juice & bread => juice

Their supports are: 50% and 25% resp.

Their confidences are: 66.7% and 50% resp.

Goal of mining ARs:

generate ARs that exceed some user-specified support and confidence thresholds

Generating Association Rules

- A general 2-step algorithm for generating ARs:
 - Generate all itemsets that have a support exceeding the given threshold. Itemsets with this property are called large or frequent itemsets.
 - 2) Generate rules for each large itemset as follows:
 - 1) For a large itemset X and Y a subset of X, let Z = X Y
 - 2) If support(X)/Support(Z) > minimum confidence, then the rule Z=>Y (i.e. X-Y=>Y) is a valid rule.

Association Rule Complexity

- Generating rules from large itemsets is "easy"
- Discovering large itemsets is "hard" (m items, 2^m itemsets, binomial theorem, exponentiality)
- Two properties are used to reduce the combinatorial search space for AR generation.

Downward Closure

 A subset of a large itemset must also be large (i.e. subsets of large itemsets exceed minimum support)

Anti-monotonicity

 A superset of a small itemset is also small.
(i.e. the itemset does not have sufficient support to be considered for rule generation, extensions of small itemsets are small)

Generating Association Rules: The Apriori Algorithm

- The Apriori algorithm was the first algorithm used to generate association rules.
- The Apriori algorithm uses the general 2-step algorithm for creating association rules together with downward closure and anti-monotonicity.

Input: Database of m transactions, D, and a minimum support, mins, represented as a fraction of *m*.

Output: Frequent itemsets, L_1, L_2, \ldots, L_k

Begin /* steps or statements are numbered for better readability */

- scanning the database once and counting the number of transactions that 1. Compute support $(i_i) = \text{count}(i_i)/m$ for each individual item, i_1, i_2, \ldots, i_n by item i_i appears in (that is, count (i_i));
 - The candidate frequent 1-itemset, C_1 , will be the set of items i_1, i_2, \ldots, i_n . N
- The subset of items containing i_j from C_1 where support $(i_j) \ge \min$ becomes the frequent ė

1-itemset, L_1 ;

k = 1;÷ termination = false;

repeat

1. $L_{k+1} = ;$

- Create the candidate frequent (k+1)-itemset, C_{k+1} , by combining members of L_k that have k-1 items in common; (this forms candidate frequent (k+1)-itemsets by selectively extending frequent k-itemsets by one item) N
- In addition, only consider as elements of C_{k+1} those k+1 items such that every subset of size k appears in L_k ; e i
- Scan the database once and compute the support for each member of C_{k+1} ; if the support for a member of $C_{k+1} \ge \min$ then add that member to L_{k+1} ; in 4
 - If L_{k+1} is empty then termination = true

else k = k + 1;

until termination;

End;

Transaction_id	Time	Items_bought
101	6:35	milk, bread, cookies, juice
792	7:38	milk, juice
1130	8:05	milk, eggs
1735	8:40	bread, cookies, coffee

run the APRIORI algorithm: mins=05 m=4 n=6 C = {milk, bread, juice, cookies, eggs, coffee } JE 0.75, 0.5, 0.5, 0.5, 0.5, 0.25, 0.25 m, b, j, c qualify for L, (supports 7, mins) Ist iteration of repeat loop: (CHORONGKIES) Extend freq. 1-itemsets to create candidate freq. 2-itemsets $C_{2} = \{ (m,b), (m,j), (b,j), (m,c), (b,c), (j,c) \}$ 0.25, 0.5, 0.25, 0.25, 0.5, 0.25 (m,j), (b,c) quality for L₂ NOTE: $(m,e) \notin C_z$ because e is small <u>ANTIMONDTONICITY</u> 2nd iteration of repeat loop: extend freq. 2-itemsets to create candidate Dextension of Lz itemsets freq. 3-itemsets T that can be a freq. 3-itemset NOTE: $(m, j, b) \notin C_3$ because $(m, b) \notin L_2$ POWNWARD CLOSURE the APRIORI algorithm terminates with $L_1 = \{m, b, j, c\}, L_2 = \{(m, j), (b, c)\}$