
The Partition Algorithm for mining ARs

• Apriori scans the database (set of transactions) several times, in order

to compute the supports of candidate frequent k-itemsets.

• The Partition Algorithm for mining ARs scans the database only

twice.

⊲ First scan: generate a set of all potentially large itemsets

⊲ Second scan: set up counters for each potentially large itemset and

compute their actual supports

• During the first scan, a superset of the actual large itemsets is

generated. (i.e. false positives may be generated, but no false

negatives are generated)

1



The Partition Algorithm executes in two phases:

⊲ Phase I: the algorithm logically divides the database into a number of

non-overlapping partitions. The partitions are considered one at a

time and all large itemsets for that partition are generated.

At the end of phase I, these large itemsets are merged to generate a

set of all potentially large itemsets.

⊲ Phase II: the actual supports for these itemsets are generated and the

large itemsets are identified.

The partition sizes are chosen such that each partition can be accommodated in the

main memory so that the partitions are read only once in each phase.

2



Partition Algorithm Assumptions

• The transactions are in the format 〈TID, ij , ik, . . . , in〉

• The items in a transaction are assumed to be kept sorted in the

lexicographic order.

• The TIDs are monotonically increasing.

• The database resides on secondary storage and the approximate size

of the database in blocks or pages is known in advance.

3



Partition Algorithm Definitions

A Partition p of the database D is any subset of the transactions

contained in D

Any two different partitions are non-overlapping

pi ∩ pj = ∅

and the union of all partitions must equal D.

The local support for an itemset is the fraction of transactions containing

that itemset in a partition.

A local candidate itemset is an itemset, that is being tested for minimum

support within a given partition.

A local large itemset is an itemset whose local support in a partition

exceeds the minimum threshold for the support.

4



• A local large itemset may or may not be large in the context of the entire database.

• We define global support, global large itemset, and global candidate itemset as

above except they are in the context of the entire database 2).

• The goal is to find all global large itemsets.

Notation:

Individual itemsets are represented by lowercase letters.

Sets of itemsets are represented by uppercase letters.

When there is no ambiguity we omit the partition number when referring to a local

itemset.

The notation c[1] · c[2] · · · c[k] is used to represent a k-itemset c consisting of items

c[1], c[2], . . . , c[k].

5



Outline of the Partition Algorithm

⊲ Initially the database D is logically partitioned into n partitions.

⊲ Phase I of the algorithm takes n iterations.

⊲ During iteration i only partition pi is considered.

⊲ The function gen large itemsets takes a partition pi as input and generates

local large itemsets of all lengths, Li
1
, Li

2
, . . . , Li

l as the output.

⊲ In the merge phase the local large itemsets of same lengths from all n partitions

are combined to generate the global candidate itemsets.

⊲ In phase II, the algorithm sets up counters for each global candidate itemset, and

counts their support for the entire database and generates the global large

itemsets.

Complexity: The algorithm reads the entire database once during phase I and once

during phase II.

Correctness: Any potential large itemset appears as a large itemset in at least one pi.

6







Generation of Local Large Itemsets
• The procedure gen large itemsets takes a partition and generates all large itemsets

(of all lengths) for that partition.

• Lines 3− 8 show the candidate generation process.

• The prune step is performed as follows:

prune(c: k-itemset)

forall (k − 1)-subsets s of c do

if s 6∈ Lk−1 then

return “c can be pruned”

• The prune step eliminates extensions of (k − 1)- itemsets which are not found to be

large, from being considered for counting support.

• Example: if Lp
3
= {(123), (124), (134), (135), (234)}, the candidate generation initially

generates the itemsets (1234) and (1345). Itemset (1345) is pruned since (145) is not in

L
p
3
.

• Same technique as Apriori, except that here, as each candidate itemset is generated, its

count is determined immediately.

7





Counts for the candidate itemsets
• Associated with every itemset, we define a structure called tidlist.

• A tidlist for itemset c contains the TIDs of all transactions that contain the itemset c

within a given partition.

• The TIDs in a tidlist are kept in sorted order.

• The cardinality of the tidlist of an itemset divided by the total number of

transactions in a partition, gives the (local) support for that itemset, in that partition.

• Initially, the tidlists for 1-itemsets are generated directly by reading the partition.

• The tidlist for a candidate k-itemset, is generated by joining the tidlists of the two

(k − 1)-itemsets that were used to generate the candidate k-itemset.

• Example: the tidlist for the candidate 4-itemset (1234) is generated by joining the

tidlists of 3-itemsets (123) and (124).

Correctness: The candidate generation process correctly produces all potential large

candidate itemsets.

Correctness: The intersection of tidlists gives the correct support for a k-itemset.

8



Generation of Final Large Itemsets
• The global candidate set is generated as the union of all local large itemsets from all

partitions.

• In phase II of the algorithm, global large itemsets are determined from the global

candidate set.

• This phase also takes n (number of partitions) iterations.

• Initially, a counter is set up for each candidate itemset and initialized to 0.

• Next, for each partition, tidlists for all 1-itemsets are generated.

• The support for a candidate itemset in that partition is generated by intersecting the

tidlists of all 1-subsets of that itemset.

• The cumulative count gives the global support for the itemset.

• Procedure gen final counts

Correctness: Since the partitions are non-overlapping, a cumulative count over all

partitions gives the support for an itemset in the entire database.

9




