Web database programming with PHP
-

e Overview

e Structured, semi-structured, unstructured data
o PHP

e A PHP Example

e Basic features of PHP

e Overview of PHP Database programming

Overview |
« 00000077

e How are databases used and accessed from the
Internet.

e Many applications provide Web interfaces to access
Information stored in one or more databases.

e Internet database applications interact with the user
via Web interfaces that display Web pages.

e Common method to specify contents/formatting of
Web pages: hypertext documents

Overview Il
« 00000077

e Languages for hypertext documents
e HTML (HyperText Markup Language)
— Used for generating static web pages
— Not suitable for specifying database data
e XML (eXtensible Markup Language)
— Standard for exchanging data over the Web
— Provides information on the structure of the data

e PHP (a PHP interpreter provides a Hypertext
Preprocessor that executes PHP commands in a text

file, to create Dynamic web pages)

Overview Il
« 00000077

Dynamic Web pages: the flight info example

PHP Is used to program dynamic features into Web
pages.

To access a database via PHP, we need to include a
library of PHP functions in the PHP interpreter

PHP Is an open source scripting language, written in C

PHP programs are executed on the Web server
computer (as opposes to Javascript for instance)

Structured, semi-structured, and
unstructured data

e Structured data
— Information stored in a database
- Represented in a strict format (tables/attributes, objects)
— Limitation: Not all data collected is structured

e Semi-structured data

- Data may have certain structure but not all information
collected has identical structure

- Some attributes may exist in some of the entities of a
particular type but not in others

- There are data models to represent sem.struct. data using
trees of graphs
e Unstructured data

- Very limited indication of data type
e E.g., a simple text document

Semi-structured data
«_«_ 7

e Graph representation of semi-structured data
Note the difference between the two workers' data

‘123456789’ ‘Smith’ 325 ‘435435435’ ‘Joyce' 20.0

Figure 26.1
Representing semistructured data as a graph.

Semi-structured data
«_«_ 7

e Key difference between semi-structured and structured
data:

- Semi-structured data values are mixed in with their
schema
(I.e with the attribute names, relationships, entity
types)

e Example: collect a list of bibliographic references
(books, tech. reports, research papers in
journals/conference proc.) may have different attributes
new types of references appear: web pages, tutorials ...

Unstructured data _.

e Limited indication of data types

HTML web pages in contain
some unstructured data

part of an HTML document
representing unstructured data

HTML tags: <...><.../>

tags mark up the document to
instruct the HTML preprocessor
how to display the text between
a start tag and an end tag

<HEAD>

</HEAD>
<BODY>
<H1>List of company projects and the employees in each project</H1>
<H2>The ProductX project:</H2>
<TABLE width="100%" border=0 cellpadding=0 cellspacing=0>
<TR>
<TD width="50%">John Smith:</TD>
<TD>32.5 hours per week</TD>
</TR>
<TR>
<TD width="50%">Joyce English:</TD>
<TD>20.0 hours per week</TD>
<TR>
</TABLE>
<H2>The ProductY project:</H2>
<TABLE width="100%" border=0 cellpadding=0 cellspacing=0>
<TR>
<TD width="50%">John Smith:/TD>
<TD>7.5 hours per week</TD>
<TR>
<TR>
<TD width="50%">Joyce English:</TD>
<TD>20.0 hours per week</TD>
<TR>
<TR>
<TD width= "50%">Franklin Wong:</TD>
<TD>10.0 hours per week</TD>
</TR>
</TABLE>

</BODY>
</HTML=>

Figure 26.2
Part of an HTML document representing unstructured data.

PHP
.

e Open source general-purpose scripting language,
whose interpreter engine is written in C

e Particularly suited for manipulation of text pages

e Has libraries of functions for accessing databases,
for various types of relational database systems
such as Oracle, MySQL and any ODBC-compliant
system

A simple PHP Example
-

e Suppose the file containing program segment P1 is
stored at www.myserver.com/example/greeting.php

(a)

//Program Segment Pl:

0)
1)

2)
3)
4)
)
6)
7)

8)

9)
10)
11)
12)
13)
14)
15)
16)

<?php
// Printing a welcome message if the user submitted their name
// through the HTML form
if ($_POST['user name']) {
print("Welcome, ") ;

print($ POST['user name']);
}
else {
// Printing the form to enter the user name since no name has
// been entered yet
print <<< HTML
<FORM method="post" action="$_ SERVER['PHP_SELF']">
Enter your name: <input type="text" name="user name">

<INPUT type="submit" wvalue="SUBMIT NAME">
</FORM>
HTML;
}

7>

A simple PHP Example

(a)

_/ /Program Segment P1:

e \When the user
accesses this URL,
the PHP interpreter
will start interpreting
the PHP commands
and will produce
the form shown:

0)
1)

2)
3)
4)
5)
6)
7)

8)

9)
10)
11)
12)
13)
14)
15)
16)

(b)

(d)

<?php

// Printing a welcome message if the user submitted their name

// through the HTML form

if ($_POST['user_name']) {
print("Welcome, ") ;
print($_POST['user name']);

}

else {

// Printing the form to enter the user name since no name has

// been entered yet
print <<<_HTML_

<FORM method="post" action="§$_ SERVER['PHP_SELF']">

Enter your name: <input type="text"

name=" user_ name ">

<INPUT type="submit" value="SUBMIT NAME">

</FORM>
_HTML ;
}

2>

Enter your name: | |

SUBMIT NAME

Welcome, John Smith

(c)

Enter your name: |John Smith |

SUBMIT NAME

Figure 26.3

(a) PHP program segment for entering a greeting,
(b) Initial form displayed by PHP program segment,
(c) User enters name John Smith, (d) Form prints
welcome message for John Smith.

>

o If the user types this URL on the browser, the PHP interpreter will start
interpreting the code and produce the form shown in (b)

0 Line 0 shows the PHP start tag <?php,
which indicates to the PHP interpreter engine that it should process all subsequent
text lines until it encounters the PHP end tag ?>

0 Text outside of these tags is printed as is. This allows PHP code segments to be
included within a larger HTML file.

0 Only the sections in the file between <?php and ?> are processed by the PH
preprocessor

0 Line 1 shows how to enter comments in a PHP program: lines starting wath //

0 Line 2 contains a predefined PHP variable $_POST, an array that holds all the
values entered through form parameters

0 Arrays in PHP are dynamic, i.e. no fixed number of elements, indexed by
numbers or strings (associative arrays)

0 $_POST is an associative array indexed by the name of the posted value
user_name that is specified in the name attribute of the input tag on line 10

0 So $_POST["user_name’] will contain the value typed by the user

0 When the web page is first accessed, the if condition in line 2 will evaluate
to false, because $_POST[“user_name’] does not yet have a value

0 So the PHP interpreter will execute lines 6-15, which create the text for an /
HTML file that displays the form shown in (b), this form will be displayed at
the client side by the browser

O Line 8 creates a long text string in an HTML file

0 All text between an opening <<<_HTML and a closing _ HTML,;
is printed into the HTML file as is

0 The closing _HTML,; must appear alone on a separate line

0 So the text added to the HTML file sent to the client will be the text between
lines 9-13. This includes HTML tags to create the form in (b)

The PHP predefined variable $_SERVER (line 9), is an array that contains
information about the local server

The element $_SERVER['PHP_SELF’] of the array is the path name of the PHP
file currently being executed on the server

The action attribute of the form tag (line 9) instructs the PHP interpreter to
reprocess the same file, once the form parameters are entered by the user

Once the user types John Smith in the text box and clicks on the SUBMIT NAME
button, the program segment is reprocessed

Now $_POST[‘user_name’] contains the value/string “John Smith”, so lines 3
and 4 will be placed in the HTML file sent to the client, which displays the
message in (d)

Overview of basic features of PHP
S

e PHP variables, data types, and programming
constructs

- Variable names start with $ and can include
characters, letters, numbers, and _ characters

e No other special characters are permitted
e Variable names are case sensitive
e Variable names cannot start with a digit
- Variables are not typed
e The values assigned to variables determine their type
e Assignments can change the type

- Variable assignments are made by the operator =

Overview of basic features of PHP
S

e PHP types of string values:
Single-quoted strings (lines 0, 1, 2) escape character: \

e Double-quoted strings (line 7)
Variable names appearing within the string are replaced by their
values. (this is called Variable Interpolation)
It does not occur in single-quoted strings

e Here documents (lines 8-11)
Enclose a part of a document between <<<DOCNAME and end
It with a single line containing the document name DOCNAME
(Variable Interpolation occurs)

0)
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)

print 'Welcome to my Web site.';

print 'I said to him, "Welcome Home"';

print 'Wel\'ll now visit the next Web site';

printf('The cost is $%.2f and the tax is $%.2f', Scost, S$tax) ;
print strtolower('AbCdE');

print ucwords(strtolower('JOHN smith'));

print ‘'abc' . ‘'efqg'’

print "send your email reply to: $email address"

print <<<FORM HTML

<FORM method="post" action=" $_SERVER["PHP SELF']"> Figure
Enter your name: <input type="text" name="user name"> llustrating basic |
FORM HTML string and text va

+ the period . serves as a string concatenation operator
+ other string functions: strtolower, ucwords

+ rule of thumb: use single-quoted strings when no
variables are present, use double-quoted strings or
here documents when variables need to be interpolated

Overview of basic features of PHP
S

e PHP has numeric data types for integers,
floats, generally following the C types

e PHP has for-loops, while-loops, if-statements

e PHP has Boolean logic

e True/false is equivalent no non-zero/zero

e Comparison operators
- ==, !:, > >= < <=

Overview of basic features of PHP

<
e PHP Arrays

— Allows to form lists of elements

- Used frequently in forms that employ pull-down menus,
to hold the list of choices

— Can be 1-dimensional or multi-dimensional
- 2-dim. arrays are used for relational database data

— Arrays can be numeric or associative
e Numeric array is based on a numeric index (starts ate zero)
e Associative array is based on a key => value relationship
e Element values are accessed via their keys. Keys are unique.

Overview of basic features of PHP
S

e Examples of two PHP Arrays

— Line O: $teaching is a associative array
e Line 1 shows how the array can be updated/accessed

— Line 5: $courses is a numeric array (No key is provided)

Figure 26.5
lllustrating basic PHP array processing.

0)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)

$teaching = array('Database' => 'Smith', '0S' => 'Carrick’',
'Graphics' => 'Kam');
$teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Kam';
sort($teaching);
foreach ($teaching as S$key => S$value) {
print " $key : $value\n";}
S$courses = array('Database', '0S', 'Graphics', 'Data Mining');
$alt row color = array('blue', 'yellow');
for ($i = 0, $num = count($courses); i < $num; $i++) {
print '<TR bgcolor="' . $alt row color[$i % 2] . '">';
print "<TD>Course $i is</TD><TD>Scourse[S$i]</TD></TR>\n";
3

Overview of basic features of PHP
S

e The sort function sorts the array based on the
elements values (not the keys)

e The count function returns the current number of
elements in the array

e Looping mechanisms for PHP Arrays

e Line 3 and 4 show “for each” construct for looping through
each and every element in the array

e Line 7 and 10 show a traditional “for loop” construct for
iterating through an array

Overview of basic features of PHP
.

//Program Segment P1':

0) function display welcome() { PHP FunCtIOnS

1) print ("Welcome, ") ;

2) print($_POST['user name']); — tWO funCt|OnS

3) } :

4) e display welcome()

5) function display empty form(); { .

6) print <<< HTML ¢ dlsplay_empty_form()
7) <FORM method="post" action="§$ SERVER['PHP_SELF']"> .

8) Enter your name: <INPUT type="text" name="user name"> o Llnes 14-19 ShOW

9)
 function calls

10) <INPUT type="submit" wvalue="Submit name">
11) </FORM>

12) _HTML ;

13) }

14) if ($_POST['user name']) {
15) display welcome();

l6) 1}

17) else {

18) display empty form();

19) 1}

The function course_instructor($course,$teaching _assignments) has 2 parameters

$course string holding the course name
$teaching_assignments assoc. array holding teaching assignments

0) function course_instructor ($course, $teaching assignments) {

the function finds the 1) if (array key exists($course, $teaching assignments)) {

name Of the 2) $instructor = $teaching_assignments[$course];
) 3) RETURN "$instructor is teaching $course";
instructor who 4
teaches a course. 5) else { _

6) RETURN "there is no S$course course":
the function call in SO

Line 11 W|” return the 9) S$teaching = array('Database' => 'Smith', '0S' => 'Carrick',
: 7 . . 'Graphics' => 'Kam');
Strlng Smlth IS 10) Steaching['Graphics'] = 'Benson'; S$teaching['Data Mining'] = 'Kam';
teaChing Database”. 11) $x = course_instructor('Database', $teaching);
12) print($x);
13) $x = course_instructor('Computer Architecture', $teaching);
14) print($x);

Overview of basic features of PHP
S

e PHP Observations

Built-in PHP function array_key exists($k,$a)
returns true if the value in $k exists as a key in the
associative array $a

Function arguments are passed by value

Return values are placed after the RETURN
keyword. Functions can return any value.

Scope rules apply as with other programming
languages

Overview of basic features of PHP
S

e PHP Server Variables and Forms
— There a number of built-in entries in PHP functions

- Example: built-in array variable $ SERVER

e $ SERVER['SERVER_NAME']

— This provides the Website name of the server computer
where PHP interpreter is running

e $ SERVER['REMOTE_ADDRESS']

— IP address of client user computer that is accessing the
server

e $ SERVER['REMOTE_HOST']
-~ Website name of the client user computer

Overview of basic features of PHP
S

e $ SERVER['PATH_INFO']

— The part of the URL address that comes after backslash (/) at
the end of the URL

e $ SERVER['QUERY_STRING']
— The string that holds the parameters in the URL after ?
— Common usage: search parameters

e $ SERVER['DOCUMENT_ROOT]
— The root directory that holds the files on the Web server

Another important built-in array variable: $ POST

Provides the program with input values submitted via an HTML form
(<INPUT> tag)

