
PageRank & HITS (circa 1998)
Ranking Webpages by Popularity

• Concepts underlying PageRank (Google) & HITS (Teoma, Ask) algorithms

◃ Web graph (directed graph, nodes: webpages, directed arcs, edges: hyperlinks)
◃ inlink (hyperlinks pointing into a webpage)
◃ outlink (hyperlinks pointing out of a webpage)

• PageRank & HITS assign a score to each webpage, a measure of its popularity

and relevance to a search query
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PageRank thesis

A webpage is important if it is pointed to by other important

pages.

PageRank assigns a score to each webpage.

Comparing the PageRank scores of two pages gives an indication of the

relative importance of the two pages.

Google Toolbar
Displays the PageRank score as an integer from 0 to 10.
Most important pages receive a score of 10.
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Query-Independence

• A webpage ranking is called query-independent if the popularity

score for each webpage is determined off-line and remains constant

(until the next update) regardless of the query.

• At query time, no time is spend computing the popularity scores for

relevant pages. These scores are found by table lookup, in the

previously computed popularity table.

• PageRank is query-independent, i.e. it produces a global ranking of

the importance of all pages in Google’s index (≈ 8.1b pages)

• HITS is query-dependent, in its original version.

• Both PageRank, HITS can be modified to become q-dep, q-indep

resp.
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PageRank Mathematical Formalism

• PageRank equation: (derived from bibliometrics research: analysis of

citation structure among scientific research papers)

r(Pi) =
∑

Pj∈BPi

r(Pj)

|Pj|

◃ r(Pi) is the PageRank of page Pi

◃ BPi
is the set of pages pointing into Pi

◃ |Pj| is the number of outlinks from page Pj

• The values r(Pj) (PageRanks of pages inlinking to Pi) are unknown.

• Iterative procedure, Assumption: r(Pi) =
1

n
, i = 1, . . . , n
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• rk+1(Pi) is the PageRank of page Pi at iteration k + 1

• iterative PageRank equation:

rk+1(Pi) =
∑

Pj∈BPi

rk(Pj)

|Pj|

with initialization values: r0(Pi) =
1

n
, i = 1, . . . , n

• n is the total number of pages indexed.

• The process is applied iteratively, hoping that it will eventually

converge to some stable values,

i.e. the PageRank scores of all pages Pi.
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PageRank Toy Example
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Matrix Representation of PageRank Equation

• the Σ-PageRank equations compute PageRanks one page at a time.

• the matrix-PageRank equation computes a PageRank vector.

• this is a 1× n row vector πT that holds the PageRank values of all

pages in the index. (T denotes transposition)

• the hyperlink matrix H is a n× n square matrix with

Hij =

{
1/|Pi| if there is a link from node i to node j

0 otherwise

• H exhibits the same non-zero element structure as the adjacency

matrix of the graph, but the non-zero elements are probabilities.
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Matrix-PageRank Toy Example
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• In H,

the non-zero elements of row i corresp. to the outlinking pages of Pi

the non-zero elements of col i corresp. to the inlinking pages of Pi

• π(k)T denotes the PageRank vector at the kth iteration.

• Matrix-PageRank equation: π(k+1)T = π(k)TH Power Method

◃ Each iteration requires one vector-matrix multiplication, O(n2)

◃ H is a very sparse matrix, lots of 0 elements, most pages link to

only a few other pages, v-m mult. complexity: O(nnz(H))

◃ estimate: the average webpage has about 10 outlinks ; H has

approx. 10n non-zero elements ; v-m mult. complexity: O(n)

◃ nondangling nodes: row sums are equal to 1: stochastic rows

◃ dangling nodes: (pages w/out any outlinks) create rows of n

zeros: H substochastic
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Issues with the Matrix Representation

• will the iterative process converge?

• under what properties of H is it guaranteed to converge?

• will it converge to something sensible in the PageRank context?

• will it converge to just one vector or multiple vectors?

• does the convergence depend on the starting vector π(0)T ?

• how many iterations can we expect, to achieve convergence?
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The Rank Sinks Problem

• Let eT be the 1× n row vector of 1’s

• Start the iterations with π(0)T =
1

n
eT

• rank sinks are those pages that accumulate more and more

PageRank at each iteration, monopolizing the scores and refusing to

share.

• the dangling node 3 is a rank sink

• the cluster of nodes 4, 5, 6 is a rank sink, π(13)T = [0, 0, 0, 2
3
, 1
3
, 1
5
]
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The Cycles Problem

• page 1 points only to page 2 and vice versa, infinite loop, cycle

• the iterates will flip-flop indefinitely, there is no convergence

13



Overcoming Rank Sinks, Cycles
Markov Chains Theory

• For any starting vector, the power method applied to a Markov

matrix P converges to a unique positive vector called the stationary

vector, as long as P is stochastic, irreducible and aperiodic.

• We can overcome convergence problems caused by rank sinks and

cycles, if H is modified slightly, so that it is a Markov matrix with

the desired properties.

(1) A unique positive PageRank vector exists when the Google

matrix is stochastic and irreducible.

(2) In addition, if the Google matrix is aperiodic, then the (iterative)
power method will converge to this PageRank vector, regardless of the
starting vector.
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Adjustments to the basic model
• Notion of a Random Surfer (RS)

Bounces along randomly following the hyperlink structure of the

Web. Arrives at a page, chooses randomly a hyperlink and follows it.

Continues this random decision process indefinitely.

• In the long run, the proportion of time the RS spends on a given

page is a measure of the importance of that page.

• Pages that the random surfer revisits often must be important,

because they must be pointed to by other important pages.

• PB The RS gets trapped upon entering a dangling node (.pdf file,

image file, data table, etc)

• FIX stochasticity adjustment

replace all 0T rows in H by
1

n
eT rows ; stochastic matrix
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• Effect of the stochasticity adjustment on the RS after entering a

dangling node: they can visit any page at random.

•

stochasticity adjustment: S = H + a

(
1

n
eT

)
where a is the n× 1 column dangling node vector

ai = 1 if Pi is a dangling node, 0 otherwise.

• S is created from a rank-one update

(
1

n
eT

)
to H.
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• primitivity adjustment RS argument: occasionally, the RS gets

bored and decides to visit a page by entering a URL in the browser.

•

mathematical model: G = αS + (1 − α)

(
1

n
eeT

)
where α is a number in [0, 1] and G is the Google matrix.

• the parameter α controls the proportion of time the RS follows

hyperlinks vs URLing.

• suppose α = 0.6, then 60% of the time the RS follows hyperlinks and

the other 40% of the time uses a URL to visit a new page randomly.

• URLing is random, because the corresp. matrix E =

(
1

n
eeT

)
is

uniform, i.e. the RS is equally likely to jump to any page.
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Consequences of the Adjustments

• G is stochastic, convex combination of two stochastic matrices S, E

• G is irreducible,

• G is aperiodic, Gii > 0

• G is primitive, G > 0

and therefore the power method converges to a unique PageRank vector.

G is completely dense, but can be written as a rank-one update to the

very sparse H.

For the twice-modified G, a unique PageRank vector exists and is a

remarkably good way of assigning global importance value to webpages.
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Google’s Adjusted PageRank Toy Example

• Google’s adjusted PageRank is the power method π(k+1)T = π(k)TG

applied to the Google matrix G.

• Set α = 0.9 and compute G = 0.9H + (0.9a+ 0.1e)
1

6
eT

• Google’s PageRank vector is the stationary vector of G given by

1 2 3 4 5 6

πT = (.03721 .05396 .04151 .3751 .206 .2862)

• So the 6 webpages can be ranked by their importance as (4 6 5 2 3 1),

i.e. page 4 is the most important and page 1 is the least important,

according to the PageRank definition of importance.
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HITS theses
A hub is a webpage containing many outlinks
An authority is a webpage containing many inlinks link: feature

(1) A webpage is a good huba if it points to good authorities.
(2) A webpage is a good authorityb if it is pointed to by good
hubs.

aand therefore deserves a high hub score
band therefore deserves a high authority score
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• A webpage can be both a hub and an authority.

• HITS uses the Web’s hyperlink structure to assign popularity scores

to webpages.

• HITS assigns two scores to each webpage: authority score & hub

score.

• Good authorities are pointed to by good hubs.

• Good hubs point to good authorities.

• HITS acronym (Hypertext Induced Topic Search)
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HITS Mathematical Formalism

• every page i has both an authority score xi and a hub score yi

• let E denote the set of all directed edges in the web graph

• let eij denote the directed edge from node i to node j

• each page (node) has been assigned an initial a-score x
(0)
i and an

initial h-score y
(0)
i

• HITS successively refines these initial scores by computing:

x
(k)
i =

∑
j:eji∈E

y
(k−1)
j and y

(k)
i =

∑
j:eij∈E

x
(k)
j for k = 1, 2, 3, . . .
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Matrix Representation of HITS Equations

x(k) = LTy(k−1) and y(k) = Lx(k)

• L is the adjacency matrix of the directed web graph

Lij =

{
1, if there exists an edge from node i to node j

0, otherwise

• x(k) and y(k) are n× 1 vectors holding the current (at each iteration)

a-scores and h-scores for each webpage.

• Note that L is sparse.
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HITS Toy Example
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Original HITS Algorithm

1. Initialize y(0) = e, where e is a column vector of all ones.

2. Set k = 1.

3. Repeat

x(k) = LTy(k−1)

y(k) = Lx(k)

k = k + 1

Until convergence
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• Note that substitution simplifies the two HITS matrix equations to:

x(k) = LTLx(k−1)

y(k) = LLTy(k−1)

• Iterative Power method for the matrices LTL and LLT

• Compute the dominant eigenvectors of LTL and LLT

• LTL is the authority matrix, determines the a-scores

• LLT is the hub matrix, determines the h-scores

• These are both sparse symmetric positive semidefinite matrices
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HITS Implementation
Two main phases:

1. build a neighborhood graph N based on the query terms

2. compute the authority and hub scores for each page in N and

establish two ranked lists accordingly

Construction of the neighborhood graph N:

All pages containing references to the query terms are put into N.

To determine these pages consult the inverted file index.

term 1 (lion) n1, n2, n3

term 2 (aztec) n1, n4, n5, n6, n7, n8

...
...

term m (car) . . .
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For each term, all pages mentioning this term are stored in a list.

A query on terms 1 and 2 would result in placing pages

n1, n2, n3, n4, n5, n6, n7, n8 into N.

Expand N by adding nodes that point either to or from nodes in N.

Form the adjacency matrix L, corresponding to the nodes in N.

This is a much smaller matrix than the matrix L corresponding to all

the nodes in the web graph.

In addition, we can compute either the a-scores vector or the h-scores

vector, since they are related by y = Lx.
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HITS Toy Example
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