

CP400N: Introduction to Parallel Programming: Term Project:
Julia Sets Computation Using High Performance Computing

by Nicholas Azar, Dalibor Dvorski, Gabriel St-Onge Carle for Dr. Ilias S. Kotsireas
Department of Physics & Computer Science

Wilfrid Laurier University
April 2013

Introduction
In the early twentieth century, Gaston Maurice Julia studied the iteration of

polynomials and rational functions. Interesting results may be observed by

iterating x in some function f(x). If the iteration of functions is extended to

functions containing complex numbers, then we may define Julia set as being

generated by the function Q
c
(z) = z2 + c, where c is a complex number

constant of the form a + bi, and where a and b are real numbers. From this it

is clear that there are infinite Julia sets, where each is created by defining

some value for c. When the resulting geometric points are represented

graphically the results are images of great interest. Gaston Maurice Julia

studied such sets and it is for his success in this area of mathematics that they

hold his surname. [1, 2, 3]

Parallel Algorithm
The initial approach to designing a parallel program which generates the

geometric points for a function that make up a Julia set was fairly simple: the

total number of data blocks was taken and equally divided between the

processors. This approach resulted in poor work division between the

processors because some had more points to compute while others less. The

improved solution came in the form of the master-slave paradigm. [4]

Processor 0 was assigned the role of master, while the remaining processors

were slaves. The image was split row by row, with the master processor

sending rows to the slave processors and waiting for results. Once a result

was received, the master sent an additional row to a slave. After sending all

computations, the master waits for completion by the slaves. Upon

completion, the master sends a message informing each slave that there are

no more computations.

Results

Conclusion
This project presented two programs to solve the Julia set problem: a parallel

program that computes a Julia set and a sequential program which outputs a

graphical representation of the Julia set. The parallel program was shown to

have done reasonably well in balancing the work load between the available

number of processors. Furthermore, parallelism was justified with test results

showing that the running time was approximately halved by doubling the

number of processors. Overall the project was a success. A problem that

benefits from parallel computing was solved and shown to be successful.

However there are some interesting topics that may be completed as an

extension of this project. The detail of the images may be improved with the

inclusion of more colours and output high definition images. In doing so, the

topic of fractals may be studied in the resulting high definition images.

Another future topic of study may be additional sets, such as the Fatou set

and Cantor set.

References
[1] Devaney, Robert L. 1990. “Chaos, Fractals, and

 Dynamics: Computer Experiments in Mathematics.”

 Addison-Wesley.

[2] Julia, Gaston M. 1918. “Memoire sur l'iteration des

 fonctions rationnelles.” Journal de mathematiques pures

 et appliquees (8e serie, tome 1)

[3] Weisstein, Eric W. “Julia set.” MathWorld--A Wolfram Web Resource.

 http://mathworld.wolfram.com/JuliaSet.html.

[4] “Parallel Languages/Paradigms: The Master-Slave Paradigm.”

 Department of Computer Science, University of Illinois.

 http://charm.cs.uiuc.edu/research/masterSlave.

[5] “SHARCNET: Cluster saw.sharcnet.ca.” SHARCNET.

 https://www.sharcnet.ca/my/systems/show/41.

[6] “Saw - Documentation.” SHARCNET.

 https://www.sharcnet.ca/help/index.php/Saw.

Q
c
(z) = z2 - 0.2875 + 0.63508i

Q
c
(z) = z2 - 0.8 - 0.175i

Q
c
(z) = z2 - 0.12 - 0.77i

Q
c
(z) = z2 - 0.1 + 0.8i

processors
time (s)

min max max - min avg

4 257.136136 257.136446 0.000310 257.136318

8 133.481619 133.481899 0.000280 133.481707

16 63.723180 63.724237 0.001057 63.723738

32 31.233345 31.238666 0.005321 31.237287

64 16.230648 16.234519 0.003871 16.233357

128 9.384522 9.587187 0.202665 9.557736

min, max, and avg represent execution times per processor.
max - min represents the success of load balancing amongst
available processors. Test cases executed on SHARCNET's
saw cluster of computers. [5, 6]

Q
c
(z) = z2 + 0.285 + 0.01i

Q
c
(z) = z2 + 0.360284 + 0.100376i

Q
c
(z) = z2 + 0.360284 + 0.100376i

Q
c
(z) = z2 + 0

http://mathworld.wolfram.com/JuliaSet.html
http://charm.cs.uiuc.edu/research/masterSlave
https://www.sharcnet.ca/my/systems/show/41
https://www.sharcnet.ca/help/index.php/Saw

	Slide 1

