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Introduction
In the early twentieth century, Gaston Maurice Julia studied the iteration of 

polynomials and rational functions.  Interesting results may be observed by 

iterating x in some function f(x).  If the iteration of functions is extended to 

functions containing complex numbers, then we may define Julia set as being 

generated by the function Q
c
(z) = z2 + c, where c is a complex number 

constant of the form a + bi, and where a and b are real numbers.  From this it 

is clear that there are infinite Julia sets, where each is created by defining 

some value for c.  When the resulting geometric points are represented 

graphically the results are images of great interest.  Gaston Maurice Julia 

studied such sets and it is for his success in this area of mathematics that they 

hold his surname. [1, 2, 3]

Parallel Algorithm
The initial approach to designing a parallel program which generates the 

geometric points for a function that make up a Julia set was fairly simple: the 

total number of data blocks was taken and equally divided between the 

processors. This approach resulted in poor work division between the 

processors because some had more points to compute while others less. The 

improved solution came in the form of the master-slave paradigm. [4]  

Processor 0 was assigned the role of master, while the remaining processors 

were slaves.  The image was split row by row, with the master processor 

sending rows to the slave processors and waiting for results.  Once a result 

was received, the master sent an additional row to a slave.  After sending all 

computations, the master waits for completion by the slaves.  Upon 

completion, the master sends a message informing each slave that there are 

no more computations.

Results

Conclusion
This project presented two programs to solve the Julia set problem: a parallel 

program that computes a Julia set and a sequential program which outputs a 

graphical representation of the Julia set.  The parallel program was shown to 

have done reasonably well in balancing the work load between the available 

number of processors.  Furthermore, parallelism was justified with test results 

showing that the running time was approximately halved by doubling the 

number of processors.  Overall the project was a success.  A problem that 

benefits from parallel computing was solved and shown to be successful.  

However there are some interesting topics that may be completed as an 

extension of this project.  The detail of the images may be improved with the 

inclusion of more colours and output high definition images.  In doing so, the 

topic of fractals may be studied in the resulting high definition images.  

Another future topic of study may be additional sets, such as the Fatou set 

and Cantor set.
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Q
c
(z) = z2 - 0.2875 + 0.63508i

Q
c
(z) = z2 - 0.8 - 0.175i

Q
c
(z) = z2 - 0.12 - 0.77i

Q
c
(z) = z2 - 0.1 + 0.8i

processors
time (s)

min max max - min avg

4 257.136136 257.136446 0.000310 257.136318

8 133.481619 133.481899 0.000280 133.481707

16 63.723180 63.724237 0.001057 63.723738

32 31.233345 31.238666 0.005321 31.237287

64 16.230648 16.234519 0.003871 16.233357

128 9.384522 9.587187 0.202665 9.557736

min, max, and avg represent execution times per processor.
max - min represents the success of load balancing amongst 
available processors.  Test cases executed on SHARCNET's
saw cluster of computers. [5, 6]

Q
c
(z) = z2 + 0.285 + 0.01i

Q
c
(z) = z2 + 0.360284 + 0.100376i

Q
c
(z) = z2 + 0.360284 + 0.100376i

Q
c
(z) = z2 + 0
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